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Abstract

In the late 1930s, an inflatable truncated icosahedral beach-ball was made such that its hexagonal faces were coloured with five 

different colours. This ball was an unnoticed invention. It appeared more than twenty years earlier than the first truncated icosahedral 

soccer ball. In connection with the colouring of this beach-ball, the present paper investigates the following problem: How many 

colourings of the dodecahedron with five colours exist such that all vertices of each face are coloured differently? The paper shows that 

four ways of colouring exist and refers to other colouring problems, pointing out a defect in the colouring of the original beach-ball.

Keywords

polyhedron, truncated icosahedron, compound of five tetrahedra, colouring of polyhedra, permutation, inflatable ball

1 Introduction
Spherical forms play an important role in different fields 
of science and technology, and in different areas of every-
day life. For example, spherical domes are quite com-
mon in architecture, and spherical balls are used in most 
ball games. Spherical inflatables such as air-supported 
radomes (radar or radio antenna domes) and soccer balls 
have structures analogous to each other. They are made 
from planar elements that are stitched (glued) together, 
and after inflation, they achieve a shape approximating 
a sphere. The present paper is related to inflatable balls.

These multi-panel balls, which originally were stuffed 
with hair or feathers, have a long history, although their 
beginnings are not known to us. We know that Plato (1892a) 
wrote in Phaedo (360BC): "... the earth, when looked at 
from above, is in appearance streaked like one of those 
balls, which have leather coverings in twelve pieces, and 
is decked with various colours ...". Referring to Timaeus 
(Plato, 1892b), Robin (1935) remarked in a footnote that 
the number of faces of a regular dodecahedron is twelve. 
Rassat and Thuillier (1996) went further, and explicitly 
stated that a dodecahedral leather ball is mentioned in the 
quotation above. We prefer to think that this ball could 
be dodecahedral, but not necessarily. On the one hand, 
the emphasised number twelve could  refer to many other 
things, and on the other, we do not know of any archaeo-
logical evidence for the existence of dodecahedral balls 

– not even among the relics of the Romans who inherited 
many ball games from the Greeks.

The Romans mainly used balls composed of equal  
digonal panels, forming a regular hosohedron (Coxeter, 1973, 
p. 12; Wikipedia (a)). These balls were colourful, as seen in 
the 4th century AD mosaic in the Villa Romana del Casale, 
Piazza Armerina, Sicily (Wikipedia (b)); they could be com-
posed of as many as twelve digonal pieces as demonstrated 
by toy balls, found in Egypt from the Roman period, kept in 
the British Museum (2017).

During the Han (202BC-220AD) and Tang (618-907AD) 
dynasties in China, tetragonal and hexagonal hosohe-
dral balls were used to play cuju (ancient Chinese foot-
ball) (Cui, 1991). During the Tang dynasty, the hexagonal 
hosohedral balls were modified. The two vertices of the 
hosohedron were truncated. The ball obtained in this way 
was built from two hexagonal and six quadrilateral panels. 
The Chinese claim that, during the Song dynasty (960-
1279AD), a 12-piece ball was developed where each panel 
was a regular pentagon (hwjyw.com). We do not know the 
details of this, but it is well known that there are paintings 
and drawings from the Song to the Ming dynasties that 
show people playing cuju with a ball on which (at least) 
one pentagon is seen.

We know of only one example of the existence of poly-
hedral balls in the ancient times. This is a ball that can be 

https://doi.org/10.3311/PPar.12375
https://doi.org/10.3311/PPar.12375
mailto:lengyel.andras@epito.bme.hu


100|Tarnai and Lengyel
Period. Polytech. Arch., 49(2), pp. 99–108, 2018

seen in the 2nd century AD mosaic of the Baths of Porta 
Marina, Ostia (Rassat and Thuillier, 1996). It could be a 
hexadecahedron of D2 symmetry with 4 hexagonal and 
12 pentagonal faces. Since manufacturing such a compli-
cated ball must be difficult, Rassat and Thuillier (1996) 
thought that the mosaic is probably just a misinterpreta-
tion of a dodecahedron.

