
PERIODICA POLYTECHNICA SER. ARCHITECTURE VOL. 35, NO. 1, PP. 59-77 {1991}

COMPUTER REPRESENTATION OF PLANE FIGURES
AND 3D SOLIDS USING ADDITIVE ALGORITHMS

J. PEREDY

Department of Descriptive Geometry II
Technical University of Budapest

Received April 20, 1991

Abstract

The paper presents a definition of figures and curves in the plane and solids and surfaces
in the 3D space based on the notion of (generalized) pixels and voxels. The corner points
of the pixels/voxels form a point grid in the plane or in the space and a grid value is
attached to each grid point by means of additive algorithms. A plane figure or a 3D solid
consists of those pixels/voxels for which the grid values ib all four/eight corner points are
negative. Some basic transformations of the algorithms generating the grid values (and
thus the plane figures and 3D solids) are ivestigated useful in constructing axonometric
and perspective projections. The paper is a first one of a series of publications intending to
present a new philosophy for solving a wide range of problems in computational geometry,
such as representation and manipulation of different types of curves, surfaces, plane figures
and solids; finding points/curves of intersection and contour lines; finding different 2D
projections of 3D objects, etc.

Introduction

This paper is the first in a series of papers intended to present an essentially
new philosophy for solving such problems as representation and manipula
tion of a wide range of different types of curves, surfaces, plane figures and
solids; findig points/curves of intersection and contour lines; fin dig differ
ent 2D projections of 3D objects, etc. The proposed method is founded on
the notion of pixels and voxels (volume pixels) and aims at constructing
possibly efficient additive algorithms for solving the aforementioned prob
lems. In this paper some basic ideas will be presented for the 2D case.and
then will be generalized for 3D. Many special problems (e.g. those of free
formed curves and surfaces) are left for consecutive papers.

60 J. PEREDY

Basic Concepts in 2D

Pixels and Grid Points

Let us divide the plane into pixels by two sets (say an X set and a Y set)
of lines. Most frequently, the lines of each set are among themselves par
allel and equidistant straight lines, any two lines from different sets are
perpendicular, and the pixels are congruent squares. An other important
arrangement is where the subdivision lines are parallel in one of the two sets
only, while the other set consists of a pencil of straight lines having a com-
mon central point and, consequently, the are (in general) trapezoids
"nth two sides. latter case is from the point of
view of 3D generalisations, namely of constructing the central projections
of 3D solids.)

A set of pixels forming a finite (regularly rectangular or trapezoidal)
part of the plane win be considered, bordered by two X lines and by two
Y lines, containing (m + 2) lines of the X set and (n + 2) lines of the
Y set (boundary lines included). The division lines of the X set and of
the Y set can be numbered by the integers 0 ... m+1 and 0 ... n+1, resp.
The points of intersection of any two division lines of different sets are the
grid points. The grid points can be identified by the serial numbers of the
two intersecting division lines, for example (i,j) is the grid point at the
intersection of the i-th line of the X set and the j-th line of the Y set (of
course ° ~ i ~ m + 1 and ° ~ j ~ n + 1). The i and j values may be
considered as the X and Y coordinates resp. of the grid points.

There are four neighbouring grid points associated with a pixel, na
mely its four corner points (i,j), (i + 1,j), (i,j + 1), (i + 1,j + 1). A pixel
will be identified by the coordinates (i, j), i.e. by the grid point with the
lowest coordinate values out of its four corner points. Thus the finite part
of the plane under consideration is composed of the pixels with coordinates
from (0,0) to (m, n).

Grid Values. Definition of Curves and Figures

Let us assign a positive or negative (possibly integer) number to each grid
point, the grid value Ri,j' A pixel (i, j) is characterized by the four grid
values of the four adjacent grid points: Ri,j, Ri+l,j, Ri,j+l, Ri+l,j+l. A pixel
is negative homogeneous if all four of its associated grid values are negative;
a pixel is positive homogeneous if all four of its associated grid values are
zeros or positive numbers; in any other case the pixel is non-homogeneous.

COMPUTER REPRESENTATION 61

Our investigations are founded on the following definition: a plane fig
ure is composed of the negative homogeneous pixels, the non-homogeneous
pixels form its boundary curve, while the positive homogeneous pixels are
outside the plane figure.

On the one hand, it is clear from this deflnition, that any set of the
(m + 2) * (n + 2) grid values defines unambiguously a single plane figure
(if there is at least one negative homogeneous pixel). On the other hand,
a plane figure does not define unambiguolJ.sly a set of corresponding grid
values, there are always many different sets of grid values describing the
same boundary curve and the same figure. For example if the grid values
(or some of them) are multiplied by any positive number, this modified set
of grid values still describes the original figure.

