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Abstract

The paper presents a set of curve drawing algorithms with the corresponding theoretical
background based on a ‘‘discreet analysis”. The proposed algorithms for drawing plane curves
use integer addition onely. The set of algorithms constitutes a homogeneous system comprising
straight lines, different kinds of polinomials (including all conic sections), exponentials, hyper-
bolic and trigonometric functions, ete. and represents a new viewpoint for classification of
curves. The paper points out the possibilities of generalization for 3D curves and surfaces as
well as the prospects of practical application in the different fields of computational geometry,
CAD, robotics, ete.

Fundamental concepts

The finite plane rectangle of finite subdivision

In the present paper some problems of discrete representation of fune-
tions on a raster type computer display will be discussed. The discussion starts
with the simplest case, that of single variable functions (i.e. plane curves).
Let us consider a rectangle of finite dimensions, divided to a finite number of
strips parallel to its sides. Let the two directions be x and y, and the corres-
ponding number of subdivision (n, +1) and (n, +1), respectively. Now. divi-
sions in directions x and y can be numbered using natural numbers completed
with zero as 0 i, <n, and 0 < i, < ny, resp. Let i, and i, two integers
satisfying the quoted inequalities, then the pair of numbers (i, i,) may indi-
cate the small elementary rectangle common between division stripes i, and 7
in directions x and y, respectively. This is the way, how the screen of raster
type displays is divided into elementary units. The elementary rectangles are
called in the following plane elements or in short “pixels™.

Relative position of two pixels

Let (i,, i,) and (j,, j,) be two different pixels. They are said to be
adjacent if either

Jy =
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— i, =j,and i, = j, £

1 (adjacent in direction y); or
1 (adjacent in direction x).
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Both visually and by definition, it is clear that in general a pixel has four
neighbours, onely on the edges or in the corners of the rectangle representing
the screen appear pixels with three or two neighbours, respectively.

In compliance with the definition the relative position of two pixels may
be as follows:

— Two pixels are aligned (are in the same row) if i, = j..

— The first pixel is higher or lower than the other if i, .> jy or i:y, <]
respectively.

b

— Two pixels are in the same column if i, = j,.
— The first pixel is to the right or to the left of the other if 7, > j. or
1, < j.. respectively.

Refinemeni of the subdivision

The subdivision can be refined by further dividing elementary rectangles
obtained in the first division in the same way. Theoretically, every pixel could
be further divided by different finite numbers in any direction. A uniform
refinement is that where every pixel has the same number of finite subdivisions
in both directions. For a uniform refinement e.g. by 10 both the original and
the refined pixels can be expressed conveniently by applying a “decimal point™.
(For instance, refined pixels obtained by refining the original pixel (3, 6) are
(3.0, 6.0), (3.1, 6.0), ... (3.9, 6.9), i.e. the original pixel contains 100 refined
pixels.)

Obviously, the denotation using decimal point does not affect the es-
sence of the stipulation to assign integer numbers to the finite subdivisions.
Namely, omitting the decimal point leads to such numbers. (e.g. to 62 from
6.2), and the decimal point kelps onely to distinguish between the original and
refined pixels and express their mutual correspondence, namely, the “fine”
pixel with integer serial numbers won by omitting the ““decimal peints™ is a
subdivision of the original pixel with serial numbers expressed by the integers
left from the ““decimal point™, e.g. in case of (3.1, 6.2), the “fine”” pixel (31, 62)
belongs to the original pixel (3, 6).

If the relative position of a pixel with respect to an other has been found
to be higher, lower, before (to the left) or after (to the right), the same holds
true for any pair of their refined pixels. If two pixels are in the same row (or
column), then there are among their refined pixels absolutely sure such pairs
for which the same holds true, but not for any pair. If two pixels are adjacent
in some sense, then among the pairs of their refined pixels exist adjacent in the
same sense, adjacent in an other sense surely do not, while at all not adjacents
do. These self-evident facts have been quoted to illustrate that such important
fundamental relations between pixels as the relative position or neighbourhood
preserve in some sense their validity after refinement, too. In this paper pixel
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properties being “invariant” in some sense, preserving their “coherency’ after
refinement and being not bound to any special number of division will be con-
sidered ounely.

The difference of tico pixels

Let (i 1,) and (j,, j,) be two different pixels and assume that i, >J
and iy, >j, ie. the first one is higher than and to the right of the second one.
The difference

(i’x? i.\'-) - (]\-]\)

of the two pixels is defined as a part of the plane composed of four adjacent
pixels

{\ix""j::—' 1, ‘7\*—]») (i:c—j.\"r I_Jy)
(Z_J*'_ 1, ‘y—7\'_— ]‘) (l‘c—]c lv—']y—' _Z)

This formula for computing differences is wall-knowa in th2 avith meties
of intervals. It can be shown, that the four adjacent pixels given by t his rule
include all the difference pixels in case of any refinement, too, and the differ-
ences of all possible refined pixel-pairs perfectly fill out the original quad ruplet.
Thus the just mentioned rule for computing pixel-differences is in full accor-
dance with any refinement.

The initial stipulation in discussing the difference of two pixels has been
that the “minuend” is to the right of, and higher than the *“*subtrahend”.
This stipulation is necessary to ensure that the difference quadruplets consist
out of the pixels of the original plane rectangle onely. For heing able to neglect
this restriction the original plane quadrant has to be extended to its double in
hoth directions. To number the new pixels resulting from this extension it is
convenient to use negativ integers. After this extension of the original finite
plane rectangle. the difference of any two original pixel may be computed
without any restriction.

Introduction of negative integers to denote the pixels of the extended
rectangle is in no essential contradiction to the former stipulation of assigning
natural numbers to the finite subdivisions of finite plane rectangles, namely
the proposed serial numbers using negativ integers — (n,—+1)... n,maybe
replaced by equivalent numbering 0 ... (2n .+ 1) and — (n,+ 1)

n,by 0 ... (2n, -+ 1). The negative signs simply refer to the fact that
for exi)ressing the differences of any two pixels of the original finite rectangle
an extended rectangle is needed, and the pixels with negative numbering are
pixels of the extended parts.
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Pixel functions

Starting from an arbitrary pixel considered as element Ne 0 of the pixel
function let element Ne 1 be any of its neighbours. The element Ne 2 of the
pixel function may be any neighbour of element Ne 1, and so on. Repeating m
times this stepping from a pixel to one of its four neighbours leads to a pixel
function affecting m -+ 1 pixels (with the starting pixel ineluded).

The pixel function is somewhat more than simply the set of the involved
pixels, the sequence is of importance. For instance one and the same pixel
may be “stepped on’” more than once while traversing all the pixels of a pixel
function. )

The fundamental description of pixel functions

The most convenient writing of a pixel function in conformity with iis
definition is:

- to indicate the starting pixel (i.e. the pixel Ne 0) by its “coordinates”™
(i,\:O: i\ 0)' and

— to indicate the sense of neighbourhood between all pixels of the
function.

Four kinds of neighbourhood are possible: right- or left-hand adjacency
in direction v, and upper or lower adjacency in direction y. Thereby, descrip-
tion of a neighbourhood relation requires two bits of information, i.e. a pair
of bits. In written form the four tokens —x. —x, +y, —y will be used to in-
dicate the neighbourhood relations and in general such a pair of bits will be
denoted by p;. (Thus p; mav assume any of the “values” —+x, —x, +y, —v.)

Using the introduced notations a pixel function mav be written in the
form

(Tu0: Tyo)s P1r P2s <+ v Provv s Do

This form is called the “basic writing™ or “basic form™ of a pixel function
containing m -+1 pixels. The basic writing of a pixel function consists of the
starting pixel “coordinates”™ and of the set of “neighbourhood bit pairs™.

Monotonic pixel functions

A pixel function is monotonie if its basic form contains onely one of the
neighbourhood tokens -~x. —x and one of -y. —y. This means that if a pixel
of a monotonic pixel function is e.g. right-hand neighbour of the former one,
nowhere in the function follows aleft-hand neighbour. or if there is somewhere
an upper neighbour, nowhere in the function follows a lower one (of course in
the sense of advancement from the starting pixel to the last one). In the fol-
lowing Investigations—unless explicitely stated otherwise—monotonic pixel
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functions (or monotonic sections of general pixel functions considered separa-
tely) will be discussed, sometimes—for the sake of conciseness—without any
direct reference to this restriction.

As a further ease of formulation in case of monotonic pixel functions the
tokens --x, -y will be used onely. Since by rotating the function or by inter-
changing the expressions “left —right” and ‘“higher——lower” any monotonic
pixel function can be transformed into such a position, this simplification
means no essential restriction beyond the requirement of monotonic character.

Concurrent monotonic sequences and series

Let us consider two monotonically non-decreasing sequence of natural
numbers

oS (S > Sipi=1, 2,00, o m—1),

Sy Sy oo Sy (Sypa > Synj=1.2....n—1)

yir Sy

Let us order this two sets of numerical values (one with subscript w,
other with subseript y) into a common sequence corresponding to their abso-
lute values, agreeing that if the two sequences happen to contain identical
values, in the common sequence the term with subscript x comes first. The two
sequences together with their joint sequence ordered by magnitude are termed
a pair of concurrent sequences.

There is a obvious interrelation hetween monotonic pixel functions and
pairs of concurrent monotonic sequences. Starting from an initial pixel (pixel
Ne 0) and stepping in direction x if in the common order the first term has the
subseript x and in direction y if it has the subseript v, and continuing this pro-
cess allways selecting adjacent pixels corresponding the indices of terms in the
common sequence a pixel function of n--m--1 pixels can be constructed.
Thereby a pair of concurrent sequences has a pixel function as counterpart.
A starting pixel and a pair of concurrent sequences unambigously determine
a pixel function.