During the Renaissance, artists and scientists stud-
ied the Archimedean polyhedra. Pacioli (1509) published 
them with the drawings by Leonardo da Vinci. One of 
these polyhedra is the truncated icosahedron of Ih sym-
metry with 12 pentagonal and 20 hexagonal faces (Fig. 1). 
It looks quite round, and could serve as a basis for balls, 
but as far as we know it was not used for this purpose, but, 
for instance, much later for decorating a church memo-
rial (Fig. 2) (Tarnai and Krähling, 2008). However, ball 
games were also played in the Renaissance. One piece of 
evidence for this is a leather ball in the Stirling Smith Art 
Gallery and Museum, Scotland, which was made sometime 
in the 1540s, and is considered as the world's oldest extant 
football (The Stirling Smith Art Gallery and Museum). 
It was constructed from only three panels: two equal cir-
cles and an elongated rectangle. Prior to inflation it was 
shaped like a circular cylinder. Interestingly, this kind of 
ball is still in use in England in the traditional Shrovetide 
football game (Wikipedia (c)). With the growing pop-
ularity of football, the number of different ball designs 
increased, and around the turn of the 20th century, designs 
showed great variety, and in addition to the hosohedral 
ball (Fig. 3(a)), many variants occurred (Tarnai, 2005). 
(The ancient hosohedron form still exists in present-day 
beach-balls (Fig. 3(c)).)

The truncated icosahedral ball appeared only in the 
1960s. Most people think that this 32-panel ball (Fig. 3(b)) 
is an Adidas invention, since Adidas made the first official 
FIFA World Cup match ball in 1970, which was a trun-
cated icosahedral ball. However, the 32-panel truncated 
icosahedral ball was, in fact, invented by Eigil Nielsen, 
a former goal keeper of the Danish national football team 
and was introduced by his firm Select in 1962 (Select 
Sport (a), (b)). (Adidas started making footballs only in 
1963 (Wikipedia (d)).) We do not know the circumstances 
of the invention or how Nielsen got the idea, but it is clear 
that it required a certain level of geometrical knowledge. 
As Michael Karlsen of Select (personal communication) 
informed us, Eigil Nielsen knew a mathematical family. 
His invention has never been patented. His philosophy 
was that the ball is the most entertaining toy in the world, 

and "we should make sure that every step to improve its 
qualities is free for all of us". As far as we know, the first 
patent was given in 1964 for the black and white colouring 
of the ball (Doss, 1964).

The date of the invention of the truncated icosahedral 
ball has been known to us for years. Consequently, it was a 
great surprise when, while watching a recent TV documen-
tary (Kloft, 2017), one of us unexpectedly saw a colourful 
truncated icosahedral beach-ball (Fig. 3(d)) on the screen. 
This documentary showed excerpts of several archive 
home movies in colour. The ball appeared in the home 
movie entitled Wörthsee, made sometime at the end of the 
1930s. This means that a truncated icosahedral ball - here-
after we will call it simply the "Wörthsee ball" - already 

Fig. 1 A lath skeleton model of a truncated icosahedron drawn by 
Leonardo da Vinci (Pacioli, 1509). (Source: https://archive.org/details/

divinaproportion00paci)

Fig. 2 A truncated icosahedron at the feet of the effigies on the 
monument to Sir Anthony Ashley in Wimborne St. Giles, England, 

erected in 1627. (Photo: Tarnai). The respected architecture historian 
Nikolaus Pevsner misdescribed this object as a "sphere of hexagons" 

(Newman and Pevsner, 1975).

https://archive.org/details/divinaproportion00paci
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existed more than twenty years before Eigil Nielsen's 
32-panel ball, although this was not common knowledge.

The aim of the present paper is to describe the properties 
of the Wörthsee ball, to point out a defect in its colouring and 
show how to "correct" the colouring, and finally, to provide 
data for making conjectures about the origin of this ball.