It is possible to define more than one set of values simultaneously.
This is necessary, for instance, if we want to study some plane figures to
gether, say in order to compute the point(s) of intersection of their bound
a;ry curves, or to define the common part of the figures, etc. VVhen working
with multiple grid values the different sets will be distinguished by using
primes or other convenient symbols.

If the grid values are assigned to the grid points randomly, the defi
nition still works, but the result hardly resembles anything what might be
called a plane figure or its boundary curve in the 'normal' sense of these
words. Nevertheless one can find those rules of assigning the grid values
by means of which the important objects of the plane geometry (or more
precisely their 'pixel counterparts') can be described.

Additive Algorithms

Let us construct now algorithms for assigning grid values to the grid points
in a possible simple way: using the operation of addition (possibly of integer
addition) only. The basic form of these algorithms should produce the
grid values step by step, i.e. starting from the grid value Ri,j of any grid
point should compute the Ri+l,j or Ri-I,j or Ri,HI or Ri,j-I value of a
neighbouring grid point. Thus if we want to define such an algorithm
we have to specify how the grid value varies when stepping from a given
grid point to one of its four neighbours (X step or Y step in positive or
negative direction). Of course, it is expedient if the algorithm is of the
same structure for any grid-point, only the numerical values appearing in
it vary from point to point. Such an algorithm can yield the grid value of
any grid point, because any grid point can be attained from any other one
by an appropriate number of consecutive X and Y steps.

The possible simplest additive algorithm is the following:

62

(X + step :)
(X - step :)
(Y + step:)
(Y - step:)

J. PEREDY

i = i + 1,
j = j - 1,
i = i + 1,
j = j - 1,

R= R+X;
R=R-X;
R=R+Y;
R=R-y'

In these formulae i and j are the grid point coordinates, R is a 'register'
containing the grid value. X and Yare the modifying registers; by adding
them to or subtracting them from the 'main' register R computes the algo
rithm the grid values corresponding to the neighbouring grid points. This
simplest additive algorithm produces a 'straight line' as a boundary, on
one side of which is the 'half plane' forming the plane figure defined by
the algorithm, while the other 'half plane' contains those pixels which are
outside of this plane figure.

Additive Algorithm of Second Order

Let us consider now a somewhat more complicated additive algorithm:

(X + step :)
(X - step:)
(Y + step :)
(Y - step :)

i = i + 1,
i = i - 1,
j = j + 1,
j = j - 1,

R=R+X,
Y =Y -YX,
R=R+Y,
X =X -XY,

X=X+XX,
X =X - XX,
Y =Y +YY,
Y =Y-YY,

Y=Y+YX;
R=R-X;
X=X+XY;
R =R - Y.

The main difference between this variant and the previous one is that
X and Yare not constants any more, but they themselves are modified from
step to step. The X and Y, influencing the content of the main register R
directly, are the first order modifying registers, while XX, YX, XYand YY
are the second order modifying registers being added to or subtracted from
the first order modifiers. The previous variant is the additive algorithm of
first order, while the present one is the additive algorithm of second order.

Some Characteristics of Additive Algorithms

The second order additive algorithm gives the opportunity to study some
important properties of additive algorithms in general.

Notice that in the formulae of the second order additive algorithm
a special notation has been adopted for the modifying registers. The
'name' of a first order modifier is a single letter (X or Y), while the names
(identifiers) of the second order modifying registers consist of two letters:
X X, Y X, YY, XY. The last letter always indicates whether the register is

COMPUTER REPRESENTATION 63

active (has to be added or subtracted) in the X or in the Y steps, while the
letters preceding the last one (if there is any) form the name of the 'target
register' to which it has to be added or from which it has to be subtracted.
If the name of the register is a single letter and therefore there is no let
ter preceding the last one, the target register is the main register R. Using
this convention the whole additive algorithm can be reconstructed from the
names (identifiers) of the constant registers and this notation lends itself
for further generalisations.

In the algorithm the consecutive order of execution of the additive
operations is of importance. In the positive steps the first order modifier
has to be added to the main register first, and the second order modifying
registers are added to the first order ones after that. In the negative steps
just in contrary the second order modifiers are subtracted from the first
order ones first and the subtraction of the first order modifier from the
main register follows after that. This structure of the algorithms ensures
that if one proceeds n steps in one (say positive) sense and n steps in the
opposite (say negative) sense then the original grid value of the starting
point is exactly restored.

Let us consider now what happens if starting from a given grid point
a) we make first an X+ step and after that a Y+ step, or
b) we make first a Y + step and after that an X + step.