It is easy to demonstrate that for any pixel function can be constructed
a corresponding pair of concurrent sequences describing the given function.
The hasic form of the pixel function is

(ix0> Tyo)s P1: P2z« « « Piz + - + P

Let us consider the subscripts of the p; bitpairs i.e. the natural numbers
i=1,2,...m as the joint order of the concurrent sequences to be constructed
and classify this subscript value 7 as term of the x or y sequence depending on
wether the respective neighbourhood token p; refers to an adjacency in direction
x or ¥. Thereby, obviously, a pair of concurrent sequences describing the giver

function has been constructed.
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The same pixel function can be described by several different pairs of
concurrent sequences. Let us consider an arbitrary term S, of the sequence
with subseript x for which S, < S, < S,;.,. Add the same number D to
each of the terms S, S..y, ... S, and Sy;p. Sye. - .. Sje In conse-
quence of this modification the joint order of magnitude of the terms is not
changed, that is, the modified pair of concurrent sequences describes the origi-
nal pixel function. Thus, every pixel function can be described by its initial
pixel and by a pair of concurrent sequences, and this can be done—at least
what concerns the pair of concurrent sequences—not in a single form but in
several different forms,.

Terms of both sequences S.;, S_,, ...S,, and S.;; S;». ... §,, can

be considered as the partial sums of series
A Aoy, oA and A Ao A

> 0and A, > 0 for all 7 and ;.

In case of monotonic S,; and S ; sequences A4 ;

¥J ;
The sequences S.;, S... ... S, and S,;. S . S, uniquely define the
sevies A o Ay, ..o Aoy and Ay, Ay, oo A, ;. Thereby pairs of conecur-

rent, series can be assigned to the pairs of concurrent sequences. To describe
pixel functions pairs of concurrent series are of use, too.

The resulting equivalent pairs of concurrent sequences and series are
connected by the equations

fl
‘_1\'0 = S:-:l'f ‘_‘l:-:i = S~~1 — S‘ Sxi Z ‘4:\'1:’
k=0
. i_l
— Dy ‘Syj = ,Z; Ay

Since in formulating pixel functions in terms of pairs of concurrent sequences
and series the properties of pixel functions are expressed by arithmetics, equa-
tions and inequalities, this type of description is called concisely arithmetic
representation of pixel functions.

Pairs of series with a uniform base

An arithmetic representation of a pixel function is said to be of a uniform
base if at least one of the member series (say that with subscript y) is “equidis-
tant”, i.e.

Ag=dAy=...4y,_,=A, = const.

and consequently
SUyl = _,—1},, Sin o .‘ZA},, Ce SUJ,R = kAy’ A buyn = nA},.

Obviously, any pixel function described by an arithmetic representation
of general type can be represented by an arithmetic representation with an
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arbitrary uniform base A, too. For doing this, it is sufficient to chose the S,
values in the sequences

Susts St -

Sy - -
Ay 24, kA, ..

o o
by!\’ < S::z' < byk+1

in the original (general, non-uniform) representation, Sj,; should meet the
inequalities
kA Sy << (k+1)4,.

(Of course, the requirement of monotonic character has to be obeyed, too.)
It can be seen from the last inequality that if 4 >> I, the pixel function can
still be constructed in many different ways even with the prescribed uniform
hase.

An important special case is that where the uniform hase is the unit i.e.
A, = 1. The former considerations are also valid for this special case, thus,
avery pixel funetion has a “unit based” uniform description, too. In this case

the defining inequalities for S,,.; have the form

E S, <(k-+1)

Uxi =
or considering that S, is a natural number
S — (L
Spxi = (IL T 1)

Thus, between the pixel functions and their unit-hased representations
there is a one-to-one correspondence: a pixel function has a single unit-based
representation, and a unit-based arithmetic description defines a single pixel
function (not considering the initial pixels).

In the paragraphs above the uniform base was A, = consi. ie. the
base was uniform with respect to y. Similarily there are uniform descriptions
with respect to x (and as a special case unit based descriptions with respect to x),
too. Their properties need no separate discussion, simply follow from the ahove
investigations considering the perfect symmetry of the two member series

with subscripts x and y, respectively.

Fields of differences
Full difference fields

The difference of any two pixel of a pixel function can be computed.
Let us consider those differences onely where the minuend does not precede
the substrahend in the order of advancing from the starting pixel of the function
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to last one. This restriction obwviously causes no loss of information, the dif-
ferences in the revers order have the opposite sign but “don’t contain any new
information™. The set of differences of all possible pixel-pairs taken in the
specified order is termed the full difference field of the function.

Obviously, the field of differences does not depend on the starting pixel
but on the neighbourhood relations of the subsequent pixels onely. Thus, for
constructing the field of differences the starting pixel (7., 7,4/ is not needed
only the set of neighbourhood tokens p,. p,, ... of the basie form or the equiva-
lent pair of concurrent sequences (series) in the arithmetic description has to

be known.

Field of differences in direction x

The investigation of a difference field is facilitated by grouping the great
many differences according to certain aspects of convenience. Let us consider
a eolumn 7, of the finite rectangle containing at least one pixel of the function
to be examined. In this column there is either a single pixel belonging to the
funetion or there are more than one such pixels but (due to the assumed mono-
tonic character of the pixel functions) forming an uninterrupted continuous
sequence in the order of advancing alongthe function. Let us pick out of this
column the {irst (or the onely) pixel belonging to the pixel function under in-
vestigation and denote it by (7.. i, ). Let dx assume such an integer value that
the column 7, - dx should contain at least one pixel of the function. too. Let us
pick out the onely or the first pixel out of this column. too and denote it by
(i, +dx,j.). The difference of this two pixel “characteristic™ to the correspond-
ing columns of the function is the quadruplet

(i, dx,j) = (i) = (dx—1.j. — i) (dx.j, — i)
(dv — 1,j, — i, — 1) (dv.j,— i, —1).

Such difference can be found to any dx and 7, meaningful for the given
function. These differences are termed “differences in direction x”°, and the
whole set of all such differences possible for the given function is the field of
differences in direction x. Let us classify this pixel differences by considering
those with different 7/, but identical dx as “‘coherent™, as helonging to the same
class. The difference quadraplets of such a class are all in the same columns
dx and dx—1. so the explicit indication of the columns may be omitted and
replaced by a reference to the class. Each difference quadrplet consists of
pixels of two adjacent rows, thus it is sufficient to indicate the higher one onely.
It is, however. of great importance to know (and to express by the notation;
to what initial column the difference helongs, this information is namely lost
in the substarction. On the basis of all this considerations the original diffe-
rence quadruplet may be replaced by a pair of pixels in the column 7, and in
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the rows (j,—1i,) and (]y i,—1). and for this pair of pixels as a concise expres-
sion of the dlffelence in direction x and class dx belonging to column i, the

(i.\" (7\ _‘ Ty))d.\

will be used. The doubling of the right-hand paranthesis emphasizes. that it
is a pair of pixels in the rows (j, —7,) and (j, —i,—1).
If for a given pixel function the field of dlfferences in direction x is con-

notation

sidered, this does, of course, not contain directly all the differences of the full
field. Namely. for computing the differences in direction x out of each column
onely one pixel has been used. though. a column may contain several pixels of
the function. On the basis of the differences in direction x the full field of
differences can be all the same “reconstructed” (at least in case of monotonic
pixel functions). To demonstrate this it is sufficient to consider that the (7,—i, )
difference of any two pixels of columns i, and i, -+ dx is either identical to one
of the differences in direction x» of da ss /dx—1) belonging to the column
(i.+1) and of class (dx--1) belonging to the column 7, or is between this two.
and among the differences of the full field all possibilities matching this con-
dition really occur. Thereby the field of differences in direction x is a complete
and unambigous description of the full field.

Ordering pixel differences with respect to x or v

In the previous para(rraph pixel differences in direction x have been
written in the form (7., j,—i,) dx. Thereby a kind of ordering of the pixel
differences has been realised: the pixel-pairs standing for the difference-
quadruplets of a class have been represented in the column i, of the finite
rectangle. This is the field of differences in direction x ordered with respect to x.

Pixel differences in direction x can also be ordered with respect to v.
Tn this case the values (j,—1,), being of primary importance for differences
in direction x, are repreqented in the row i, rather than in the column 7, of the
subtrahend characteristic pixel. Thus the pair of pixels representing the or igi-
nal difference quadruplet of class dx in concise form consists of pixels ((j,—
—i,—1).i,) and ((j,—iy), i, ). The corresponding notation of the differences
in direction x ordered with respect to v has the form

(G, — iy)s i, ).

Investigating pixel functions, fields of differences in direction x ordered
with respect to both x and y are of importance. Fields of differences in direction
v can be defined similarily, and they can be ordered again with respect to both
x and y. They need no special investigation. their properties can he deduced
from the results won for the difference fields in direction x by systematically
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interchanging the variables x and y. Also in the following the text will refer in
general to fields of differences in direction x, but the results will be valid for
differences in direction ¥, too.

Derived pixel functions fitting on fields of differences

As explained in the previous paragraphs the full field of diffevences of a
pixel function can be perfectly accounted for by the field of differences in di-
rection x ordered with respect to x or y. In constructing them the pixel pairs
(i j,—1,) dx or (j,—i.. i) dx have been classified into classes correspond-
ing to dx.

The difference pixel pairs belonging to the same class dx in general do not
form a pixel funetion. In many cases the continuity, i.e. the possibility of
stepping form neighbour to neighbour is not available (e.g. in difference fields
in direction x ordered with respect to y sometimes there is at all no pixel in
some rows). In other cases in contrary there are ““too many’ pixels (e.g. pixel
pairs in neighbouring columns are in the same rows), thus some pixels have
more than two neighbours and this is what prevents the simple construction
of a pixel function out of the pixels of a field of differences in direction x.