2 The Wörthsee ball
The date of filming of the Wörthsee ball was very close to 
the 1936 Summer Olympics. The seam pattern of the offi-
cial balls used there in football, basketball and water polo 
was a cube, the faces of which were cut in half. Thus, these 
balls had "leather coverings in twelve pieces" and Th sym-
metry. It is worth mentioning that one rectangular "piece" 
(panel) is combinatorially a pentagon, and therefore the 
shape of such a ball is a spherical pentagonal dodecahe-
dron, but with irregular pentagons. It is considered, that 
from such a ball, it is not possible to develop gradually a 
truncated icosahedral ball. This is why the Wörthsee ball 
was a revolutionary new design. Despite searching for 
photos of beach-balls of the time, it was not possible to 
find another copy of the Wörthsee ball. It is reasonable to 

assume that this ball was made as a one-off, and not by 
mass production. It seems that beach-balls, similar to those 
of the present day, were mostly hosohedra at that time.

The skin of the Wörthsee ball was made of thin, 
coloured textile pentagons and hexagons. The seams were 
quite robust. Figs. 3(d) and 4 show, that in the neighbour-
hood of some of the seams, the Gaussian curvature is neg-
ative, and there are some wrinkles that cannot occur at an 
inflated spherical membrane. At the same time, the cen-
tral parts of many polygons look tight, as if the wet mem-
brane is sticking to a smooth spherical surface beneath. 
These observations suggest that the ball had a two-layer 
construction. The external skin was supported internally 
by an inflatable bladder that could be a commercial beach-
ball itself. The robust seams, the two-layer construction 
unusual in beach-balls, and a defect in the colouring, to 
be discussed later, all corroborate the supposition that the 
Wörthsee ball was a home-made object.

The Wörthsee ball appeared in the documentary 
(Kloft, 2017) in many different positions (Fig. 4), and so it 
was possible to identify the complete colour pattern of the 
ball that is shown on a Schlegel diagram (Coxeter, 1961, 
p. 152) in Fig. 5(a). The pentagons were green. The hexa-
gons were made with five different colours (black, blue, 

(a) (b)

(c) (d)

Fig. 3 Hosohedral balls composed of digonal panels (a), (c), and 
truncated icosahedral balls (b), (d). (a) Soccer ball in the second 

half of the 19th century, from the collection of the National Football 
Museum, Preston, UK. (Photo: Tarnai). (b) Modern 32-panel soccer 

ball. (Photo: Tarnai). (c) Beach-ball. (Available at: https://www.
evapresent.eu/). (d) "Wörthsee ball", a beach-ball from the end of the 

1930s. (Kloft, 2017).

(a) (b)

(c) (d)

Fig. 4 Different views of the Wörthsee ball. Colours in 
counterclockwise order around a pentagon: (a) R, K, Y, B, W,  

(b) R, B, Y, K, W and R, K, Y, R, W, (c) R, Y, B, W, B,  
(d) B, Y, K, Y, K. (Kloft, 2017)

https://www.evapresent.eu/
https://www.evapresent.eu/
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red, white, yellow), and every colour was used for four 
hexagons. To simplify the discussion, we use the follow-
ing notation for colours: K for black, B for blue, R for 
red, W for white, Y for yellow. Mathematically, colour-
ing the hexagons of a truncated icosahedron is the same 
as colouring the faces of an icosahedron, or colouring the 
vertices of a dodecahedron. For analysis we will use the 
last version. Accordingly, the colouring scheme of the 
hexagons of the Wörthsee ball is shown on a dodecahe-
dron in Fig. 5(b).

The edges and vertices of a dodecahedron form a graph. 
The distance between two vertices of the dodecahedron 
is defined according to graph theory. A path is a finite 
sequence of edges connecting a sequence of distinct ver-
tices. The length of a path is the number of edges in the 
path. The distance between two vertices is the length of 
the shortest path joining these two vertices.