In both cases the same grid point is arrived at but, on two different routes.
The values of the registers vary in the followig way:
a) 1st step:

i = io + 1,j = jo, RI = Ro + XO,Xl = Xo + XX, Yl = Yo + Y X;
2nd step:
i = io + 1,j = jo + 1,R2 = RI + Yl,Y2 = Yl + YY,X2 = Xl +XY;

l.e. R2 = Ro+Xo + Yo + YX,X2 = Xo +XX +XY, Y2 = 1'0 + YY + YX.
b) 1st step:

i = io,j = jo + 1, RI = Ro + Yo, Yl = Yo + YY, Xl = Xo + XY;
2nd step:
i = io + 1,j = jo + 1, R2 = RI + Xl, X2 = Xl + XX, Y2 = Yl + Y X;

Le.R2 = Ro + Xo + Yo + XY, X2 = Xo + X X + XY, Y2 = Yo + YY + Y X.
In these formulae Ro, X o, Yo denote the content of the corresponding

registers before the first step, while RI, Xl, Yl and R2, X 2 , Y2 represent
these values after the first step and after the second step, resp. The second
order modifying registers do not need such a specification because they are
the constants of the second order additive algorithm, i.e. they preserve
their initial values during the whole process.

Note that the two formulae for R2 are not perfectly identical in cases
a) and b); they give the same grid value for the grid point (i + 1,j + 1) if

64 J. PEREDY

and only if
XY =YX.

This is the necessary condition for the second order additive algorithm to
produce a single, well defined grid value in each grid point, not depending
on the actual path used to approach the grid point in question. An additive
algorithm, which assignes a single, unambiguously defined grid value to
each grid point independently of the route used to approach it, is said to
be conservative. The description of plane figures and their boundary curves
usually needs conservative algorithms. Nevertheless, there are plane curves
e.g. spirals which do not define any plane figure and can be described
by non-conservative algorithms. A non-conservative algorithm assigns in
general more than one grid value to the same grid point depending on the
route used to approach the grid point. All the same, a non-conservative
algorithm can be used to describe a curve unambiguously if, for example,
those grid values are considered only, which arise walking along the curve
itself.

In the previous paragraphs the first order additive algorithm and the
second order additive algorithm have been presented separately. But it
is clear from the structure of the additive algorithms that the first order
additive algorithm is nothing else than a special case of the second order
one. If in the second order additive algorithm the constant registers are set
to zero (X X = XY = Y X = YY = 0), it works as a first order algorithm.
The results won by the investigation of a higher order algorithm apply to
the lower order ones, too.

Pixel Curves, Pixel Plane Figures and their Analytic Counierpar·ts

The second order additive algorithm (at least in its conservative form)
defines plane figures bounded by conic sections such as circles, ellipses,
parabolas and hyperbolas. We have already mentioned that the first or
der additive algorithm (which is by its nature always conservative) defines
straight lines. These statements are a bit loosely formulated and without
proof, so their exact meaning needs some explanation.

The general equation of conic sections has the form:

Ax2 + Bxy + cl + Dx + Ey + F = O.

The left member of this equation can be considered to define the register
values for the integer coordinates i and j

Ri,j Ai2 + Bij + cy2 + Di + Ej + F.

COMPUTER REPRESENTATION 65

Consequently, the difference of two neighbouring grid values in the X and
Y direction respectively are given by the formulae:

Xi,j = Ri+1,j - Ri,j = 2Ai + A + Bj + D,

Yi,j = Ri,j + 1 - Ri,j = Bi + 2Cj + C + E,

and one can compute the variation (from grid point to neighbouring grid
point) of the Xi,j and Yi,j values too:

x X = Xi+l,j - Xi,j = 2A,

XY = Xi,j+l - Xi,j = B, Y X = Yi+l,j - Xi,j = B,

YY = Yi,H1 - Yi,j = 2C.

The notation employed for the differences of the register values and for the
differences of these differences corresponds to the notation of the first and
second order modifying registers in the second order additive algorithm.
Really, if we start from the grid point (i,j) and the initial values of the
registers in the second order additive algorithm are set to

R = Ai2 + Bij + Cj2 + Di + Ej + P,

X=2Ai+A+Bj+D, Y=Bi+2Cj+C+E,

X X = 2A, XY = Y X = B, YY = 2C,

the second order additive algorithm produces the grid values prescribed
by the left member of the general equation of the conic sections. The
left member of this equation takes zero value regularly inside those (and
only those) pixels, which are not sign homogeneous. Therefore the analytic
curve of the conic section runs regularly inside the non-homogeneous pixels
and if a pixel contains a segment of the analytic curve it is regularly not
homogeneous.

The train of thoughts presented in the above paragraph explains and
justifies the statement that the second order additive algorithm produces
conic sections. But the formulation of the results in the last sentences of
the previous paragraph is conditional. There are two types of conditions
on their validity.

On the one hand, the mesh of the division lines used to form the
pixels should be in accordance with the dimensions of the plane figure in
question. Objects (or details of objects) smaller (or at least thinner) than
the mesh width cannot be represented properly by the given resolution and,
consequently, it may happen that the proposed method based on additive

66 J. PEREDY

algorithms 'does not take notice of them'. However, it is always possible
to represent by means of the proposed method these 'small' objects (or
details) too, only a finer mesh has to be used.

