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Ahsiract

The aim of the paper is to derive the equations expressing the static equilibrium of
membrane shells without introducing the bending theory. The first part gives a comprehensive
introduction to the notions of tensor analysis which are needed in the forthcoming mechanical
applications and contains a brief sketeh of the background in classical differential geometry,
The derived formulas are illustrated on some simple examples in the last chapter.

Introgduetion

The stresses in membrane shells are usually determined by applying
Pucher’s differential equation, which enables us to calculate the projections
of the stress components onto an external coordinate system. In this paper a
general equation is presented, by means of which the stress components can
be expressed in an arbitrary surface coordinate system. This equilibrium
equation is usually introduced as a special case of the bending theory., The
aim of this paper is to derive the equation directly, applying as simple tools as
possible, The geometry of the curved, two-dimensional surfaces, as the mathe-
matical background of the equilibrium equation, is discussed. The paper is in-
tended to be a comprehensive introduction for graduate students in civil en-
gineering and architecture.

Pucher’s differential equation excellently demonstrates the fact, that
the application of coordinate systems is of advantage when describing physical
phenomena mathematically. This fact is generally accepted, but we must not
forget, that the physical phenomena are totally independent of our coordinate
systems. The representation of physical phenomena in coordinate systems may
be regarded therefore as a disturbing type of description.

It is self-evident, that if a natural law holds, its representation holds in
an arbitrary coordinate system, as well. There are a couple of rules, which
permit us to transform the representation of a natural law from a coordinate
system into another one. If the coordinates of a phenomenon observed in
several coordinate systems are transforming under these rules, the phenomenon
is said to be coordinate-invariant or simply invariant.
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To eliminate the mentioned disturbing effect of the coordinate systems,
basically two ways are possible:

— The “direct” description, which doesn’t use any coordinate systems. The
technical application of this type of equations may be sometimes cum-
bersome.

— The formulation of general equations. where the form of the coordinate
system itself is ““blank”. During technical applications any type of coordi-
nate system may be “substituted’ into the equation.

In the section 1.1 we will introduce the basic notions by the “direct”
way for the sake of comparison. Further on the second way will be followed and
the equivalence of the two different descriptions will be indicated at appropriate
places.
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1. Mathematical preliminaries

L.1. Invariant quantities — tensors

1.1.1. Scalars

Physical phenomena are quantitatively described by numbers. In the
simplest case a single numerical data identifies the observed variable. This
type of physical variables are called scalars. For example: volume, mass,
temperature.

If each point of the physical space is associated with a number, we arrive
at a scalar field. For example if we measure the temperature at each point of a
room, this data is represented by a scalar field. Two-dimensional scalar fields
can be visualized as (generally curved) surfaces in the three-dimensional space.

Scalars can be interpreted as homogeneous, linear scalar-scalar functions.
A function is called homogeneous and linear if the following equations hold:

fla) + f(b) = fla + b) (1)
f(a) = if(a) (2)
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The scalar s defines for example the homogeneous linear scalar-scalar
function h(x) = sx. For the sake of generality, scalars interpreted as homo-
geneous linear functions will be called Oth order tensors. The meaning of this
will (hopefully) become evident in the following sections,

1.1.2, Vectors

Physical quantities identified by a number and a direction are called
vectors. For example: velocity, acceleration, force. Vectors may be visualized
as directed intervals. The n-dimensional vector space is the set of all n-dimen-
sional vectors, where vectors can be added with each other in the usual way
and can be multiplied by scalars. The three-dimensional Euclidean space is for
example the vector space of the above-mentioned directed intervals. Two vee-
tors are called equivalent in the vector space, if they have the same direction
and magnitude.

If each point of the physical space is associated with a vector, we arrive
at a vector field (not to be confused with the vector space). For example if we
measure the magnitude and direction of velocity of the particles on the sur-
face of a streaming liquid, this set of data is represented by a two-dimensional
vector field. As an other example we can measure the principal stresses at each
point of a three-dimensional elastic continuum to arrive at three different three-
dimensional vector fields.