When colouring the vertices of the dodecahedron 
with five colours, each for four vertices, we require that 
it should be a valid colouring, that is, no two vertices, 
between which the distance is one, share the same colour. 
In addition, we require that the colours should be dis-
tributed uniformly, which means that the least distance 
between any two of the vertices coloured alike should be 
as large as possible, and the minimum number of different 
colours occurring at the vertices of a pentagon should be 
a maximum. In a simple formulation, the task is to colour 
the vertices of a dodecahedron with five colours so that all 
vertices of each face are coloured differently.

It seems that the designer of the Wörthsee ball had a 
mathematical approach, and tried to follow these require-
ments on the truncated icosahedron. The findings are 
described in terms of colouring the vertices of the corre-
sponding regular dodecahedron.

Consider Fig. 5(b), which shows the Schlegel dia-
gram of the dodecahedron, the vertices of which are 
coloured according to the hexagons of the Wörthsee ball. 
It is easy to see that the antipodal vertices have the same 
colour. Such a colouring will be called antipodal colour-
ing. Antipodality provides the largest distance (i.e. five) 
between two vertices. Each vertex of the central pentagon 
has a different colour, and of course this is also valid for 
the antipodal pentagon. There is a pentagon adjacent to the 
central pentagon (together with its antipodal counterpart) 
such that its vertices have different colours. In Fig. 5(b), 
this pentagon has the edge BY in common with the central 
pentagon. It turns out that there are no other pentagons 
where all five vertices are coloured differently; further, 
there is a pentagon (together with its antipodal counter-
part) with only three colours. (On the ball (Fig. 4(d)), there 
is a pentagon around which black and yellow hexagons 
occur twice.) In Fig. 5(b), this pentagon has the edge KY 
in common with the central pentagon. The dodecahedron 
representation of the Wörthsee ball has four pentagons 
with five colours, six pentagons with four colours, and 
two pentagons with three colours. Additionally, the dis-
tances between vertices of the same colour are two, three 
and five. Thus, we can establish that the number of dif-
ferent colours is not equal to five in all pentagons, and 
the minimum (i.e. two) and maximum (i.e. five) distances 
between vertices coloured alike significantly differ from 
each other. Therefore, the Wörthsee ball is not coloured 
uniformly, i.e. the colouring is erroneous in this sense.

The next task was to investigate whether it would be 
possible to improve the colouring of the Wörthsee ball if 
the property that the antipodal hexagons are coloured alike 
is maintained. For this purpose, consider the correspond-
ing dodecahedron and take a cube inscribed in the dodeca-
hedron (Fig. 6(a)). Then consider two space diagonals of 
the cube that span a rectangle (shaded in Fig. 6(a)), which 
is shown also in Fig. 6(b). Consider five copies of this 
rectangle obtained by its rotation about the vertical axis 
of the dodecahedron by angles 2 π k / 5, k = 0, 1, 2, 3, 4, 
that together form a nolid of S10 symmetry composed of 
five rectangles. The vertices of a rectangle are coloured 
alike, and to each rectangle a different colour is assigned. 
This colouring (Fig. 6(b)) provides two pentagons with 
five colours and ten pentagons with four colours, and the 
distances between vertices of the same colour are two, 
three and five. This colouring is better than that of the 
Wörthsee ball, because there are no pentagons with three 
colours in it. (This is not the only antipodal colouring of 

(a) (b)

Fig. 5 Colouring the Wörthsee ball. (a) Schlegel diagram of the 
truncated icosahedron with coloured faces. (b) Schlegel diagram of 

the corresponding regular dodecahedron with coloured vertices.
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the vertices of a dodecahedron with five colours, which 
provides two pentagons with five colours and ten penta-
gons with four colours, although, the other colourings will 
not be discussed here). In this manner, however, we are 
unable to improve the colouring any further.