A pixel function containing at least one pixel out of each pair of pixels
belonging to class dx of a difference field is called a fitting function of class dx.
This definition makes clear that there are many fitting pixel functions of class
dx for any difference field.

In the following the mutual relation of a pixel function and the functions
fitting on its difference fields will be discussed. The original function will be
called the primitive function.The derivatives are a set of pixel functions out
of which the first one is a fitting function of class dx == 1 on the field of dif-
ferences of the primitive function. the second one a fitting function of class
dx = 2, etc. A set of derivatives has to contain dx,,,, different fitting functions
corresponding to the clases dx = 1. 2.. .. dvpax. (The value dygay is the dif-
ference of the x “coordinates’” of the last and the first pixel of the primitive
funection: dX¥max = ixlast — ixo-) Of course the same primitive function has
many different sets of derivatives. When working with derivatives one has to
define the field of differences on which the derivatives fit. There are derivatives
fitting on a field of differences in direction x ordered with respect to x or y, and
derivatives fitting on a field of differences in direction v ordered with respect
to x or y.

The restriction still holds that monotonic pixel functions (or monotonic
sections of general pixel functions) are considered onely. Of course functions
fitting on difference fields of monotonic functions themselves are not always
monotonic. Thus maintaining the condition of monotonic character for the
fitting functions too means a further restriction on the primitive functions.
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Correlation between arithmetic description of primitive and derived functions

Let us consider a general arithmetic description of a primitive function
in form of a pair of concurrent sequences

(ixO’ iyO) leﬂ Sx?.? s Sxi’ s
Sy Syas - - -+ Sy

yjeoe e

or in the form of an equivalent pair of concurrent series

(ix07 z")'0> A.\'O’ Ay A

AL 1 Al A

cAdy e Ay

The first pixel of this function in column (7, 4 i) is in the row (7,4 + j),
where j is the highest integer value meeting the inequality

Svj < sz"

Knowing this, the differences in direction x can be computed. Let us consider

first the field of differences in direction x ordered with respect to x. The pixel

pairs of this field are written in the form (i i, k—j) dx with j defined as
above and k being the highest integer meeting inequality

-
Sy/c ~ Sxi—!—dx *

Let us denote two pixel pairs of the same class dx being in adjacent co-
lumns by (i-+1, k—j)dx and (i ,-+i-+1, k'—j' ) dx. The pixel function fitting
on the differences of class dx is sought for in the form

(i 0) dx sdx
L Se .
The con dition of fitting is the inequality
Eej—1<I<<E —7,
where [ is the highest integer value satisfying the inequality
Sy < ST

A similar system of conditions can be formulated for functions fitting
on the differences in direction x ordered with respect to y. The difference pixel-
pair of class dx is (k—J, j)dx. The fitting function of class dx is sought for in
this case in the form

(O lyO) S\l, \7, .«
Sy1, Sy‘), * e
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Let us determine the highest integer ! meeting the inequality
Su' < Sy
and the highest integer I’ meeting the inequality
le’ < Sy] 1.
Using this [ and I’ the fitting condition is expressed by the inequality
I<(E—j)<<l 41

In the case of monotonic primitive and derived functions this is a neces-
sary and sufficient condition simply expressing that in the row No j at least
one of the pixels (k—j, j) and (k—j—1,j) belongs to the fitting function.

Beside the general form of the fitting conditions presented just now,
there are simpler and more illustrative forms too for special cases. For example
if both the primitive function and its derivatives are given by their arithmetic
representations of the same uniform base A, 1

s}:s;;‘:u

then

'—“1] , | = int

1 sz'+dx —1 )

j=int ,kr:int[

S, —1 }
Y

1,

and the difference

S i — ;o . cirgx — Sy

__a_fﬂi.__l} it (_S_\_’_._i] —int [f\_f_zx__i\f_] &b,
A}, 3 v

where b%* is either 0 or I (being 1 if and only if the residue of the division

S,/ A, exceeds the residue of the division S, ,./4,). Thus the general condition
of fitting on a field of differences in direction x ordeled with respect to x as
deduced in the previous paragraphs

E—j—1<I<kE —j

E—j=int|-

takes the form

ax

Y

Sxi+1+d.\' - S):H—l

bl—-l

iutIM)_;_ b — 1< int
A,

Considering that in this formulae all variables are integers the following trans-

B

formation is possible:

A, [int Ssivax = Sui | -+ b — 1} <
A,

<SG <4, [int [ Sxi+1+d;— Seist } + b, + 1] .
A, !




PIXEL FUNCTIONS IN COMPUTER GRAPHICS 15

This inequalities give the rule of constructing the derivatives fitting on
the field of differences in direction x ordered with respect to x for the case of
arithmetic description with a uniform base common to the primitive function
and its derivatives. (Of course, the lower limit on the lefi-hand side has to
be really less than the upper limit on the right-hand side. If not, there is no
monotonic derivative. This case has been excluded from the examinations for
the time being.) Note that pixel functions with

. i+ dx—1

LS o

xi xi’+dx bxi’* Z ij
=t

are derived functions fitting on the field of differences in direction x ordered
with respect to x. This can be demonstrated by substituting
v ) i+dx
X ax
Sk = Sxi+1 - 2 A_\»j
Je=il

into the inequalities expressing the “condition of fitting:

pledx—1 i+dx \
S A e 3 Ay
|| E +b:-fX-1J <3 A< Al S| g 1]

v j=i+1 y

The upper limit condition is obviously met, since for any C

A),[int [-C—

.“ 4

+1]>c.

In testing thelowerlimit two circumstances have to be taken into consideration.
On one side

i+dx—1 i+dx
S .
> A< > Ay,
j=i Jj=i+1

as consequence of the monotonic character, on the other side b{* may equal

1 omely if
[ +dx—1
.—/i". A-\'j i+dx—1
A, int —J;"Ih— < 23 A
, fart

Ay

Thus the lower limit condition is always met too, and with this the stated
form of derivative functions is fully proven.

The conditions for fitting functions become even simpler if a unit base is
chosen. With 4, = I all the denominators vanish, appear integers instead of
fractions and all the b values will be identically zeros. Thus the condition of
fitting (or the rule of derivation) is simply

dx < |
S Sxi < Sxipn < Sxi+dx~1 — D1 T 1

xi-+dx T
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in case of unit based arithmetic representation of the primitive function and
its derivatives fitting on the field of differences in direction x ordered with
respect to x.

Some types of pixel functions

Constants

A pixel function is a constant one, if all of its pixels are neighbours either
in direction x or in divection v exclusively. Hence the basic writing of a constant
pixel function is either (i g, 7,5) +%., +%. ... 0T (i i) +¥, +¥, ... This
two possible different kinds of constant pixel functions are called constants
with respect to x, or constants with respect to y.

The arithmetic description of a constant pixel functionis simple, too. Let
us consider a pixel function constant with respect to x, consisting of m + I
pixels. Such a pixel function is described by any pair of concurrent sequences

Sy Sparevrs S

X1

Sy

xm

for which S,; > S, (the actual values are not important). The equivalent
condition in case of series:

m—1

Z'Aﬁd g A_\'O’
i=0

or for a uniform base with respect to x
A L Aplm.

This later form is rather illustrative concerning the size dependent cha-
racter of “comstancy”” of pixel functions. Practically all pixel functions have
—shorter or longer—constant sections. If a pixel function is a constant on a
finite rectangle it may be a constant or a non-constant pixel function on an
extended one. If in the uniform based description shown above the base is
chosen to be equal to zero i.e. A, = 0, there is no need to make any restriction
concerning the length of the function i.e. concerning the maximum number of
its pixels: in this special case the pixel function is constant with respect to x
independently of its size.

Defining types of pixel functions on the basis of properties of their derivatives

It was simple to define the constant pixel functions relying on their basic
form. In the following new types of pixel functions will be defined by prescrib-
ing some properties of their derivatives. Since for every pixel function there
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are many sets of derivatives having different properties, the way of making
such prescriptions has to be been specified exactly.

It will be stated that the derivatives of a pixel function have a given
property. Thereby it is ment that in each class meaningful for the given pixel
function there is at least one fitting function which has the given property
(or at least does not contradict to it). Thus not every fitting function needs to
have the given property, but must not exist such a class of differences for
which not a single fitting function could be produced with the given property.
Any subsequent statement or condition concerning the properties of deriva-
tives of a pixel function has to be understood in this sense.

T he straight line or linear pixel function

The linear pixel function has constant derivatives. This is the definition
of the linear pixel functions i.e. “stright lines” on a finite rectangle consisting
of pixels.

Let us consider the following arithmetic description:

S See= Sa+Ae ooy Su=S,+(0{— %
Sp=dA, S,=24, . S,=jd,

YL Sy

This is termed a doubly uniform based description. It is easy to demons-
trate that any pixel function with such a doubly uniform arithmetic descrip-
tion is linear i.e. has constant derivatives. Namely, it has been proven in the
previous chapters that the function

dx
Sxi = sz'+dx - S.\'i

is a fitting function in case of a uniform description with the same 4,. But for
double uniform description

Sxi+dx - sz' = le + (I, -+ dx — 1)"4.\: - [le —+ (Z - 1)'4X]’

and in consequence
dx
Sxi =dx ‘4.\'

demonstrating that Sj; does not depend on i, i.e. the fitting function is a
constant. It can be demonstrated too that any straight linei.e. any linear pixel
function has at least one arithmetic description with doubly uniform base.
Before doing that, however, some preliminary remarks are needed.