Vectors can be interpreted as homogeneous linear scalar-vector or vector-
scalar functions. Vector v defines for example the scalar-vector function
(= vector-valued function with independent scalar variable) g(x) = vx or the
scalar-vector function (= scalar-valued function with independent wvector
variable) k(x) = vx. Vectors interpreted as homogeneous linear functions will
be called Ist order tensors.

1.1.3. Second order tensors

Certain physical quantities can be described neither by scalars nor by
vectors, Thisisthe point, where second order tensors are introduced. Second order
tensors are homogeneous linear vector-vector functions (= vector-valued func-
tions with independent vector variable). If each point of the physical space is
associated with a second order tensor, we arrive at a tensor field. A 2nd order
tensor field expresses the homogeneous linear connection between two vector
fields. Second order tensors can hardly be directly visualised. We can form some
image, however, by observing, that the application of a tensor to the unit sphere
(formed by unit vectors of the three-dimensional Euclidean space) distortes
the sphere into a general ellipsoid. During this transformation the unit vectors
are rotated and their length changes, as well.
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Two basic numbers are associated with a tensor: the order and the di-
mension. The order of the tensor fixes the number of vectors between which
the tensor defines a functional relation. The dimension of the tensor fixes the
dimension of the space where the above-mentioned vectors are interpreted.

To mention some examples for second order tensors:

The rotation tensor describes the rotation of a rigid body by defining a
functional relation between the vectors associated with the points of the origi-
nal and the rotated body.

The planar state of stress is described by the stress tensor defining a func-
tional relation between a direction vector and the stress vector in that diree-
tion.

1.2, Representation in coordinate sysiems

The n-dimensional base is a system of n linearly independent vectors.
We will use mainly 2-and 3-dimensional bases. If a tensor is given with respect
to a base, we speak about representation in a coordinate system,

1.2.1. Orthogonal systems

In the simplest case the vectors of our base ave mutually perpendicular
unit vectors, this is called an orthogonal coordinate system. The base consisting
of the vectors e, €y, and ey will be denoted by K. The orthogonality of this
base can be expressed by using the sealar (dot) product:

emen) = €(2)€(2) = €3z = 1 (3)
and
2wl = e@em = eqem = 0 (4)
The above equations can be expressed more concisely by
1ifi=k
€0y = {0 ek (5)

(In the forthcoming formulas the latin indices 7, j, k. etc. are assumed to be
equal to 1, 2 or 3.)
The symbeol
e = O (6)
is commonly used and called the Kronecker-delta. According to (5) and (6) the
Kronecker-delta is defined by

5 — 1ifi=F
10 if 12k
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1.2.1.1. Vectors

Since the vectors of the base K are linearly independent, an arbitrary
vector can be expressed with respect to this base as

V = U1y - U2€(n) - V3€(3) (8)

The set of numbers v; = (v, v,, v,) is called the coordinates of the vector v in

the system K. We arrive at the geometrical interpretation of the coordinates

if eq. (8) is multiplied by the vectors egy. (“Multiplication” will mean, that we
form the dot product with each member in the equation)

Ve = U 9)

The above formula eontains three equations, depending on, which base vector
was eq. (8) multiplied with. Equation (9) demonstrates, that the coordinates v,
are the orthogonal projections of the vector onto the coordinate axes.

In calculations the vector v is often substituted by the coordinates v,
which doesn’t mean, that the two things are identical. If we change the coor-
dinate system, the coordinates change, but the vector doesn’t. We introduce
the notation

v, = K(¥v) (10)

expressing, that v; is the image of v in the system K.,

1.2.1.2. Second order tensors

A second order temsor is uniquely given if we know the transformed
version of an arbitrary vector v. It seems to be logical to deal with the transfor-
mations of the base vectors first, since if

Tey = fo 11
and
u = Z u»l‘ e(l) (12)
holds, than obviously
Tu=v (13)
where
v=3ufy (14)
Multiplying (14) by e(,, we arrive at