To produce a better colouring, we have to drop the prop-
erty that four vertices of the same colour form two antip-
odal pairs and have to select four vertices of the dodeca-
hedron that maximize the smallest distance between pairs 
of these vertices. A similar problem is known in discrete 
geometry: How must four points be distributed on the sur-
face of the unit sphere so as to maximize the minimum 
spherical distance between any two of them? The solution 
to this problem is known, and in the optimum arrangement 
the four points are the vertices of a regular tetrahedron 
(Fejes Tóth, 1972). The vertices of the tetrahedron fit to the 
vertices of the dodecahedron, that is, it can be inscribed in 
the dodecahedron (Fig. 7). Thus, the regular tetrahedron 
also maximizes the minimum distance between any two 
of four vertices of the regular dodecahedron.

3 The correct colouring
Cundy and Rollett (1981) showed an example of colouring 
the icosahedron with five colours such that the five faces at 

every vertex are coloured differently, but neither explained 
how that colouring was obtained, nor said how many ways 
this can be done. This raises the following, which is the dual 
formulation of the previous question: How many colourings 
of the dodecahedron with five colours exist such that all ver-
tices of each face are coloured differently?

Before giving the answer let us investigate how the four 
vertices having the same colour should be arranged on 
the dodecahedron. Consider the Schlegel diagram of the 
dodecahedron. Let one of the vertices (a small encircled dot 
in Fig. 8) be coloured, say, blue. The first-neighbour ver-
tex cannot be coloured blue (Fig. 8(a)), because we want to 
achieve a valid colouring, where occurrence of two adja-
cent vertices with the same colour is not allowed. The sec-
ond-neighbour vertex (which can be selected in two differ-
ent ways: left-handed and right-handed) (Fig. 8(b)) cannot 
be coloured blue either, because in this case there would 
be a pentagon, two vertices of which would have the same 
colour, in contradiction to the requirement that every ver-
tex of a pentagon should be coloured differently. Following 
the left-handed version, we can again select two different 
third-neighbour vertices. The left vertex is actually a sec-
ond neighbour if we approach it along another path, thus it 

(a) (b)

Fig. 6 (a) A rectangle inscribed in the regular dodecahedron, and 
(b) the corresponding colouring.

Fig. 7 A regular tetrahedron inscribed in the regular dodecahedron

(a) (b)

(c) (d)

Fig. 8 Minimum distance between the identically coloured vertices 
(solid lines define left-handed, dashed lines define right-handed 

versions). (a) Not allowed – two identical colours at two pentagons, 
(b) not allowed – two identical colours at one pentagon.  
(c) Correct, can be repeated in two additional directions,  

which results in a tetrahedron (d).
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cannot be coloured blue. The right one, however, is proper 
and can be blue (Fig. 8(c)). Therefore, the third-neighbour 
vertex determines the shortest distance from one vertex to 
another having the same colour. Since the starting vertex 
is a three-valent vertex, there are two additional vertices 
coloured blue in the remaining two directions if the path of 
length three (solid line in Fig. 8(c)) is rotated about the start-
ing vertex by angles 2 π k / 3, k = 1, 2. The three vertices that 
are at distance three from the starting vertex, are also at dis-
tance three from each other (Fig. 8(d)), that is to say, the four 
vertices having the same colour are vertices of a regular tet-
rahedron inscribed in the dodecahedron (Fig. 7).

Therefore, the distance between two vertices of the 
tetrahedron is the maximum of the minimum distances 
between two vertices of the vertex quartets of the dodeca-
hedron, and at the same time, the minimum of the distances 
between two identically coloured vertices of the dodeca-
hedron, if all vertices of each face of the dodecahedron 
are coloured differently.

In this way, we obtain five tetrahedra, one for each colour. 
They can be arranged as the compound of five tetrahedra of 
I symmetry (Fig. 9), where the five tetrahedra are inscribed 
in a dodecahedron (Coxeter, 1973, p. 49; Wenninger, 1974). 
Fig. 9 shows clearly that this is a chiral object.