Let us start with a unit-based description. It has been proven that any
pixel function has such a description, thus the linear ones have, too. So it is
sufficient to demonstrate that for any unit-based pair of concurrent sequences
describing a linear pixel function a corresponding equivalent doubly uniform

2
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deseription can be constructed. In case of unit base the condition of fitting has
been deduced in the form

-
Sxi—:—dx - S\z S S\z—l =~ S Ni+dx=1 T b:{i-}—l ”:" 1.

Considering that for linear funections the derivatives are constants in-

dependent of 7, i.e.
"Vd\ Sd\
X ¢

\z-——l —_
and all the numbers appearing in the inequalities are integers, the condition
of fitting takes the form of the following equation
S — Sy = ST b,

Xi+dax Xl

where b may take again onely one of the values 0 or I (actually which of them.
depeds on dx and 7). Introducing an “intermediate™ dx’ value (I < dx’ < dx)

Sige— Sy =Sy — Sopeye + S

o dx —dx’ dx—dx’ dx’ dx’
i+dx cidx — 3= Sk — b T S‘C — b;

Xidx xi+dx’ idx

Comparing the last two Pquatious havig the same left-hand sides a relatiou

can be found among the S S v-alues of the different classes:

cdx dX—dx? | odx ax’
bx - Sx e Dy — ax -

Let us try to construct now an equivalent doubly uniform-hased description
in the form

St Sty — S - A, St = Sy (i — 1)A..
N 1 __ o o
b}’l == 44.\.., vy = .::1‘\,, . ’).\'j ——]_f:i\,, .

The condition of the equivalence of the two forms with unit base and with
doubly uniform base is the following pair of inequalities:

(Sy— 1), = Sty = (= 1) A, < Sy A,
or after some transformation

(Sy— 1)Ay, — (i — 1)A, < 84y < Sy d, — (i — 1)4,

giving the necessary and sufficient condition for the exisience of a doubly
uniform based description:

(Su— DA, — (=14, <S4, — (G — D4,

which has to be valid for any possible pair of i and j. If i = j, the condition is
trivial. If { > j, then let i = j - dx, and the condition takes the form

(S5 = bf — 1), < dx A,
If i < j, then let j = i--dv, and the condition transforms to

de A, < (S5 — b+~ 1)4,,.
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These conditions have to be met in the case of the less favourable values of
b% and b¥. Thereby to prove the existence of a doubly uniform description
such values have be found for 4_and 4, in case of which the inequalities

(Si‘ - 1)—"1)1 < dx Ax < S({\ !13"

are satisfied independently of the actual value of dx. In fact, however, such
values can be found always. Namely, let us find the least one among the ratios
(S¥/dx) and let A, and A4, equal the corresponding 5% and dx. With this
choice the upper limit is obviously met. Investigating the lower limit let us
consider first the case dx <7 4. Usig the formula connecting the SE values of

N . Y. ol . . ~ i
the different classes and considering that A = S.. in the less favourable case

f.l., — Sd -T‘ S;‘ay~d,\‘ - 1_/

X

from which expressing (85" — 1) and substituting into the lower limit condi-
tion, we have

(A — 2™, <dv A = [A,— (4, — dx)]4_.
After some transformation the lower limit condition has the form:

St

: -~ : > ' X ,

A, —dx A,
which considering the minimum property of A, /.4, always holds. Of course,
with this deduction the proof is valid for dx values not exceeding 4, onely.
But always can be found a k value so that

1< dv—kd, < A,

and using the equation
oxd A, —X
S5 = ICA), + 57,

these cases can he reduced to the already proven ones.

With this conclusion the statement concerning the possibility of describ-
ing any straight line in a doubly uniform based arithmetic deseription has been
fully demonstrated. But, in addition. the above (somewhat lenghty) investiga-
tion points to some other interesting facts, too. First of all it shows that the
stipulation of constant derivatives is a ““meaningful® one, there are really
pixel functions meeting this condition. It can he observed too that if a finite
rectangle is considered with highest serial numbers of subdivisions n_ and n,,
all linear pixel functions of this rectangle (i.e. all straight lines of such a screen)
have a doubly uniform arithmetic description with 4. <n, and A, <n,,
namely both 4, and 4 have been chosen out of the (on the screen really
existing) coordinate differences of two specified pixels of the linear pixel func-
tion to be described. (Note that such a description always exists but, of course,
is not the onely possible doubly uniform description of the given pixel func-

2%
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tion.) The fact that 4, and 4, have such upper limits, has its practical impor-
tance: the computer arithmetic may work with rather “short” integers.

Rethinking the above investigations on linear pixel functions may attract
notice that it has not been stated explicitely, which derivatives are constants.
but tacitly the derivatives fitting on the field of differences in direction x and
ordered with respect to x have been used. Since in consequence of the symmetry
of the variables x and ¥ in the doubly uniform-based descriptions, any deriva-
tives of a linear pixel functions are constats, there is no need to specify the type
of the constant derivatives. The straight lines are “anyway straights™.

Concluding the remarks on linear pixel functions a further important
property of this type of functions has to be demonstrated. Starting from the
well-known doubly unifor description

Sy So=8,+A4, ... S;=8S,+GE—1)4,....

Spy=A, S,=24, oo Sy=jdn ...

let us consider the pixel function described by the following pair of concurrent
sequences:

1+dx—1 2+dx—1 {+dx—1
7 —_ t ? — &
<1 @V ‘S:cl:': X2 7 Z S.\:i:? cee Oy == ;}‘ Sxk'/ tre
k=1 k=2 k=i
[ [ N T
== Ay, Sy =24, s Sy =4, ca

This later pair of concurrent sequences marked by’ is constructed from the
original one by summing some values of the x sequence. The original one is
a doubly uniform based arithmetic description of a linear pixel funetion. It
is easy to see that the second one (constructed by summation) is doubly uni-
form based, too. Namely,

i+ dx—1 da?

Si= 2 [Su+(k—1d]=dxSq+

k=i

s de(i — DA,

and choosing here
dx*

Sy=dxSy + 5

A, and A=dx 4,

the “normal form™ of a doubly uniform based description is arrived at. This
property of some pixel functions is told “summation homogeneity”, and—
as demonstrated just now—the linear pixel functions are homoegeneous in
this sense.

Pixel functions of order q

Let us assume that functions of order (¢g—1) exist and they are “sum-
mation homogeneous™ in the just defined sense. Let the pair of concurrent
sequences
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’ ! ’
x12 X2 e e Xis e e

A, 24, ... j4

}}9 y9 ..

describe such a function of order (¢g—1).

A pixel function is of order q if its derivatives fitting on the field of dif-
ferences in direction x and ordered with respect to x are of order (q—1).

Let us consider the pixel function

: 1
“4.1'05 -43(1 = S-\’l‘f -’4.\“2 = SIYZ? e ‘4.\:[ = Jl(ie v
Ay 24, .. JAy, .

This is sure a pixel function of order ¢, its derivatives

i+-dx—1 { 4 dx—1

I3

dx

Sxi = 2 '4xk = Z Shks
k=i k=1

being of order (g—1) due to the assumed summation homogeneity. The pixel

function of order g itself is summation homogeneous, because its summative

is of power g, too. Namely, if
i+ dx—1

”
xp = 2 Sxk"
=1

then its derivatives
JRdx  i+dx—1

= Stiva— S =2 2 Sw
== f k=1

are of order (g—1) due to the assumed summation homogeneity. Now it has
been demonstrated that if summation homogeneous pixel functions of order
(g—1) exist, then pixel functions of order g exist, too, and they are homoge-
neous in the same sense. This gives us the possibility of constructing pixel
functions of any arbitrary {(of course positive integer) order. Namely, starting
from linear pixel functions the quadratic ones can be constructed, on the basis
of the quadratic pixel functions of order two the cubic pixel functions of order
3 can be built up, and so on until any required order q.

The exponential pixel function

A pixel function is told to be exponential if its derivatives fitting on the
field of differences in direction x ordered with respect to y are linear.
Let us consider the pixel function with the y uniform based arithmetic

description
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This form describes an exponential pixel function if

S, i1 =c¢S,.

xi+

for any i with a constant ¢. (Restrictions concerning the value of ¢ will be
considered later.) As a verification of this statement it will be demonstrated
that the

SE. AF. AF

values in the doubly uniform-based description
S4. 5';_ SH A% L SE=SH (14T
= AT S =24% .. Sh=mA¥
can be chosen such a way that the resulting linear pixel function fits on the
field of differences of class dx (in direction x and ordered with respeet to y) of

the exponential pixel function written in the above specified form,
First, take notice that if S,.; = ¢ S,;, as assumed, then
dx
S\l“d S

Thus, the first pixels of the columns i and (i--dx ) ave in the rows

cde_\.f —1 ]

j=int

S — .
__1] and k = int (
A, )

respectively. Consequently the difference pixel pair in direction x, ordered
with respect to y and being of class dx is

((k —j). j)dw,
where

dx o L dx B
k—~j:int(c Si— 1 1}-—1 t[——”—S\' l}zint[——-————w(c l)Sx,}+ng.
y A4, A,

On the other hand, the first and last pixels of the assumed fitting function of
class dx are in the columns

Séx A;’;" int

S;—1 _1) ‘
A,

| =int : s and
Adx

Sé + A int (Lf - 1]

" = iat

1d
A¥
respectively. The condition of fitting, as demonstrated previously, is

ECEE S
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Using the just deduced formulae for (k—j), I and I;, making the following
choice for the till now undetermined quantities

SE =A% = (" —1) A, and A = Ay,

and taking the less favourable value of b%, the condition of fitting is equiva-
lent with the following pair of inequalities

R {pdx R
int [(cd"' — 1)int (-———-Sx‘ - 1 ” < int (¢ 1)S,; ]
] 4-\!5 ! Ay ]

d'— . . m—
int(%) -+ 1< int [(cd'\' — 1) [ 1 int (—S\;—i))] -+ 1.