Ve = 2 ufeq, (15)

H
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The left hand side can be expressed by using (9):

vey = v; (16)
Introducing the notation

ewfay = i (17
we arrive at

v = ; by uy, (18)

Forming a table with the values ¢;, in the following way is called the matrix
of the tensor T in the system K, more concisely K(T):

L2 f13‘\|
=l T iza)
I3y I3y I3

(19)

The determinant of the above matrix is called the determinant of the tensor
T in the system K and is denoted by
det 2, == 1 (20)

We will calculate as an illustrative example the elements of the matrix of the
planar rotation tensor F in the K system. The vector transformation can he
written as:
a’=Fa (21)
With coordinates:
2

al = %: fiss (22)
(In the forthcoming formulas the greek indices will be equal to 1 or 2.) Simi-
larly to (17):

Jip = e € (23)
Figure 1 demonstrates, that by rotating the base vectors of the planar system

K we arrive at the vectors

() = €(;) COS P - €y sin @
(24)

e(z) = e() (—sing) + €(s) COS @

According to this the representation of the tensor F in the system K is given by

(25)

f.p = K(F) :( cos @ Sin(p)

—sing cosg

Using (25) an arbitrary vector can be transformed in K.
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Fig. 1. The tensor of planar rotation

1.2.2. Skew systems

1.2.2.1. Vectors

The vector v can be expressed not only in the system K, but in an arbitra-
ry system A determined by the base vectors a;y on the condition, that the
hase vectors are linearly independent:

agy(ag X ag) = V=10 (26)

V denotes the volume of the parallelepyds spanned by the three vectors. The
vector v can be expressed as

v= 3 vag (27)

i

Similarly to (10) v; = A(¥). In the skew system A the scalar product of the
vector v and the base vectors isn’t equal to the vector coordinates, since the
scalar product of two different base vectors isn’t zero. We will introduce there-
fore the reciprocal base &, by

Ay = Oy, (28)
Multiplying eq. (27) by &, yields
Vagy = v (29)

which indicates, that the coordinates of v in the system A are equal to the
orthogonal projections to the reciprocal base in the proper scale. This is illustra-
ted in the plane by Fig. 2.

Since the base vectors of the reciprocal system are linearly independent,
v can be expressed as

v= i (30)
Multiplying (30) by a;, yields:
v = vag 1)
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N
:

Fig. 2. The skew reciprocal base

That means, that in the skew system A the vector v can be equally given by
the numbers v; or ;. The numbers »; will be called the contravariant coordi-
nates, the numbers 7; the covariant coordinates of the vector vin the system A.
In the orthogonal system K the contravariant and covariant coordinates na-
turally coincide. For further use we introduce the notation

v = v; = (Vg Uy v3) (32)

v = v = (vt 2%, v®)

Let’s now examine the geometrical interpretation of the symbols v; and »'. For
the sake of simplicity we will work in the plane. Similarly to the notation intro-
duced above, the reciprocal vectors d, will be denoted by a®, Rewriting now
the two previous equations with the new notations yields

v = Z va® (33)
and

Equation (34) contains the projections of vin the directions of the vectors a,
expressed in proper units. Since the vectors a, aren’t unit vectors, we have
to choose the quantity I a(, | as unit. If we don’t, than the magnitude of the

projection may be calculated by

vﬂ
Vo) = (35)
i a(z) [
Summarizing the above investigations: the covariant coordinates mean the
orthogonal projections, the contravariant components the projections in the

direction of the coordinate axes. We are now interested in the problem, how to
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caleulate the covariant coordinates from the contravariant ones. Expressing v
in both ways:

v= > a(i)vi = > a(i)vz- (36)
: i

!
Let’s multiply eq. (36) by a; yielding
v, = 3 v'agag, (37)
H

The above equation demonstrates, that the connection between the two repre-
sentations is given by the scalar products of the base vectors. This products
depend on two indices, we introduce the notation

Sy == 9

BBy = &in (38)
The numbers g;, are the elements of a matrix. Substituting (38) into (37)
vields

