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Abstract

In project management, there are two main operation problems. Scheduling and cost optimisation. These are interrelated and have 

mathematically proven solutions for the basics. However, in case of applying arbitrary calendars, there may be generated such effects 

in scheduling that make the known time-cost trade-off model unusable. In consideration of these effects, this paper aims to apply 

known algorithms that have been successful for other problems.
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1 Introduction
A network model in civil engineering practice must be 
suitable to handle two features in scheduling.

The first is the possibility of changing process dura-
tions depending on their start times. This is the key to 
apply calendars.

The second one uses maximal constraints for activities 
and connections. This is useful and important in practice. 
In linear programming method, it is possible to give only 
minimal constraints. For applying maximal constraint, 
it must be converted by multiplying the assumption with 
(−1). It creates negative process time and turning back arc, 
which generates loops in high probability.

In case of these assumptions, there are no restrictions to 
apply the models either activity on edge (AOE) or activity on 
node (AON). Here, notations are related to the model AOE.

In this review, there are no restrictions for any of the 
two generalisations. The project is modelled on a N A;[ ] 
digraph. Let N be the set of nodes, A be the set of arcs. 
Let s and r be the source and the sink in the digraph. 
Every process of the project has a possible minimal and 
an acceptable maximal working time (aij and bij respec-
tively). Both have a necessary cost (K(aij) and K(bij)). 
Between them, the cost changing is assumed to be linear, 
the cost intensity is shown by Eq. (1).
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The body of calendarisation is that every process has 
a given necessary working time τ τij ij ij ija b; � �≤ ≤( ) , depar-
ture time (μi ) and calendar vector (dij ) as the work pattern 
of the resource. It is shown by Eq. (2).
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The problem is defined in period T, which is the maxi-
mum acceptable project duration. The calendarised process 
time ϑ µij i( )( )  can be indirectly determined from Eq. (3).
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Remark
• ϑ µij i( )  is dependent on τij and μi , so it is most likely 

not constant.
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The time-cost trade-off problem gives a scheduling to 
the wanted deadline with minimal cost level. The basis of 
it is scheduling. This paper examines the possibilities in 
case of the scheduling presented above.
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2 Literature review
The first scheduling models were presented in the late 
1950s by Bellmann (1958) and Dijkstra (1959). The prob-
lem in these works is very simplified; negative or change-
able process durations and loops are not allowed. The 
solutions are based on linear programming. Scheduling is 
a longest path problem.

There are many generalisations of the problem. Franck 
et al. (2001) already showed a proper model for calendari-
sation. Negative duration and loops are solved even in 
some project management software.

The time-cost trade-off problem was presented at first 
in work of Kelley and Walker (1959). They gave a solution 
based on linear programming on AOE network. Fulkerson 
(1961) and Kelly (1961) gave another solution based on 
maximal flow algorithm. This problem can be originated 
to minimal cost flow algorithm, which is in Ahuja et al. 
(1993).  Klafszky (1969), then Hajdu and Klafszky (1993), 
showed the acceleration of the problem. These solutions 
are also based on maximal flow algorithms.

There are many generalisations for this problem. 
Mályusz and Hajdu (2009) deal with using benefits or 
outcomes on nodes. Csordas and Malyusz (2006), and 
Csordás (2009; 2011) show different techniques to apply 
technological changes in the model. Changeable process 
times are included in the Cai et al. (2007) book, which 
also deals with cost optimisation in case of logistical 
problems. They worked out differentminimal cost prob-
lems according to the constraints determined on nodes. 
The actual value of transit times can be determined 
according to the departure time. This is the same as in the 
calendarised scheduling problem.

3 Research method
There are many proven optimal solutions in the literature. 
After studying them, they must be examined to see if they 
are capable of handling the conditions. 

If a known algorithm is appropriate only with restric-
tions, then the possibility of applying the generalisations 
needs to be researched.