1)

}

Obviously, the first condition holds for any (¢™—1) > I. The second
one is equivalent to the inequality

S::i g -’”1).- + fi}, int (

where S,; always can be written in the form S ;= p_4y~{-— g with integer p and
g, the latter satisfying the condition 0 <{ g <{ A4,. Using this substitution

pA, +q<{ A4, + 4,int

pdy+q—1 } )
A, ’
and this inequality holds in any case, because if ¢ = 0, then
pdy=d,+ 4(g—1).
and if 0 << g < A4, then
pA}, +q << ‘4_»- - Ayp.

With this the given form of the exponential pixel functions has been established.

According to the definition of concurrent sequences describing pixel
functions their terms have to be (non-negative) integers. In case of exponential
functions

-1 g
Sxiz ¢ bxl‘f

and therefore S, is integer, if ¢ is integer. But the factor ¢ may have the form

C — 7
{where both e and f are integers) too, in condition that S,, is an integer mul-
tiple of f¢~ for any i meaningful in the case of the function under considera-
tion. Theoretically it is always possible to multiply both S_; and A by f¢ms
and produce an equivalent pair of concurrent sequences describing the same
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pixel function and meeting the divisibility condition for S,;. Whether such
sequences consisting of (possibly) very large integer terms can be practically
useful or not (and if yes, how), will be investigated soon.

Pixel functions and analytic functions

In the previous chapters different types of pixel functions have been defin-
ed. The names, which havei been given to these types of pixel functions, are
used in the traditional mathematical analysis of plane curves, too.The types of
pixel functions and the continuous curves of the traditional analysis are, in
fact, closely related.

Let us consider a finite rectangle of the (x, y) coordinate plane defined
by the inequalities

0<<x<nd, and 0<y<nd

vy

The pixel (i, i,) is the elementary rectangle
(f,—1)d <x<id, and (i,—1)d, <y<id,.

Obviously, a pixel function ean be considered as a counterpart of a con-
tinuous analytic function if it consists of those and onely those pixels whose
corresponding elementary rectangles are “passed through” by the conti-
nuous analytic function. From this viewpoint the values of the analytic func-
tion on the boundaries of the elementary rectangles corresponding to the pixels
are of importance, behaviour of the continuous functions inside the elementary
rectangles can not be expressed by the pixel function.

Let us investigate now the “legitimacy’” of some names given to the dif-
ferent types of pixel functions. The correspondence of the constant pixel
functions and the x = C or ¥ = C analytic functions is trivial. The analytic
counterpart of the linear pixel functions, among others, may have the form
y{(x) = a x 4 b. The difference of the y values on the pixel boundaries x and
(x+dx d ) is

y(x +ded) — y(x) = dy,, = adx d,

and does not depend on x, is a constant. The analytic counterpart of the
quadratic pixel function (i.e. of the pixel function of order 2) is the second
order polynomial ¥ = e x*+b x-}-c (parabola), because

dy,. = (2adxd)x - (adxd; + bdxd,)
is a straight line. Similarily, for y = ¢*

dydx — ex-’,-dxd: - ex — ex(edxd= . 1) =y (edxdz _ 1)

being a linear function of y, the analytic function y = ¢* is a counterpart of
the exponential pixel function.
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The different types of the analytic functions are characterised by the
corresponding differential equations e.g. the quadratic ones by the equation
y' = %x - b, the exponentials by v’ = ¢y, ete. The “pixel counterparts” of
this differential equations are the prescribed properties of pixel derivatives
fitting on the field of differences in one or in the other direction and ordered
with respect to one or to the other variable. From the aspect of analytic re-
presentation these prescribed properties refer to “finite differences™ taken on
the pixel boundaries. The traditional usage of the equations of finite differences
considers the differences taken in distances d, onely, therefore being an appro-
ximation of the differential equation, while the formulation of the pixel deri-
vatives considers the finite differences of all possible classes simultaneously,
therefore is not an approximation but an exact full description of the pixel
counterpart of the required analytic functions (at least for monotonic sections
and inside the finite rectangle under investigation).

The pixel functions as defined in the previous chapters are perfectly
exact in the sense, that they contain all those pixels and onely those pixels
which are passed through by their “theoretical” anmalytic counterparts. If,
say, the exponential pixel function had to be displayed on a raster screen by
computing the e* values on the boundaries of the columns, this, possibly,
wouldn’t be exact, namely for computing the ¢ values some approximative
methods had to be used, the arithmetic unit of the computers (at least in case
of multiplications or floating point arithmetics) worked with a restricted ac-
curacy, etc. Thus, in case of such a traditional approach the appearance of
“illegal” pixels or the absence of needed ones is not absolutely excluded, while
the arithmetic descriptions working with integers and operating with additions
and substractions onely give always the exact result.

Algorithms for plotting pixel functions

Plotting functions given in their basic form

Plotting a function is understood as the process of finding all the pixels
making up the function from the starting pixel to the last one by stepping
from neighbour to neighbour, in order to mark out them on the screen by giv-
ing them a shade or colour different from other pixels not belonging to the
function, and thereby to display the considered function. The way, how the
pixels can be set to a given colour or shade, is different in the case of the dif-
ferent computers and graphic softwares and is irrevelant from the point of
view of the present investigations. Thus, a polotting algorithm is understood
in this paper simply as a process consisting of as many steps as many pixels
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constitute the considered function, the integer variables i, and i, defining in
each step a pixel (7, i, ) of the function and one (and onely one) of them vary-
ing from step to step by -1 corresponding to the way of adjacency of the
consecutive neighbouring pixels. In case of actual computer algorithms the
instructions to set the pixels have to be added.

Let us consider the basic form

(ix0r tyo) PsPo -+« Pjp o - -

of the fuction to be plotted. Remember, that a “neighbourhood bit pair” p;
represents two bit of information (bj1» bj5). where, say, the bit b, expresses
wether the next pixel is adjacent in the direction x or y and the bit b, is the
“sign” defining wether the next pixel lies above (to the right of) or below (to
the left of) the previous one. Thus the basic form of a pixel function is equiva-
lent to the following plotting algorithm:

— “Starting step’ :

Iy =l 1y = Tyor j=1.
— “Going on step™ :
if bj.zz 0, then i, =1 - sgn(pj), j=j+1:
if by=1, then i, =i, sgn(pj), j=j+1.
( Note, if b_‘,-1 = (0, then sgn(pj) = 11,
if by =1, then sgn(p;) = —1.)

The starting step specifies the initial values of the variables used in the
algorithm and is executed once while plotting a function. The going on step is
repeatedly executed as many times as the number of pixels in the function
(not counted the starting one). In this step the values of the variables are mo-
dified in dependence of some conditions. A going on step has essentially two
branches corresponding to the x or y adjacency of the pixel just stepped on.
For describing plotting algoritms the same structure will be used in the further
investigations, too. (The plotting algorithms to be investigated are all very
simple, therefore there is no need to take use of the strict syntaetics of a
specific programming language to avoid misunderstanding. It is to be mention-
ed, however, that the equal sign “="" has two different roles in the descriptions
of plotting algorithms. It is used mainly as the sign of an “assigment state-
ment” meaning that the variable specified on its left hand side takes the value
prescribed on its right haund side. An exceptional case for using this “="" sign
is between the words “if” ... “then” in the conditions defining the x or y
branches, where it means a “relational operator”, but this special meaning is
clear out of the wording.)
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Plotting functions given by arithmetic description
Let us consider a pixel function given by the pair of concurrent series

(ixos iyo) Axos Axle v ij? v

Ay Aypo oo Ay o

The corresponding plotting algorithm is as follows:
— “Starting step’ :

R=4_,— A 1y =1 Iy =15 j=1, E=1.
— “Going on step’:
if R<CO0, then i,=1i.+1, R=R-+4_.. j=j+1:
1

if R>0, then i, =i,

(This plotting algorithm works for monotonic pixel functions onely as the
arithmetic description itself has been defined so far just for such cases.)

In the algorithm presented just now, the variable R, called the main
register, plays an important role. This main register indicates always the dif-
ference of the not yet plotted next terms of the x and y sequences, since in the
starting step itis set so (remember 4 ,—A4 ;= S,;—S,; !) and in the going on
steps (where a pixel is plotted and the corresponding term of either the x or
the y sequence is used up) it is modified by the difference of the next and the
just plotted terms, being

A=8,— S8, and 4, =5,.,—S

(O

Thus, the main register R tells whether the next term in the common order of
the two sequences is out of the x or the y sequence and, consequently, whether
the next pixel of the function is adjacent to the last already plotted one in the
x or in the y direction.

Comparison of plotiing algerithms

In the previous paragraphs two types of plotting algorithms have been
considered. one using the basic description and the other using the arithmetic
description of the function. There is an important difference between this two
types of algorithms regarding the amount of information needed by them.

The “coordinates” of the starting pixel are needed by both types of
plotting algorithms, thus it can be disregarded when comparing the amount
of information. The algorithm relying on the basic description uses a p; “neigh-
bourhood bitpair’ to plot a new pixel of the pixel function, so the amount of
information needed to construct a pixel of the funetion is 2 bit. The algorithm

based on the arithmetic description uses up an 4 ;or an 4, value for construct-
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ing each new pixel of the function. The 4 and A, values are (generally rather
large) integers representing as many bit information as many binary digits are
necessary to describe them. Thus, the amount of information needed if using
the arithmetic description is several times bhigger than in the case of the basic
description. The basic description is practically not redundant, contains—
broadly speaking—as many information as just needed for selecting a given
pixel function out of the manifold of the possible functions and, consequently,
the corresponding algorithm seems to he ‘‘the best possible”. On the other
band, arithmetic deseriptions are rather redundant and plotting algorithms
relying on them seem to be less efficient, using up much more information to
produce the same result.