13
v = Z V& (39)
H

If the inverse of the matrix g;, exists (let’s denote it by g'*), than it is easily
derived, that

(3 ik

= Sog (40)

There are some useful applications of the above derived results. Let’s calculate
the scalar product of two vectors in the skew coordinate system! We will
treat the following two vectors:

u_Zamu :g a®u, (41)
v-—-Zab —Zav

The scalar product in contravariant representation:

ik
uy = .25 waGAG) (42)
=
By using the formerly introduced g;, notation:
uv = 3 u'g, (43)
ik
Deriving the same expression by using the co variant components: (44)

wv = 3 umg"
ik
Now let’s substitute eq. (39) into eq. (43):
uv = > u'y, (45)

i
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and similarly:
uv = > ur' (46)
i
Equations (45) and (46) closely resemble to their analogons in orthogonal
coordinate systems.
1.2.2.2. Second order tensors

We will proceed as we did in orthogonal systems. A second order tensor
is given in the most natural and simple way if we know the by, transformed
versions of the ay, base vectors. Knowing this vectors the transformation of
an arbitrary vector may he executed, since if

and

a= > uv";a(‘,-) {48)
7

then on the basis of (13) and (14) ebviously

Ta=v (49)
where
vo= > u":hm (50)
Let’s multiply (50) with a,:
vag = 3 ubgag (51)

i

The left hand side can be written because of (31) and (32) as:
vag, =1, (52)
Let
agbgy = ty (33)
Aceording to this:

v; = % tikuk (54)

To calculate the quantities ¢, we used the base vectors a,, therefore the mat-
rix t; will be called the covariant representation of the tensor T in the skew
system A. The contravariant representation t" may be derived in a similar
way. Remark, that transforming the components of the vector u by the
matrices t; or ' we always arrive at v components of different representa-
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tien. To avoid this inconvenience let’s introduce the mixed representation of
the tensor T by

= a0, )
and
1" = agb® (56)
where naturally
Tag = b, (57)
and
Tad — p® (58)
v, = § ?fku!, (59)
vo= t‘, u” (60)

The sequence order of the indices is not indifferent, since the matrices ¢,
and #;" are in general not identical. We will introduce now the so-called Einstein
summation convention for the dummy indices:

a!bi = > aibi (61)

z

If the dummies ave the indices of a mixed representation tensor, then this
summation is called the contraction of the tensor resulting a tensor of order
0, that means, a scalar. This operation is equivalent to the summation of the
components in the main diagonal.

In generality : by summing a tensor of order n to a single pair of dummy
indices we arrive at a tensor of order (n—2).

Let’s examine now the meaning of the symbols g;, and g introduced
in eq. (38). By comparing (53) with (38) we can observe that the symbol
is the covariant representation of the E unit tensor, since on the basis of the
equations (3) and (38) this tensor maps the base vectors onto themselves.

g
Fadlis

Similarly the symbol g is the contravariant representation of the unit tensor.
In the orthogonal system we have naturally

g =8 =0y (62)
The symbols g'* and g;;, are usually called the components of the metric tensor.
This name will be explained later.

We are going to investigate the relationship between the four possible
representations of a second order tensor T in the skew system 4. Since the
various representations can be computed by using the covariant and contra-
variant base vectors, the transformation rules between the representations can
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be derived from the relation between the base vectors. Let’s express the

vectors a®) as a linear combination of the vectors apt
a® = nika(k) (63)

By multiplying eq. (63) with a®) we arrive at

ik ik
n = g (64)
According to this the correspondence between the two systems is given by
(a) a" = g"a, (65)

K
b) ag = 9:’1;3( :

Eguation (65) enables us to determine the velation between the different
tensor represeniations. Let

ty = 2pbgy (66)
If we substitute (65/b) into (66), we arrive at
by = gika(l)b(lc) (67>
On the basis of (55):
By = Sidur (68)

The relation between two arbitrary representations of the tensor T may be
derived in a similar way. Remark, that the multiplication with g'* or g, results
the “moving” of an index up or down, respectively. Applying this to the metric
tensor G:

28" =g = i (69)

Developing this equation for two dimensions we arrive at the following for-
mulas:

21 812 29 255} (70)
where g denotes the determinant according to (20).