It is an established custom to adapt a solution worked 
out for other conditions. The mentioned logistical problem 
managed the time parameters in the same way. So, it is 
worth examining the solutions.

4 Results
4.1 Review of the literature
4.1.1 Calendarisation of scheduling
Because of arbitrary calendars and maximal constraints, 
there may form such loops (H ) in scheduling, of which 
loop rate (ρH) has a changeable prefix. The loop rate is a 
feature of the loop. It is known in “constant” scheduling 
problems, if the loop rate is positive, the scheduling does 
not have a finite solution. But in case of calendarised pro-
cess times, the loop rate is variable. If the current loop 
rate is positive, it can be counted round the loop again 
from the check value, which comes from the loop rate. 
This iteration can be continued while the check value is 
not larger than the start value. It is called critical loop. 
The known algorithm for the “constant” scheduling prob-
lem is able to handle this feature.

4.1.2 Time-cost trade-off problem
The algorithm of Hajdu and Klafszky can manage neg-
ative process times and loops. It has been proven that it 
gives the first optimal solution. So, it is obvious to try it in 
case of calendars (Hajdu and Klafszky, 1993).

The principle of the algorithm is simple. It based on a 
maximal flow – minimal cut problem. In consideration 
of the costs, it starts with zero flow and maximal pro-
cess times ( 0�≤ =τ ij ijb  and aij ij= ≤τ 0 ). In every cycle, 
after scheduling it finds a minimal cut, which determines 
the minimal cost rise and a shorter project duration. The 
measure of time reduction is given from the cut, which 
reduces all the potentials uniformly with this value after 
the cut. The arcs, which give the price of the cut, are on 
critical paths. The changes are unidirectional. The poten-
tials decrease, the arcs become part of some critical paths.

In view of the principle, applying this algorithm shows 
some difficulties:

• If maximal process times are used in scheduling, 
the risk of overrunning T is the highest. In this case, 
there is no start scheduling.

• As the calendarised process times are inconstant, 
the time reduction cannot be uniform after the min-
imal cut.

• Process time reduction can be only on the arcs of crit-
ical paths. As the calendarised process times are not 
constant, it may change the critical paths. It is not guar-
anteed that arcs stay on critical paths on further steps.
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4.1.3 Conversion of the logistical problem
In the Cai et al. (2007) book, the examined problem is a 
logistical task, where the aim is to find only one transit path 
with minimal cost. So, the scheduling is the shortest path 
problem. There are many examples in literature, where the 
solution of the shortest path problem is usable for the max-
imal path problem after multiplying the algorithm by (−1). 

The book shows many solutions for different conditions. If 
time-cost trade-off problem waiting times are unlimited, so 
the proper solution for analysing is the TVSP-AWT-S (Time-
Varying Shortest Path problem with Arbitrary Waiting times 
– Speed Up). According to the notation of the book, the basic 
element is d j ta ,( ) , which is the cost of a P s j,( )  path. The 
algorithm examines t T= …1, ,  time intervals, increasing it 
one at a time. It gives the achievable nodes within t time 
and their costs respectively. The basic element is shown by 
Eq. (4). The notations of the book are a little different.
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It means that the cost of P s j,( )  path within t time is 

the minimum of the following cases
• the cost of the P s j,( )  path in t −1  time and the cost 

of waiting for a time unit
• the cost of a P s i,( )  path in u time, the cost of the 

transit on arc i j,( )  according to u department time 
and the γ  transit speed up according to u . 

In the examined time-cost trade-off problem parame-
ters are similar. However, there is no cost of waiting on 
nodes. The basic element must be modified as it examines 
all paths together as shown by Eq. (5).
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In the course of path finding, connecting i i ik1 2, , ,  
nodes must be considered; these can also be connected 
with each other. If a path variant is determined for 
i h kh =( )1, , , which has connection to other mentioned 
i i ih h hl1 2, , ,( )  nodes, then uih gives an upper limit to 

the occurrence of u u uih ih ihl1 2, , , . Following this effect, 
means further complications.