Really, were all possible pixel functions of the given finite rectangle (i.e.
of the given screen) “equal”, were not some pixel functions (or better, seme
groups of pixel functions with some special properties) more important than
others in describing natural fenomena, the arithmetic descriptions and the
corresponding algorithms had no justification. However, in the previous chapter
on the different kinds of pixel functions the formulation of pixel function pro-
perties important in expressing natural fenomena has been possible just by
taking use of the arithmetic description. In case of such functions with impor-
tant characteristic properties the 4, and A, do not appear as independent
data but exhibit some regularities, and therefore can be constructed out of a
few initial data. In what follows algorithms taking use of these regularities will
be presented. The efficiency of such algorithms is rather high, knowing the
information concerning the type of the function just a few additional initial
data are needed to construct the whole pixel function.

Algorithm for plotiing straight lines

Straight lines—as demonstrated earlier—are described by concurrent
series of doubly uniform base

(i o) Aror Ao v o Ay e v
Ay A, A

o
Considering this special type of arithmetic description the plotting algorithm
of straight lines follows directly from the general case:

— “Starting step”:

R=A,— A, i, =1,1,=1i,.

— “Going on step”:
if R<O0, then ixziir—}-l, R=R+4+ 4
if R>0, then i, =1,+1, R=R—4,.
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Thus, five numerical data are needed to define a straight line: 4 , (or, better
the difference 4,,—4,), 4., A, and the coordinates of the starting pixel
(102 1yo)- The algorlthm for plottmcr straight lines may be written in an alter-
native form concentrating data handling in the starting step:

— “Starting step” :
R=24_, __v, R.,=A4_ R'vl =A, 1, =lg Ii,=Ily:

~ “Going on step”:
if RO, then i,=1i,+1, R=R+ R;
if R >0, then i}, =i, 1, R=R—R,

It should be noted that algorithms of this kind (deduced from different
theoretical bases) are well-known and widely used in the practice.

Algorithm for plotting quadratic pixel funciion

It has been demonstrated that a pixel function of order q is deseribed by
a pair of concurrent series with a uniform base with respect to x if the terms of
the x series are identical with the terms of an x sequence out of a pair of concuz-
rent sequences with the same uniform base describing a function of order
(q—1). Therefore, the pair of concurrent series

(ix()’/ i,\no) *’4_\:07 Axl’ L ‘4xj‘

Ay A, o A, L
describes a pixel function of order 2 if the terms 4., ... A_. ... are equal
to the terms
St = Ak St = Ay + Ay o0 Sy = Ay + EA ..

of an x sequence corresponding to the doubly uniform base series deseription

(ixor o) Abp As + <+ Apy -+
A, A, ... A4

g o

of a linear pixel function. Thus, a quadratic pixel function has a pair of concur-
rent series in the form
1= AL + kA,

(ixgr 30) Ayos At = Ak Ao = Aiy + A, ... 4 A, ...
A, 4 A, ... 4

pi by y*

xh+

yreee
and hence the plotting algorithm for quadratic pixel functions is the following:
— “Starting step”

R:Ax .4)7R1—'4x0, \n:A Rl_Ay’z’_"le?i'yzyO'
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— “Going on step™:
if R<0, then i, =i, -+ 1, R=R+ R;, R,y,=R,; + R
if R >0, then i,=1,+1, R=R—R,.

ht

Algorithm for plotting pixel functions of order g

An obvious generalisation of the plotting algorithm of the quadratic
pixel functions leads to the following algorithm for plotting the general pixel
functions of order q:

— “Starting step” :

R=dgy— A, Ry=Aly Ry=Aly, ... R, =A%,

4lg—1] . . L
qu = A5, Rj,l = AL T =, = e
— “Going on step™ :
IfR<O0 theni, =i -1, R=R+R,,R,=R,+ R, ...
qu~1 = R,\‘q—l + qu;

if R >0, then i, =i,+ 1, R=R—R,,.
In accordance with the recursive definition of the pixel function of order g
(not considering the starting pixel), the following initial data appear in this
algorithm:

fg—1
“4_\'07 £ .:(07 -4;09 e —1{:]) ]o

Le., the first terms of the x series of pixel functions of order [g—1], [¢—2],
cvvs 2, 1, resp.,
Al

the general & term of the linear pixel function, and the common uniform base

A,.

3
However, for the practical application of this algorithm it is not always im-
portant to remember the recursive definition of the pixel function of order g,
and to define the initial values of the registers corresponding to this definition;
simply all registers need initial values, and if they have got, the algorithm

works.

Algorithm for plotiing exponential pixel funcrions

For the exponential pixel function an arithmetic description of uniform
base with respect to ¥ has been constructed with

S_‘(i':’l = S:;i
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for every i with the same constant ¢. Considering that

‘4:(1' = Sxi+1 - sz' = (C - 1)8*17"4 == (c‘l - C)S.\'i? i.e. Axi-}—l = 6‘4:\'1"

xi+1

the following “going on step” can he constructed

— “Going on step™:
if R<{0,theni,=1i,+~1, R=R-4- R, R;=c¢R,:
if R >0, then i, =1, + 1, R=R—Ry.

So far, the plotting algorithms contained additions onely. Therefore it is,
expedient to replace the multiplication ¢ R, appearing in the plotting algo-
rithm of the exponential function by additions,too. Assuming that all (initial
and subsequent) values of the register R are integer multiples of R, = 4,.
and assuming further that R, = (¢—1) A, is an integer (as we have seen,
¢ may be a fraction), a ploiting algorithm for the exponential pixel fuction
can be constructed in the following form:

— ““Starting step™’:

R=0.R,=Ad4,R, =4, Ro=(—14,.1 =igni =i,
— “Going on step”:

ifR<0,theni, =1 .+ 1, R= R+ R;

if R >0, then i, =1, + 1. R=R — Ryp R,=R,+ R,

The structure of this plotting algorithm has much in common with pro-
cedures presented earlier for the linear, quadratic and general pelynomial
pixel functions: it realizes the plotting of the exponential pixel function by
using register additions onely. However, there is a characteristic difference:
while in case of polynomials all registers with subscript x have to be modified
in the x branch of the going on step, in case of he exponential function the
register R, is modified in the y branch, i.e. the handling of the registers with
subscripts x and y is not strictly seperated any more. In our method of discuss-
ing functions this expresses the essential difference between “polynomials™
and “transcendent’ functions.

Finally some practical remarks on plotting exponential pixel functions.
Remember that the last version of the plotting algorithm has been based on
assumptions concerning the divisibility of the R register values by R,
R,; by the denominator of ¢ (if ¢ is a fraction). Obviously, these stipulations
always can be met using common multiples, but for that somtimes rather big
(long) integers are needed. If (e.g. in order to avoid a slowing down of the al-
gorithm) the integers are not used in their full length required by the divisibility
assurnptions, the algorithm will be of an approximative character. There is the

1+ and

possibility of using a pair of such “fast” approximative algorithms paralel,
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one of them giving a lower the other one an upper bound of the function to be
plotted and as far as the two approximations coincide, the result is exact.
Sometimes such a pair of approximative algorithms works faster than a single
exact algorithm using long integers.

Systematization of pixel functions. The function number

In the foregoing chapters—somewhat as examples—plotting algorithms
have been given for polynomial and exponential pixel functions. The structure
of this algorithms lends itself to classification of the different types of pixel
functions. The “starting step”” of the algorithms is irrevelant from this point
of view; in this step the i, and i, “coordinates’, the main register R, and all
the x and y registers used in the algorithm just get their initial values. The
type of the function is defined by the structure of the “going on” step, which
is always divided into two branches depending on the conditions whether
R <0 or R >0, resp., the first one being the x branch, the other one the y
branch. In the x branch i, in the y branch i, is increased by one. These opera-
tions are common for any tvpe of (monotonic) pixel functions. Beside these
coordinate modifications the values of some registers may be modified too by
adding the content of an other register to the existing value. The type of the
pixel function is defined just by these register modifications: which register
is modified, by which other register and in which branch. A substantial and
unambiguous definition of the different types of pixel functions is possible by a
concise description of the register modifications in the two branches of their
plotting algorithms.

In this concise description the two branches will be separated by a colon
“:7, preceded by the list of register modifications in the x branch, and fol-
lowed by the list of register modifications in the y branch. (The explicite indi-
cation of the coordinate modifications is not needed, they are common in
every plotting algorithm.) The register modifications themselves can be expres-
sed in an unambiguous, equivalent shorter form, too. If the main register is
understood with the subscript zero, the letter symbol R may be omitted using
the subscripts onely. Remember that in general the subscript of a register
contains one of the letters x or y and a positive integer number. Agreeing that
the subscript integer is taken with positive sign if the subscript letter is the
same as the letter symbol of the branch in which it appears, and with a nega-
tive sign in the opposite case, the explicite indication of the subscript letter
my be omitted, too. In the assignment statements of register modifications the
register to be modified appears on the left hand side of the equation sign ““=="",
but it appears once more on the right hand side too, indicating that the modi-
pcation has to be added to (or substracted from) the existing value. In a
concise description of the register modifications this repeated writing can be
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avoided by agreeing that the symbol | j is equivalent to the assignment state-
ment R,; = R,; + R,; (if it precedes the : ) or to R; = R; = R, (if it follows
the : ). (Remember that in the assignment statements of the plotting algorithm
the modification is always an addition. only in R = R — R, appears a sub-
traction!) Using the introduced conventions, the plotting algorithms of some
tvpes of pixel functions have the following coneise form

0f1:0!1 (straight line}),
112.0/1:01]1 (parabola),
{g—1)1gq...1[2,0!1:0]1 (polynomial of order ¢q).
0:1:0,1,—1 2 (exponential).