On the other hand, the second order additive algorithm describes
conic sections in the sense of Euclidean plane geometry, if the pixels are
formed by two perpendicular sets of parallel and equidistant straight lines.
This is expressed in the above verification by the fact that the i, j pixel
coordinates have been simply identified with the integer values of the x, y
Cartesian coordinates. No doubt, this is by far the most natural and most
frequently used arrangement of pixels, but because in some cases (e.g. for
constructing perspective images) other forms of pixels can be expedient
too, this condition is not trivial either.

Multiple Steps

The basic form of the additive algorithm (as used in the previous chapters)
works 'step by step': knowing the initial values Ro,o, Xo,o,Yo,o, XX, XY =
Y X, YY at a grid point (io, jo) the grid value R of any other grid point (io+
i, io + j) can be determined but only by means of computing the grid values
of many other intermediate grid points along a route leading from (io, jo) to
(io + i, jo + j). We want to construct now a direct algorithm for computing
the grid value of an arbitrary point (on the basis of known register values
in any other grid point) without involving explicitly intermediate points.
For this purpose it is expedient to consider the effect of the individual
modifying registers on the value of the main register separately and choose
the simplest possible route, say marching first i times X step then j times
Y step.

- If all but Xo,o initial values are zeros, then R = iXo,o.
- If all but Yo,o initial values are zeros, then R = jYo,o.
- If all but X X initial values are zeros, then the X register takes the

values 0, X X, 2X X, ... iX X while walking i steps in the X direction.
These values constitute the arithmetic series and, consequently, the

content of the main register is the sum of this arithmetic series:

R = (i -l)i XX.
2

If all but YY initial values are zeros, then, on the basis of similar consid-
erations,

R = (j -l)jyy'
2

If all but XY = Y X initial values are zeros, then after doing i times
X step the Y register has the value Y = iXY and all other registers remain

COMPUTER REPRESENTATION 67

unchanged. Doing now j steps in Y direction R = jY = ijXY = ijY X.
(Choosing other routes one arrives at the same result and the conservative
character of the second order additive algorithm under the condition XY =
Y X can be verified.)

Summing up these results the variation of the main register is ex
pressed by the formula:

R R ·x 'Yi (i - l)i,XX .. ~v (j - l)jyy
ij = 0,0 + t 0,0 + J 0,0 + 2 + %JX.l + 2 .

It helps to express the basic structure of this formula if we apply the usual
notation (k-

2
1)k = (;). (Anyway, it should be noted that in the present

case this expression is valid and sensible for negative integer k values, too.)
Using this notation, the multiple step form of the second order conservative
additive algorithm is as follows:

Rij = Ro,o + iXo,o + jYo,o + G)XX + ijXY + (;)YY

Xij = Xo,o + iXX + jXY, Yij = Yo,o + jYY + iXY.

These formulae comprise an four cases (X or Y steps in positive or negative
direction) of the step by step form. While the step by step form is expedient
for drawing a curve on the screen of a raster display pixel by pixel, the
multistep form is more general and concise.

Additive Algorithms of Higher Order

The multistep form of the additive algorithms lends itself for further gen
eralization. E.g. the third order conservative additive algorithm can be
defined by the following formulae:

Rij = Ro,o + iXo,o + jYo,o + (~) X Xo,o + ijXYo,o+

(;)YYO,o + (~)XXX + jG)XXY +i(;)XYY + (~)YYY,

Xij = Xo,o + iXXo,o + jXYo,o + G)XXX + ijXXY + (;)XYY,

68 1. PEREDY

Yij = YO,o + iXYo,o + jYYO,O + (~)XXY + jiXYY + (;)YYY,

XXij = XXO,O + iXXX + jXXY,

XYij = XYo,o + iX XY + j XYY,

YYij = YYO,O + iXYY + jYYY.

In view of the conservative character of the algorithms to be studied XY =
YX,XXY = XYX = YXX and XYY = YXY = YYX, therefore out
of each group only the first variant appears in the above formulae. The
notation of the third order modifying registers strictly follows the rules
established for the second order ones, e.g. X XY modifies X X in a Y step
or XY = Y X modifies Y in an X step. Note that (;) = (k - 2)(k - 1)k/6.

For the sake of a concise formulation of the general pth order con
servative additive algorithm let us introduce the notation qXrY for the
(q + r) th order modifying register containing qX -es and r Y -s in its iden
tifier and let us accept the main register R as the zeroth order register
R = OXOY. With these conventions the general multistep form of the pth
order conservative additive algorithm is the following:

qXrYi,j = I:~(k ~) (l ~ r)kXIYO,O
k=ql=r q

with

(
a) = a(a - l) ... (a - b + 1).
b 1.2 ... b

Note that in the right member of this equation all registers have to be
taken with their initial values, while the left member is the register value
after iX step and jY step.

ph Order Additive Algorithms and Polynomials of pth Degree

Substituting the 'continuous' real x, y Cartesian coordinates for the i,j in
teger pixel coordinates in the above general formula of the pth order con
servative additive algorithm, it is equivalent to a polynomial of pth degree.
One can say, that the general multistep formula of the pth order conser
vative additive algorithm with continuous cartesian coordinates is nothing
else than a special form of writing for a general polynomial of the pth
degree fp(x, y).