Endre Makai (personal communication) has shown that, 
in the case of the compound of five differently coloured 
tetrahedra, it is easy to demonstrate that the vertices of 
each face of the dodecahedron are coloured by different 
cyclic permutations of the five colours, and these cyclic 
permutations are either all even or all odd. In other words, 
in the case of even permutations, all cyclic permutations 
are present, and each occurs exactly once, with the same 
holding for the case of odd permutations. Consider the 
Schlegel diagram of the dodecahedron in Fig. 10(b) and 
suppose that we can get from one vertex to an identically 
coloured third-neighbour vertex only along a left-handed 

path (solid line in Fig. 8(c)). Let the vertices of the central 
pentagon 1 be coloured by R, K, Y, B, W in counterclock-
wise. The vertex R has one uncoloured neighbour, which 
has to have a colour different from its already coloured 
first and second neighbours. That is, it has a colour B or Y. 
By applying the left-handed path to the vertices B and Y 
of pentagon 1, we find that this colour is B. Similarly, the 
vertex of pentagon 1 coloured by K has one yet uncoloured 
neighbour that must have a colour W or B. However, it is 
a second neighbour of the vertex most recently coloured 
by B, so it must have colour W. Similarly, moving coun-
terclockwise results in the colours B, W, R, K, Y, in this 
order, at the first neighbours of vertices R, K, Y, B, W of 
pentagon 1, respectively. Then, all the vertices of distance 
two from pentagon 1 have already uniquely determined 
colours: Y, B, W, R, K in pentagons 2, 3, 4, 5, 6, respec-
tively. There remains the outer pentagon 7. Its topmost 
vertex is an uncoloured neighbour of vertex R of pentagon 
5, that has a colour different from its already coloured first 
neighbours. So, it has a colour W or B. By applying the 
left-handed path to the vertices W and B of pentagon 5, we 
find that this colour must be B. Going around, similarly, 
the colouring in Fig. 10(b) is achieved as the only possi-
ble choice. If right-handed paths connect third-neighbour 
vertices of the same colour, then the enantiomorphic coun-
terpart of this colouring pattern is obtained. (Each of two 
geometrical forms, which are mirror images that cannot 
be superposed by a continuous motion, is called enantio-
morph (Coxeter, 1961, p. 276).)

Looking at Fig. 10(b), there are no two pentagons with 
the same cyclic permutation of the five colours, taken 
counterclockwise. (For the case of the outer pentagon 
BWRKY, counterclockwise is understood as looking at 
the outer pentagon from below, therefore it is clockwise 
when the outer pentagon is seen from above.) This is 
why it is worth investigating the colour permutations. 
All cyclic permutations of the five colours were deter-
mined, and the numbers of inversions in the permuta-
tions calculated (Wikipedia (e)); the results are presented 
in Table 1. To simplify the overview of the data, we used 
positive integers instead of capital letters to denote the 
colours. The five colours have 24 cyclic permutations, 
from which we separated the 12 even and 12 odd permuta-
tions in Tables 2 and 3, respectively. Fig. 10(b) shows that 
all 12 even permutations of the colours are present in the 
solution to the colouring problem. Hence, the 12 odd per-
mutations should indicate something in colouring. Indeed, 
for example, if the white and blue colours are interchanged 

Fig. 9 Paperboard model of the compound of five tetrahedra, made by 
Magnus Wenninger, 1988. (Photo: Tarnai)
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in Fig. 10(b), a new colouring is presented in Fig. 11(b) 
where all colour permutations are odd. Here, it is also pos-
sible to produce the enantiomorphic counterpart of this 
new colouring. As shown above, a given colour permuta-
tion of one pentagon uniquely determines the colouring of 
the whole dodecahedron. Since there is no other permuta-
tion in addition to the 12 even and 12 odd permutations, 
it follows that there exist no more colourings. In sum-
mary, we can answer the question asked at the begin-
ning of the present Section. There exist four colourings of 
the dodecahedron with five colours such that all vertices 
of each face are coloured differently. These are: two in 
Figs. 10(b) and 11(b), and their two enantiomorphic coun-
terparts. That means that the Wörthsee ball could have 
been coloured correctly in four different ways. Two possi-
bilities are shown in Figs. 10(a) and 11(a).