In case of many important functions, series of assignment statements can be
found where the subscript of the modifier register is in each statement by one
greaier than that of the register to be modified and the modifier of the first
assignment statement is modified by the next statement of the series, and so on.
Such series of assignment statements appear e.g. in the plotting algorithms
of polynomials. For these type of series of assignment statements a concise
notation can be introduced by naming the lowest subseript to be modified, and
indicating the number of assignment statements belonging to the series as a

ie

superscript, as an “‘exponent’. Thus, e.g. the concise writing of the plotting

algorithm of a polynomial of order ¢ is
07 : 0%,

Note that if the superseript is 1, this notation is equivalent to a single
assignment statement. Let us agree that, as in the case of “normal’ exponents,
the explicite writing out of the superseript 1 may be omitted.

By introducing the “power type  notationwith “bases™ and “exponents™,
the naming of registers has been somewhat automatized: onely the lowest
subscript is mentioned explicitly as the “base™. For avoiding ambiguities, some
striet rules for giving subscripts to registers have to be established. Let consi-
der the assignment statements always starting from the colon, i.e. on the right-
bhand side in the “normal way’’ (from left to right), but on the left-hand side
of the colon in the opposite way (from left to right). Each register gets its letter
subscript corresponding to the branch in which it appears first as a modifier,
and gets as serial number subscript the next free integer, not used vet with the
specified letter subscript (corresponding to the just established order of the
assignment statements). Every modifier register involved by a “power type”
notation is considered as a new register. being not identical with any previously
specified one. (If it happens that this is not the case, the conecise “power type”
notation must not be used, and the corresponding assignment statement has to
be written out explicitly.) Finally one can observe that the assignment state-
ment 0 | 1 or 0! appears in both branches of any plotting algorithm, and there-

3
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fore it must be always included even if it is not writen out explicitly. All these
rules define a very concise, informative, and in the same time strietly unam-
biguous notation of pixel functions (through their plotting algorithms) which
will be called “function number™.

Seme importani function numbers

The function numbers of function types discussed in detail in the

01: 01 or 0:0 (linear),
0%: 0 (quadratic or parabola with a verti-
cal axis),
07:0 (polynomisl of order gq),
01:0%, —11 or 0:-—1 (exponential).

The function numbers of inverse functions can be obtained by interchanging
the two branches in the plotting algorithm, i.e. by interchanging the two sides
of the colon in the function numbers:

0:0? (square root or parabola with a
horizontal axis),
—1:0 (logarithmic),

Concerning the above mentioned pixel functions their definition has been given
in the foregoing chapters, the equivalence of the plotting algorithm and the
given definition has been demonstrated, the mutual relation of the analytic
and pixel functions has been studied, thus the legitimacy of the function num-
bers has been somewhat established. Now some more interesting function
numbers will be listed without proof:

0%: 0% circle, ellipse, parabola, hyperbola
with principal axes parallel to the
coordinate directions,

—1, 02:0% —1 conic sections, as above, but with
arbitrary (skew) axes, plus spirals,
etc.,

—2,01:02 or —2:02 the basic trigonometric and hyper-

bolic functions (sin, cos, sh, ch).

A pixel function is defined by its function number and by the initial
values of all registers involved in it (including i and i). Note that there are
registers which appear as modifiers onely. If the initial value of such a register
is set to 0, the assignment statements involving this regigster may be omitted.
i.e. the function number may be reduced to a simpler form. For example if
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R,,=0in a pixel function with function number 02: 02, then it reduces
to the 02 : 01 parabola.

A function number comprises a more or less wide range of pixel functions,
depending—roughly speaking—on the number of the involved registers.
For example the function number —22, —12%, 0%:03, —12, —2% comprizes
all pixel functions mentioned in this paper plus the pixel equivalents of
many “‘special functions” having important applications in natural sciences
and technelogy.

|

Pessibilities of generalisation and other complementary remarks
Non-monotonic functions

In this section some remarks will be presented concerning the possible
generalizations, the indispensable further investigations and the expectable
fields of practical application. Many aspects will be just hinted at without
detailed investigation and justification, leaving these to future papers.

The most restrictive assumption used till now has been, no boubt, that
of the monotonic character of the considered pixel functions. For instance, the
algorithms implied by the function numbers of the quadratic or of the sine
pixel functions (at least in the form as they have been presented in the forego-
ing chapters) are able to plot with full certainity the monotonic sections of
these functions onely. The possibilities of releasing this restriction will be
studied on the case of the quadratic pixel function as the simplest characteristic
example.

The quadratic pixel function consists of two monotonic parts, one of
them heing an increasing, the other one a decreasing one. These two paris are
joined by the extremum point of the function (being a minimum or a maxi-
mum depending on the sequential order of the increasing and decreasinging
parts). The plotting algorithm has been constructed dirvectly for the increasing
part of the function, but—in a slightly modified form—it can deseribe the
decreasing part, too, namely in the ¥ steps the i, coordinate instead of being
increased has to be decreased by one. Thus both for the increasing part and for
the decreasing part there is a plotting algorithm available. At least formally,
it is easy to combine these two separate algorithms into a single one. There is
no change in the starting step of such a common plotting algorithm. while
the combined “going on step” will be as follows:

“Going on step”:
if R0, theni, =i + sgn(R,), R=R -+ R, |,
R = R, + sgn(Ry;). Ry

L)

if R >0,theni,=1t,+ sgn(R,;), R=R— [ Ry,]|.
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In this combined algorithm the two monotonic parts of the function are cha-
racterized by the sign of the R, register: a positive value in the R, means
that the function increases, a negative one that it decreases. It is interesting
to note that the main register is modified always by the absolute value of the
registers R ; or R,; corresponding to the fact that the terms in any pair of
concurrent series describing a pixel function are always positive.

The above form of the algorithm is somewhat more general, than needed
to describe the two monotonic parts of the quadratic pixel function, namely
it allows for a change in sign not onely in case of the register R, but also in
case of the register R,;. This means that the parabola can be plotted not onelv
from left to right but, bv giving a negative value to R_,. from right to left, too.
In case of parabolas this is not really important, but for continuous drawing
of closed curves (e.g. circles) such a reverse plotting is inevitable on some parts
the curve. In general, the sign of the main register R specifies whether an
x or a v step is needed to plot the next pixel of the function, while the sign of
sB_and R ; choses between the up—down or right—left neighbours.

No doubt, the combined algorithm can plot two meonotonic parts, one

after the other. It has been strictly demonstrated that both of these parts are
parabolic. However, it can be asked (1) whether these two parts do belong to
the same parabola or not, and (if they do) (2) whether the two plotted parts
do contain all the pixels of the whole parabola (including its extremal point, too)
or not? The answer to the first question is yes, but concerning the second
question there is no definite positive answer. The combined algorithm plots
two monotonic parts (with adjoining pixels) of the same theoretical parabola,
but it may happen in some ill-conditioned situations that the pixel containing
the theoretical extremum is missing (even together with some of its neighbours
in the same column). The probability of such ill-conditioned situations and the
practical significance of the accidentally missing pixels can always be dimi-
nished by using a finer mash in the proximity of the extrema i.c. for low abso-
lute values of the register R;.

Pixel curves in the three-dimensional space

The pixel functions investigated in the foregoing chapters are the pixel
counterparts of the analytic plane curves. The concept of the pixel funections
can be generalized for the three-dimensional space, too and one can define the
pixel counterparts of the 3D curves and 3D surfaces as well. For doing that,
fivst of all the finite plane rectangle with its finite subdivisions has to be gene-
ralized into a finite hexahedron divided by three appropriate sets of planes into
elementary hexahedra. Such an elementary hexahedron is a “3D pixel”. A 3D
pixel has—in general—six neighbours, and can be characterized by a triplet
of integer numbers (7, i),, 7,). Using this form, its six neighbours are
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A pixel eurve in the three-dimensional space is a strict analogue of the
plane pixel functions: one has to choose a 3D starting pixel and to procede
by stepping from neighbour to neighbour. The arithmetic description of the
monotonic pixel functionsis valid, too, onely one has to use (instead of a pair)
a triplet of concurrent sequences or series. The three sequences correspond to
the three coordinate directiouns, and one has to chose the neighbouring pixels
in the v, y or z direction as the x, v or » terms follow each other in the common
order of the three sequence. This very straightforward method of generalisa-
tion indicates that the concept of pixel function can be easily extended not
just for the 3D case but for an arbitrary n-dimensional space, too.

The arithmetic description of monotonic pixel funections by means of
monotonic concurrent sequences and series can be interpreted in many dif-
ferent forms. A possible interpretation, expedient from the point of view of
further generalizations, is the following. Let us consider a starting pixel
(1.0 i}.g, i.o). and a general pixel in the form

(T Tty = (i 1, T, — J» Iy + k), with z, 7, & > 0.
In the x, y and 5 sequences the correspondig terms are

S,.:q S s S:k’

xi? Myj
and these, together with their predecessors define three interwalls of natural
pumbers

S, < N<S,, < N<S,,8,,<N<S,.

“‘/-—1— == Mz

Let us associate with the pixel (i, iy, i) = (T, 0+ %, iyt Jo I+ )
the just described three corresponding intervals. The pixel belongs to the 3D
pixel curve if all three associated intervals have common parts, i.e. if the
three associated intervals are mutually overlapping intervals. This definition
is, obviously. nothing else than an alternative formulation of the arithmetic
description rule. (Note that the aim of this presentation is just to outline some
possibilities of generalization and many details need a more exact formulation:
e.g. what is the predecessor of the first term of a sequence? how to avoid am-
biguity if two terms of different sequences happen to be equal? etc. To give
exact answers to all these questions is out of the scope of the present paper.)