COMPUTER REPRESENTATION 69

No doubt, if we want to obtain 'the additive algorithm form' of a
general polynomial of the pth degree starting at the odgo, the initial
value of the main register R has to be equal to the function value of
the polinomial at the origo: Ro,o = fp(O, 0). The initial values of the
first order modifying registers are the first differences of unit distance:
Xo,o = fp(1,0) - fp(O, 0), Yo,o = fp(O, 1) - fp(O, 0). The second order mod
ifiers are the first differences of these first differences, i.e. they are the
second order differences:

XXo,o = XI,O - Xo,o = fp(2,0) - 2fp(1,0) + fp(O,O),

XYo,o = XO,1 - Xo,o = YI,O - Yo,o = fp(l, 1) - !p(l, 0) - fp(O, 1) + fp(O, 0),

YYo,o = YO,1 - Yo,o = fp(O, 2) - 2fp(O, 1) + fp(O, 0).

The general formula for the initial values of the registers in the additive
algorithm form of a pth degree polynomial:

In case of a polynomial of the pth degree the corresponding additive algo
rithm may have non-zero modifiers up to the pth order. (The higher order
modifiers are, by nature, zeros, consequently, they need not be considered
at all.) Note that in case of a polynomial with real coefficients the reg
ister values, as given by the above formulae, won't be integers any more.
Clearly, this fact does not affect essentially the nature of the additive al
gorithms, but it deserves some comment (which will be presented in one of
the consecutive papers).

Transformations

We want to use the additive algorithms for representing and studying plane
figures and their boundary curves. It is necessary for this purpose to de
scribe the same plane figure in different coordinate systems. Let us consider
a new (u, v) (general, possibly curvilinear) coordinate system which is con
nected to the original (x,y) one by the equations x = x(u,v),y = y(u,v).
It is possible to describe the same plane figure with the same boundary
curve by an appropriate additive algorithm even in the new coordinate
system. The register values of the two additive algorithms describing the
same plane figure in the new and in the original coordinate systems are

70 1. PEREDY

interconnected by the following relation:

u v. = f-~(-l) (q) (r)f-~(x(q,r)) (y(q,r))kX1Yi
q r 0,0 .l...J.l...J k+1 k 1.l...J.l...J s t 0,0,

k=OI=O s=Ot=o

where qUrV are the names (identifiers) of the registers producing the grid
values in the new coordinate system (u,v). This formula is nothing else
than a combination offormulae a) and b). Hin formula a) we take q = r = 0
and use instead the integers i, j the Cartesian coordinates x, y , it computes
for any x and y the function values of a polynomial as defined by the
registers kXIY. So it can be used to produce the grid values at the grid
points [x(q, 1'),y(q, 1')] of the new coordinate system, too. (Note, here q
and l' are the integer 'coordinates' describing the grid points of the new
(u, v) coordinate system and must not be confused with the q and r in the
formula a), which have been set now to zero.) On the basis of the grid
values pertaining to the new coordinate system formula b) computes the
new register values.

It is important to note that the two additive algorithms describing
the same figure in two different coordinate systems are not always of the
same order. In a coordinate system 'matching better' some important
characteristics of the plane figure to be described an additive algorithm of
a lower degree can be sufficient, while in the case of a 'poorer match' higher
degree modifiers may have to be considered.

From the point of view of the applications two coordinate transfor
mations are of special importance: the linear transformation and the per
spective transformation.

The linear transformation has the form x = au + bv, y = cu + dv.
This transformation comprises such important geometric manipulations as
stretching, rotating, mirroring the plane figures. The linear transformation,
as a rule, does not affect the order of the additive algorithms, they are of
the same order after a linear transformation as they were before it.