Rouse Ball and Coxeter (1987), referring to L. B. 
Tuckerman, state without any proof that "the faces of an 
icosahedron can be coloured with five colours so that each 
face and its three neighbours have four different colours", 
and this can be done in four different ways. Endre Makai 
(personal communication), however, pointed out that 

the condition here can be presented in the dual form in 
Fig. 8(b), where vertex B represents a face of the icosahe-
dron and vertices A, C, D represent its three neighbours. 
According to the observations at the beginning of this 
Section 3, if a vertex has a colour, then none of its first- 
and second-neighbour vertices are allowed to have the 
same colour. In this case, points A, B, C, D are all first or 

(a) (b)

Fig. 10 First solution to correct colouring of the ball.  
(a), and (b) as in caption of Fig. 5.

(a) (b)

Fig. 11 Second solution to correct colouring of the ball.  
(a), and (b) as in caption of Fig. 5.

Table 1 Cyclic permutations of the colours

No. permutationa number of 
inversions No. permutationa number of 

inversions

1 (1,2,3,4,5) 0 13 (1,4,2,3,5) 2

2 (1,2,3,5,4) 1 14 (1,4,2,5,3) 3

3 (1,2,4,3,5) 1 15 (1,4,3,2,5) 3

4 (1,2,4,5,3) 2 16 (1,4,3,5,2) 4

5 (1,2,5,3,4) 2 17 (1,4,5,2,3) 4

6 (1,2,5,4,3) 3 18 (1,4,5,3,2) 5

7 (1,3,2,4,5) 1 19 (1,5,2,3,4) 3

8 (1,3,2,5,4) 2 20 (1,5,2,4,3) 4

9 (1,3,4,2,5) 2 21 (1,5,3,2,4) 4

10 (1,3,4,5,2) 3 22 (1,5,3,4,2) 5

11 (1,3,5,2,4) 3 23 (1,5,4,2,3) 5

12 (1,3,5,4,2) 4 24 (1,5,4,3,2) 6
a Numbers denote colours: 1 = R, 2 = K, 3 = Y, 4 = B, 5 = W

Table 2 Even permutations of the colours providing the first solution

Penta- 
gona

permuta-
tionb

number of 
inversions

Penta- 
gona

permuta-
tionb

number of 
inversions

1 (1,2,3,4,5) 0 7 (1,5,4,3,2) 6

2 (1,4,3,5,2) 4 8 (1,2,5,3,4) 2

3 (1,3,2,5,4) 2 9 (1,4,5,2,3) 4

4 (1,5,2,4,3) 4 10 (1,3,4,2,5) 2

5 (1,3,5,4,2) 4 11 (1,2,4,5,3) 2

6 (1,5,3,2,4) 4 12 (1,4,2,3,5) 2
a Numbers denote pentagons in Fig. 10(b)
b Numbers denote colours: 1 = R, 2 = K, 3 = Y, 4 = B, 5 = W

Table 3 Odd permutations of the colours providing the second solution

Penta- 
gona

permuta-
tionb

number of 
inversions

Penta- 
gona

permuta-
tionb

number of 
inversions

1 (1,2,3,5,4) 1 7 (1,4,5,3,2) 5

2 (1,5,3,4,2) 5 8 (1,2,4,3,5) 1

3 (1,3,2,4,5) 1 9 (1,5,4,2,3) 5

4 (1,4,2,5,3) 3 10 (1,3,5,2,4) 3

5 (1,3,4,5,2) 3 11 (1,2,5,4,3) 3

6 (1,4,3,2,5) 3 12 (1,5,2,3,4) 3
a Numbers denote pentagons in Fig. 11(b)
b Numbers denote colours: 1 = R, 2 = K, 3 = Y, 4 = B, 5 = W
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second neighbours of each other, thus all the four vertices 
have to have different colours. Therefore, Rouse Ball and 
Coxeter's (1987) colouring problem is equivalent to ours, 
and both have the same solution.