The TVSP-AWT-S algorithm can be adapted to the 
examined time- cost trade-off problem, when considering 
the new basic element. This is shown in Fig. 1.

The model, in practice, uses maximal constraints. 
It creates negative time parameters and loops in the 

network. The question is, whether this algorithm can 
manage these features.

The algorithm analyses only the direct incoming arcs. 
So, in the case of using negative time parameters, it does 
not give an optimal solution. This is shown in an example 
in Fig. 2. 

The network on the left shows input data. On arcs, there 
are a b cij ij ij, , , and d tij ( ) =1  constant. The network in the 
middle shows the basic elements in case of  t = 0.  It is clear, 
that neither node 2, nor node 3 are available in this time. 
The network on the right shows the basic elements in case 
of t =1. According to the algorithm, node 3 is still not 
available. But this is not true. On path P1 1 3 1 3, ,{ } = ( ){ }  the 
necessary time is τ1 3 1, .=  On path P2 1 3 1 2 2 3, , ; ,{ } = ( ) ( ){ }  
the necessary time is τ τ1 2 2 3 2 1 1, , .+ = + −( ) =  So 
σ τ τ τ3 1 3 1 3 1 3 1 2 1 2 1 2 2 3 2 3 2 31( ) = −( ) ⋅ − ⋅ + −( ) ⋅+ ( )b c b c b c, , , , , , , , ,

   = −( ) ⋅ + −( ) ⋅ + −( ) ⋅  =2 1 10 3 2 10 0 1 0 20.  But the algo-
rithm counts the cost from the previous iteration, so 
σ σ τ3 2 2 3 2 3 2 31 2 0( ) = ( ) + −( ) ⋅ = ∞b c, , , . The algorithm  
should know the value σ 2 2 10( ) = , which is not deter-
mined yet as it belongs to the next iteration where t = 2 . 
So negative process times are not useable in the algorithm.

The scheduling allows loops, which length is not pos-
itive. The previous conclusion excludes using negative 

Fig. 1 Flowchart of the time-cost trade-off algorithm based on 
logistical problem
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process times. However, a special case still exists. 
Namely, if all the process times are 0 in the loop. This is 
shown in Fig. 3.

The network on the left shows input data. The network 
on the right shows the basic elements in case of t = 0 . 
Nodes in the loop relate to each other directly or indirectly. 
However, the algorithm only examines the direct connec-
tions. So, the basic elements in the loop can never decrease.

4.1.4 Advice for the calendarised time-cost trade-off 
algorithm
Considering the observation of the basic algorithm, it 
gives the idea of starting the problem at the other end. 
What if all process times are minimum aij ij�=( )τ ? This 
results areas follows.

• The scheduling gives the possible minimal project 
duration. The risk of overrunning T is the lowest.

• The risk of evolving a critical loop is the lowest. The 
process times of minimal constraints are the low-
est, the process times of maximal constraints are the 
highest. So, the loop rates are the lowest. In other 
words, the loops are the loosest.

• It gives the highest cost level.
• There is a high likelihood that it is not an optimal 

solution, which permits extra costs only on critical 
paths. Here, every arc has extra cost where cij > 0 , 
but it is not sure that all of them are on any critical 
paths.

• The effect of the slowdown paradox does notdevelop.

Remark
Slowdown paradox is a known feature in scheduling. 

It occurs when three processes are in slow - quick - slow 
sequence. Here, by slowdown the quick process, the total 
project duration becomes shorter.

5 Future tasks
If this system is the first solution of the algorithm, the task 
is to find the most effective way of decreasing the cost 
level. Here, the maximal flow-minimal cut problem is not 
optimal, so it cannot be used directly. On the other hand, it 
is useful to see what kind of time - cost system is optimal. 
It must find the scheduling where extra costs are only on 
critical paths.
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