The perspective transformation will be used in the 3D generalizations
to facilitate the construction of central projections of 3D geometric objects.
If the original coordinate system was a Cartesian one it is transformed by
a perspective transformation into a coordinate system in which both sets
of the coordinate lines are straight lines, but only one of them remains
unchanged (i.e. remains a set consisting of parallel lines), the other one
is transformed into a radial set. We will use the perspective transforma
tion in the following form: x = u + Tuv, y = v. This means that the
y= const. set of the original Cartesian system does not change, while the
other one transforms into a radial set having its centre on the y axis of the
original system at a distance liT from the origo in negative direction. Un-

COMPUTER REPRESENTATION 71

der 'perspective transformation' this special form will be understood. This
perspective transformation doubles the order of the additive algorithm, but
only a few higher order modifiers appear with non-zero values. For exam
ple in case of a second order additive algorithm with nonzero modifying
registers X, Y, X X, XY, YY in the original Cartesian coordinate system,
after a perspective transformation only the higher than second order reg
isters UUV, UVV and UUVV will have nonzero values (in addition to the
U, V, UU, UV, VV 'normal' ones). Generally speaking, in the perspective
transformation of a pt h order conservative additive algorithm above the
'normal' pt h order modifiers appear non-zero higher order modifiers with
names won by adding V-s to the names of the normal ones, but the to
tal number of V -s in a name must not exceed p. Thus the highest order
modifier in the transformed form is of order 2p, but there is only a single
non-zero register of this order, namely pUpV.

Rotation and Perspective Transformation of the Second Order Algorithm

Of course, the general formula for obtaining the initial register values in
a transformed coordinate system can be used directly in case of the linear
and of the perspective transformations, too. However, it may be expedient
to deduce from them simple solutions for the most frequently used special
cases. Finally, as a demonstration of the practical possibilities of the meth
ods presented in this paper we deduce now the formulae for the rotation
and perspective transformation of the second order conservative additive
algorithms.

The rotation is a special linear transformation defined by the equa
tions x = Cu - Sv, y = Su + Cv, where Sand C are the sine and cosine of
the angle of rotation. Substituting this into the general formula the initial
values of the transformed registers are as follows:

U = CX + SY + .5(C2C)XX + CSXY + .5(S2S)YY,

V = -SY + CX + .5(S2 S)XXCSXY + .5(C2C)YY,

UU = C2 X X + 2C SXY + S2yy, VV = S2 X X2C SXY + C2yy.

UV = CSXX + (C2S2)XY + CSYY.

The definition of the perspective transformation has been given already
as x = u + Tuv, y = v. Substituting these into the general formula the
following non-zero initial values are obtained for the transformed registers:

U=X, V=Y, UU=XX, VV=YY,

72 J. PEREDY

UV = TX + (1 +T)XY + .5(T2 +T)XX,

Generalisation for 3D

Vozels and Grid Points

In the previous investigations a finite part of the 2D plane has been divided
into pixels. Consequently, as a first step towards the 3D generalisation a.
finite part of the 3D space has to be divided into voxels. Let us divide the
3D space into voxels by three sets (say an X set, a Y set and a Z set)
of planes. Most frequently, the planes of each set are among themselves
parallel and equidistant, any two planes from different sets are perpendic
ular, and the voxels are congruent rectangular parallelepipeds. An other
important arrangement is where the dividing planes are parallel in one of
the three sets onely, while the other two sets are pencils of planes (i.e. the
planes of each set have a common straight line), the two 'carrier' straight
lines of the two sets being intersecting and perpendicular. In this latter
case the voxels are (in general) truncated pyramids with two parallel and
four 'skew' faces.

A set of voxels forming a finite (regularly rectangular or pyramidal)
part of the 3D space will be considered, being bordered by two X planes,
two Y planes and two Z planes, containing (1+2) planes of the X set,(m+2)
planes of the Y set and (n+2) planes of the Z set (boundary planes in
cluded). The division planes of the X set, of the Y set and of the Z set
can be numbered by the integers 0 .. .1 + 1, O ... m + 1 and O ... n + 1 resp. The
points of intersection of any three division planes of different sets are the
grid points. The grid points can be identified by the serial numbers of the
three intersecting division planes, for example (i,j, k) is the grid point at
the intersection of the ith plane of the X set, the jth plane of the Y set
and the kth plane of the Z set (of course 0 $; i $; 1+ 1,0 $; j :::;; m + 1 and
o $; k $; n + 1. The i, j and k values may be considered as the X, Y and Z
coordinates of the grid points.

There are eight neighbouring grid points associated with a voxel,
namely its eight corner points (i,j, k), (i + 1, j, k), (i, j + 1, k), (i + 1, j +
1, k), (i, j, k + 1), (i + 1, j, k + 1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1). A voxel
will be identified by the coordinates (i,j, k), i.e. by the grid point with the
lowest coordinate values out of its eight corner points. Thus the finite part
of the plane under consideration is composed of the voxels with coordinates
from (0,0,0) to (1, m, n).

COMPUTER REPRESENTATION 73

Grid Values in 3D. Definition of Surfaces and Solids

The 3D Form of Additive Algorithms

Let us assign a positive or negative (possibly integer) number to each grid
point, the grid value Ri,j,k' A voxel (i, j, k) is chard,cterized by the eight grid
values of the eight adjacent grid points: Ri,j,k. R H1 ,j,k. Ri,j+l,k. RH1,j+l,k.