4 Concluding remarks
Based on the reasoning in Section 3, and in practice, it is 
easy to produce the four different solutions to the problem 
of colouring the hexagons of the truncated icosahedron 
with five colours. Consider five equal regular tetrahedra, 
and colour them each differently. Then make their com-
pound, as in Fig. 9. The vertices of the tetrahedra uniquely 
provide colours to the vertices of the regular dodecahe-
dron. This is the first solution. The second is obtained 
by interchanging the colours of two tetrahedra. The mir-
ror image of the first and second solutions results in the 
third and fourth solutions. There is a one-to-one corre-
spondence between the vertices of the dodecahedron and 
the hexagonal faces of the truncated icosahedron. In this 
manner, the four different ways of colouring the hexagons 
of the truncated icosahedron with five colours are deter-
mined. The unknown designer of the Wörthsee ball appar-
ently failed to recognize the importance of the compound 
of five tetrahedra in the colouring problem.

The Wörthsee ball was a coated beach-ball, the design 
of which required mathematical knowledge, inventive 
imagination, construction skills, with its realisation need-
ing an ability to work with textiles, and skills in cutting 
and sewing. The ball was an unnoticed invention, and we 
do not know where the idea came from, nor who designed 
and manufactured it. Instead of speculating, there are 
some undisputed facts.

In the Wörthsee episode of the documentary (Kloft, 2017), 
among the bathers, there appeared a teenage girl play-
ing with the ball. She was Gertraud Winkler from Jena. 
She was interested in mathematics, and later studied phys-
ics at the University of Jena. Her aunt, who worked as a 
seamstress before her marriage, was also among the bath-
ers. Gertraud's father was an engineer, who worked in the 
research and development department of the Zeiss factory 
in Jena (Knauss, 2002). The scientific member of the board 
of management of the Zeiss factory was Walter Bauersfeld, 
who is best known in architecture and structural engineer-
ing for designing the first geodesic dome (Fig. 12), which, 
after concreting, was used as a screen for testing the Zeiss 
planetarium. His main achievement was the development 
of the Zeiss planetarium itself, which was the first projector 
planetarium in the world. The star sphere of the planetarium 
theoretically was a truncated icosahedron with a projector 

on each face except one where the star sphere was connected 
to the main body of the planetarium. In an early sketch 
made by Bauersfeld, the spherical projection of the star 
sphere appeared as a classical 32-panel soccer ball (Fig. 13). 
(It should be noted that, in the final model  (Fig. 14) set up 
in Munich in 1924, the star sphere was not Archimedean 
(Bauersfeld, 1924), but was a truncated icosahedron that 
had an insphere, that is, all faces had a circumcircle with 
the same radius (Fig. 15(a), and in this respect, looked like 
a modern soccer ball where the hexagons are not regular 
(Fig. 15(b)) (Lengyel and Hincz, 2009).)
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Fig. 12 Steel framework of a 16-m-diameter planetarium test dome, 
Zeiss Factory Jena, Germany. Design by Walter Bauersfeld and 

Franz Dischinger, 1922. (Photo: IL Archives Stuttgart,  
courtesy of Dr. Jürgen Hennike)

Fig. 13 Bauersfeld's sketch of the projection principle of the star sphere 
of the planetarium. (Krausse, 1993)
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Fig. 14 The Bauersfeld planetarium set up in Munich in 1924.  
The star sphere is at the top, where the cones are projectors.  

(Bauersfeld, 1924)

(a) (b)

Fig. 15 Truncation of a regular icosahedron such that the 
circumcircles of the pentagonal and the hexagonal faces are equal. 

(a) A cardboard model. (Photo: Lengyel).  
(b) A realisation as a soccer ball. (Photo: Tarnai).
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