The definition of pixel curves by three associated overlapping intervals
has been introduced in the previous paragraph as an alternative interpretation
of the generalised arithmetic deseription. On the other hand, it can be considered
as an independent method of deseribing pixel curves, too. In this case simply
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three intervals of natural numbers are associated to each pixel of the finite
hexahedron, and those pixels constitute a 3D pixel function for which the
three associated intervals mutually overlap. Whether these “generalised”
pixel functions are really pixel curves in the sense of the “step from neighbour
to neighbour™ definition or not, depends on the rule by means of which the
intervals are associated to the individual pixels. To any 3D pixel curve there
are several different sets of association rules describing it, as there are several
equivalent arithmetic descriptions, too. In case of any set of association rules
describing a real 3D pixel curve a corresponding arithmetic description car
be found.

Pixel surfaces

The method of associated overlapping intervals can be used readily to
describe 3D pixel surfaces, too. In this case two intervals of natural numbers
are assigned to each 3D pixel, and the pixel surface is the set of those pixcl:
for which the two associated intervals overlap. In general, a subspace of di-
mension m of an euclidean space of dimension n can be specified by assigning
{n 4 1—m) intervals to each n-dimensional pixel and by finding those pixels
for which all (n—m--1) intervals have common parts, i.e. all possible pairs of
the (n—m—1) intervals are overlapping.

The method of associated overlapping intervals lends itself for solving
different problems of surface geometry. Let us consider. for example, two sur-
faces, each having two sets of associated intervals. If one of the sets of asso-
ciated intervals of the first surface is identical with one of the sets of associated
intervals of the second surface then there are out of the four original sets of
associated intervals onely three which are really different, and these three
different sets of associated intervals define (under certain conditions) a 3D
curve, being, obviously. the line of intersection of the two surfaces. But there
are always a great many equivalent sets of associated intervals for any surface,
and it is always possible to find for any two surface associated overlapping
interval descriptions with identical pairs of interval sets. Thus the intersection
problem of surfaces is essentially solved. For taking practical use of this
theoretical possibility the transformation rules between equivalent descriptions
have to he established and thereby the forming of descriptions with identical
pairs of interval sets facilitated.

The association rules of the overlapping intervals are, in case of practi-
cally important surfaces, very similar to the ““plotting algorithms™ of plane
pixel curves. as expressed by the function numbers. This means with other
words that the function numbers themselves can be generalized for describing
3D surfaces and curves. and the rules of identical transformations can he for-
mulated for these generalised function numbers. Under such circumstances,




PIXEL FUNCTIONS IN COMPUTLER GRAPHICS 39

the construection of descriptions with identical pairs of associated intervals and
therefore the solution of the intersection problem of surfaces is a matter of
“function number arithmetic”. Many other problems of surface geometry,
such as finding curves drawn on a given surface, constructing 2D projections
of 3D surfaces (including the determination of contours), etc. can be treated
in a similar wav.

The generalized multiplication-division

The plotting algorithms (in the form as they have been preseated in the
foregoing chapters) are able to find all pixels of a pixel function, but onely one
after the other, stepping from neighbour to neighbour. If we ask (e.g. in 2D)
what is the i, coordinate of a pixel belonging to a given function and lying
in the column i, (if there is any), all intermediate pixels between the starting
pixel and the column 7, have to he generated. To avoid this a more general form
of the algorithm is needed.

Let us comsider first a linear pixel funetion given by its starting pixel
(1.0 iyo) 2nd by its doubly uniform arithmetic description. While proceeding
from the starting pixel to the column i, the plotting algorithm adds the 4.
value (i, — i,,) — times to the initial value of the main register, in between
always substracts the value A, as soon as possible and counts how many times
can the substraction be fulfilled. The number of the possible substractions plus
1,0 gives the required i, coordinate. Working in a binary (or in any other
I;ositional) notation, the repeated addition can be replaced by multiplication
and the repeated substraction by (integer) division:

i, = 1\0 + [R -:_ (i:\' — Z-':(0) "1:\:] - ‘4‘_\.'7

v e,
Le. the i, value belonging to a given 7 can be computed by means of a multipli-
cation and a subsequent division (at least in the case of linear pixel functions).
No doubt, this pair of a multiplication and a division operation takes
much less computer time on the usual arithmetic devices than the repeated
addition and substraction process prescribed by the original plotting algo-
rithm. For example a binary multiplication is a set of at most as many
additions as many digits are in the binary form of the multiplier (7,—1i.).

The possible terms of additions are

T, = 2" A (b = kmew Fmax. — 1. ... 2. 1),

and such a term really appears in the addition if the k™ digit (counted from
the right) in the binary form of the multiplier is I, and does not appear if the
corresponding digit of the multiplier is 0. A similarily well-known analogous
algorithm is available for the binary division. working with the

D, = 2’-1.,1_\,(1 = Lnaxs Imax. — 1o - .. 2, 1)
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subtrahends, and setting the corresponding I" digit of the quotient to I, if
the substraction can take place (with a positive remainder), and to 0, if not.

This method of computing an i, value corresponding to a given i, is valid
in the given form onely in the case of linear pixel functions. However, it can
be generalised for other types of pixel functions preserving its basic structure,
onely the construction rules of the T, additive terms and D, substrahends have
to be modified (the simple “doubling” and “halving” does not work in the ge-
neral case). Such a pair of a “multiplication™ and a “division” operation but
with generalized rules for the T, additive terms and D, substrahends is called
a generalized multiplication-division.

The plotting algorithms are needed if we want to represent a real figure
on a graphic device, and for this purpose they are really efficient. But for
constructing a curve or surface corresponding to some prescribed conditions
or for solving some other problems of computational geometry such computa-
tions are needed for which the plotting algorithms in their original form are
less efficient, and one has to have recourse to generalized multiplications-di-
visions. From a plotting algorithm (or. with other words, from a function num-
ber) the corresponding generalized multiplication-division rules can be deduced
unambiguously.

Some theoretical problems

The aim of this paper is a brief presentation of some ideas, possibly useful
in pixel graphies and computational geometry. Thus, many problems had to
be left open not onely in this last complementary chapter over some possible
generalizations, but in the course of the more detailed investigations, too. Now
we want to mention some of these open problems explicitly.

The different types of 2D pixel functions have been defined by means
of specific stipulations applied on their derivatives (e.g. a parabola is a pixel
function whose derivatives are linear). However, it has not been demonstrated
whether these stipulations are really sufficient, free of contradictions, etc. Of
eourse, for the few pixel function types which have been studied in detail, the
fact that they could have been constructed on the basis of the given stipulations
shows that these stipulations are sensible, but a more general and profound
investigation is desirable.

In case of linear pixel functions it has heen demonstrated that by means
of the corresponding doubly uniform arithmetic description any linear pixel
function possible on the given screen can be described and an upper limit has
been found for the maximum values of integers needed in such an arithmetic
deseription. For the other tvpes of pixel functions it has been demonstrated
onely that the corresponding arithmetic descriptions really produce a pixel
function of the given type; the problem whether any arbitrary pixel function
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of the given type possible on the given screen size can be constructed this way
and if yes how long integers are needed to do this, has been left open, although
this problem is very important both from theoretical and from practical
point of view.

Practical applications

To conclude this paper some possibilities of practical applications should
be mentioned, starting with the immediate (partly already realized) applica-
tions and proceeding towards the prospective (and more general) ones.

— Even the simplest PCs have some curve-drawing facilities. The drawing
algorithms presented in this paper can be realized in the machine language
of many microprocessors in general use with a high efficiency. In the same
time they are versatile enough to cover a wide variety of curves appearing
in different branches of plane geometry. These properties turn out to be
rather advantageous even in many simple hobby and educational applica-
tions.

— The 2D representation of 3D objects may be facilitated using the function
number type deseription of 3D curves and curved surfaces. Efficient 3D
systems can be realized on this basis for relatively low cost computers.

— The theoretical ideas of this paper can be utilized on the field of free formed
curves and surfaces, too, both for efficient realization of the well-known
methods and for inducing new approaches to this important problem.

— It seems to be likely that some methods for describing 3D curves may be
useful in the roboties, too. There is no difficulty of introducing the time
variable as a fourth coordinate and the description methods of the 3D
curves could be readily generalised for deseribing the motions of a point
in the 3D space as a “4D curve” in the 41 space-time.

— If some ideas of this paper seem to be useful as a theoretical basis of effi-
cient softwares on the different fields of application just mentioned, they
can be even more efficient in form of hardware realizations. The possibilities
in this respect are rather diverse. A hardware realization can be based on
the plotting algorithms or it can follow more directly the properties of the
finite rectangle with finite subdivision and the definition of the pixel func-
tion derivatives. Both possibilities point towards modern and promising
parallel processor architectures, the second one being, no doubt, the more
radical one.

— Some theoretical ideas of this paper may have eventual a more general
Interpretation, even outside the scope of the computational geometry. If
we ask e.g. whether two different pixels do define a straight line or not, the
answer is that they define a well circumscribed manifold of straight lines,
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not a single one. Even this very elementary example demonstrates that the
problems of the traditional analytic geometry in this approach exhibit such
properties which are in the mathematical analysis normally hidden, but
in the applications (in the natural sciences and technology) may be mean-
ingful. These properties are studied traditionally in the “arithmetics of
intervals” but with the methods presented in this paper this study, hope-
fully, can be facilitated and promoted, possibly conducing to theoretical
and practical results.
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