Ri,j,k+l, RHl,j,k+l, Ri,j+l,k+l, Ri+l,j+l,k+l' A voxel is negative homoge
neous if all eight of its associated grid values are negativej a voxel is positive
homogeneous if all eight of its associated grid values are zeros or positive
numbersj in any other case the voxel is non-homogeneous.

Our investigations are founded on the following definition: a 3D solid
is composed of the negative homogeneous voxels, the non-homogeneous
voxels form its boundary surface, while the positive homogeneous voxels
are outside the solid.

This definition is a straightforward generalisation of the definition
given for the plane figures and their boundaries and the role of additive
algorithms in constructing 'sensible' solids and surfaces is strictly analogous
to the 2D case, too. The basic form of the 3D algorithms should produce
the grid values step by step, i.e. starting from the grid value Ri,j,k of any
grid point should compute the Ri+l,j,k or Ri-l,j,k or Ri,j+l,k or Ri,j-l,k or
Ri,j,k+l or Ri,j,k-l value of a neighbouring grid point. Thus if we want to
define such an algorithm we have to specify how the grid value varies when
stepping from a given grid point to one of its six neighbours (X step or Y
step or Z step in positive or negative direction).

The possible simplest 3D additive algorithm is the following:

(X+ step:)
(X- step:)
(Y + step:)
(Y - step:)
(Z+ step:)
(Z- step:)

i = i + 1,
i = i-I,
j = j + 1,
j = j - 1,
k = k + 1,
k = k - 1,

R=R+Xj
R=R-Xj
R=R+Yj
R=R-Yj
R=R+Zj
R=R-Z.

In these formulae i, j and k are the grid point coordinates, R is a 'reg
ister' containing the grid value. X, Y and Z are the modifying registers;
by adding them to or subtracting them from the 'main' register R com
putes the algorithm the grid values corresponding to the neighbouring grid
points. This simplest 3D additive algorithm produces a 'plane' as a bound
ary surface, on one side of which is the 'half spa.ce' forming the solid defined

74 J. PEREDY

grid points. This simplest 3D additive algorithm produces a 'plane' as a
boundary surface, on one side of which is the 'half space' forming the solid
defined by the algorithm, while the other 'half space' contains those voxels
which are outside of this solid.

As another example let us consider now the 3D form of the second
order additive algorithm:

(X+ step:) i = i + 1, R = R + X, X = X + XX, Y = Y + YX, Z = Z + ZXj
(X-step:)i=i 1, Z=Z ZX,Y=Y YX, X=X-XX,R=R-Xj
(Y+step:) j=j+l, R=R+Y, Y=Y+YY, X=X+XY, Z=Z+ZYj
(Y-step:)j=j 1,Z=Z ZY,X=X XY,Y=Y-YY, R=R-Yj
(Z+step:) k=k+l,R=R+Z, X=X+XZ, Y=Y+YZ, Z=Z+ZZj
(Z- step:) le = k - 1, Z = Z ZZ, Y = Y - YZ, X = X - XZ, R R - Z.

As introduced earlier, a single well defined grid value R has been assigned
to each grid point. Straightforward calculations show that this implies

Xy = y X, X Z = ZX, Y Z = ZY.

This is the necessary and sufficient condition in 3D for the second order
additive algorithm to produce a single, well defined grid value in each grid
point, not depending on the actual path used to approach the grid point in
question, i.e. to be conservative. The description of solids and their bound
ary surfaces usually needs conservative algorithms. Nevertheless, there are
special (e.g. spiral form) surfaces which do not define any solid and can be
described by non-conservative algorithms. A non-conservative algorithm
assigns in general more than one grid value to the same grid point de
pending on the route used to approach the grid point. All the same, a
non-conservative algorithm can be used to describe a surface unambigu
ously if, for example, those grid values are considered only, which arise
walking on the surface itself.

The second order additive algorithm (at least in its conservative form)
defines solids bounded by second order surfaces such as spheres, cones,
ellipsoids, paraboloids and hyperboloids. Of course, this statement has
to be understood (as the similar statements in the 2D case) again with
some restrictions. On the one hand, the spacing of the division planes
used to form the voxels should be in accordance with the dimensions of
the solid in question. Objects (or details of objects) smaller (or at least
thinner) than the mesh width cannot be represented properly by the given
resolution of the space and, consequently, it may happen that the proposed
method 'does not take notice of them'. However, it is always possible
to represent by means of the proposed method these 'small' objects (or
details) as well using 'finer' voxels, i.e. a closer spacing of the division
planes. On the other hand, the second order additive algorithm describes

COMPUTER REPRESENTATION 75

second order surfaces in the sense of Euclidean plane geometry, if the voxels
are formed by three perpendicular sets of parallel and equidistant planes.
This is expressed in the above verification by the fact that the i, j, k voxel
coordinates have been simply identified with the integer values of the x, y, z
Cartesian coordinates. No doubt, this is by far the most natural and most
frequently used arrangement of voxels, but because in some cases (e.g. for
constructing perspective images) other forms of voxels can be expedient
too, this condition is not trivial either.

The General Form of 3D Additive Algorithms

The second order step-by-step additive algorithm as presented in the pre
vious paragraphs is rather restricted in its range of use. It is possible to
generalize it for computing the grid value

- not just in a neighbouring grid point but in a more distant one and
- considering higher than second order modifiers, too.

For the sake of a concise formulation of the general pth order multistep con
servative additive algorithm in 3D let us introduce the notation qXrY sZ
for the (q + r + s)th order modifying register containing qX -es, r Y -s and
sZ-s in its identifier and let us accept the main register R as the zeroth
order register R = OXOYOZ. The algorithm computes the grid value in
a grid point which can be attained from the starting grid point (0,0,0) by
stepping i times in X, j times in Y and k times in Z direction. With
these conventions the general multistep form of the pth order conservative
additive algorithm is the following:

qXrYsZiJ.k=P~SP~SP~V(i)(j)(k)UXVYWZooo .. L....t L....t L....t \U-q v-r w-s "
u=q v=r w=s

with
_ a(a - l) ... (a - b + 1)
- 1.2 ... b

Transformations of the 3D Second Order Algorithm

We want to use the additive algorithms for representing and studying
3D solids and their boundary surfaces, therefore it is necessary to de
scribe the same solid in different coordinate systems. Let us consider a
new (x', y', z') (general, possibly curvilinear) coordinate system which is
connected to the original (x, y, z) one by the equations x = x(x', y', z'),

76 J. PEREDY

y = Y(X',y',Z'),Z = (x',y',z'). It is possible to describe the same solid
with the same boundary surface by an appropriate additive algorithm even
in the new coordinate system. For this purpose the initial values of the
registers have to be modified. The general rules of modification in the 3D
case are straightforward generalisations of those presented for the plane
figures. Instead of writing out the general formulae the most important
three special cases will be presented for the second order case.
a) Stretching in x direction. If x = cx', y = y', z = z' the initial values of
the following registers are to be modified:

x' = cX + c(c - -1)/2XX, XX' = c2 XX, Xy' = cXY,XZ' = cXZ.

All other registers remain unchanged. The formulae for stretching in the
other coordinate directions can be obtained by an appropriate modification
of the letter symbols referring to coordinate directions.
b) Rotation about the z axis. If x = cx' - -sy', y = sx' + cy', z = z' (where
c = cos f3, s = sin (3) then the initial values of the following registers are to
be modified:

x' = cX + sZ + c(cl)/2X X + csX Z + s(sl)/2ZZ,

Z' = sX + cZ + s(sl)/2XXcsXZ + c(c1)/2ZZ,

XX' = c
2 XX + 2csXZ + s2ZZ, ZZ' = s2 XX2csXZ + c2 ZZ,

XZ' = cs XX + (c2s2)XZ + csZZ.

All other registers remain unchanged. The formulae for rotating about the
other coordinate axes can be obtained by an appropriate modification of
the letter symbols referring to coordinate directions.
c) Perspective transformation. If x = x'Tx'y',y = y', z = z'Ty'z', the
initial values of the following register are to be modified:

Xy' = T.X + (IT)XY + (T(Tl)/2)XX, XXY' = T(T2)XX,

YZ' = T.Z + (IT)YZ + (T(Tl)/2)ZZ, YZZ' = T(T2)ZZ,

XYY' = -2T.XY + T2XX, YY Z' = 2T.Y Z + T2ZZ,

XXY' = T(T2)XX,

XYZ' = T(T2)XZ, YZZ' = T(T2)ZZ,

XXyy' = 2T2XX, XYYZ':: 2T2XZ, YYZZ':: 2T2ZZ.

COMPUTER REPRESENTATION 77

Set Operations

The representation of voxel solids and voxel surfaces in form of additive
algorithms facilitates their computer manipulation in many respects. For
example one can find relatively efficient and simple algorithms for rendering
the curved surfaces or drawing their outlines, the lines of intersection of two
surfaces, etc. Concluding this paper let us illustrate now the advantages
of the additive algorithm representation by stating the simple rules for set
operations.

Let two solids (solid A, and solid B) be represented by the two arrays
of grid values R~.j.k and R~~j.k' Let Ri.j.k represent a solid constructed from
the two previously defined solids by set operations. The following simple
formulae are valid:

If the solid represented by R is the complement of solid A:

~.j.k = -R~.j.k'

If the solid represented by R is the union of the solids A and B:

Ri.j.k = Min(~.j.k> R!.j.k)'

If the solid represented by R is the intersection of the solids A and B:

Address:

Dr. J6zsef PEREDY

Department of Descriptive Geometry II
Technical University of Budapest
H-1521, Budapest, Hungary