1.2.3. Curvilinear systems

The location of a point in space may be identified not only by the coor-
dinates introduced before, but by the means of other parameters, as well. We
will use the parameters 0. Let A(x) = «; the representation of the position
vector x in the skew system A. The functional relation

x, = f(0)) (71)
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has to exist. Let’s consider the parameters O, as the coordinates of the position
vector x. If the function f is non-linear, then the quantities ©; are called the
curvilinear coordinates of x. This fact will be denoted by

4%=) = 0, (72)

i

The transformation of the coordinates to the system A% can be carried out
only in the case if the function f is invertible, i.e. the mapping is unique both
ways. The curvilinear coordinate systems are often applied, for example the
spherical coordinate system, called the spatial polar system, as well. For this
special case eq. (71) may be written as

X, = rcosg siny (73)

Xy = rsing siny

Xy = rcosy

In the system A% correspond to the constant value of any single parameter a
curved surface in the three-dimensional space. If two parameters are simulta-
neously constant, then we arrive at space curves (lines) after which the 4°
SV y e 1H >3 G

system was named. (“Curvilinear system”) The system 4~ can be treated
locally as a skew system. In other words, the system A% defines a skew system
A at each point of the three-dimensional space. The base vectors of the local
system A are given by the tangent vectors of the coordinate lines

Ox

20, (

au =

-

4)

(The derivation of vector fields will be discussed in section 4.2 in detail.)
Up to now we were dealing with the curvilinear representation of the position
vector x, but this doesn’t answer the question about the curvilinear represen-
tation of an arbitrary vector v with origin differing from the origin of the
coordinate lines. For convenience we define the curvilinear representation
AS(v) as the representation of v in the skew system 4 determined by the
system 47 at the origin of v by the equation (74). Remark, that the represen-
tation of the metric tensor depends on the coordinates, as well

ox ox
ir " 75
8= %0, " 96, (72)

1.3. Transformation of coordinates

Our aim is to determine the transformation rules for tensor coordinates
if we switch from system 4% to A% The base vectors are those defined by

eq. (74):

7
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ax
a iy = 76
0= ) (76)
and the base vectors of the system A°
x
A== 77
D=5, (77)
where
x = f(0) (78)
0, = h(éi) (79)
Let’s express the vectors & as the linear combinations of the vectors a,:
8y = Ba (80)

According to this equation the matrix § (which is quadratic, of course) inherits
the first index from the original system, the second one (with-) from the trans-
formed system. Let

v = vag = T (81)
On the basis of (80) and (81):
(a) ¥ ="k (82)
(b) & = v.p;

We can determine the relation between the representations g, and g, of the
metric tensor:

i ™ By (83)
iy = 5(i)5(k)

and on the basis of (80):
Eix = ﬂ{ﬂ;:gjl (84)

Based on the above formulas the general transformation rule for the coordina-
tes of a second order tensor t is easily derived. Let

ty = apbgy (85)
by == 5'(i)h(/:)
and on the basis of (80) and (82):
a) b= BAl, (86)

by i Ak
b) tik = IB'Ifﬁi‘t”{
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Remark, that eq. (86) serves in many cases as an alternative definition for
tensors. In practical applications we can decide often on the basis of this for-
mula, whether the examined phenomenon can be described by a tensor or not.
We have to measure in an experiment the coordinates in two different coordi-
nate systems, and if the measured quantities transform under the rules prescrib-
ed by eq. (86), then they are the representations of a tenmsor. The connection
between the two coordinate systems is given by the matrix 5.

Based on the equations (76), (77), (78) and (79) we can define now the
components of the matrix 5 by the equations

00,
gF = 2% 87
f 50, (87)
and
g =22 (88)
© 90,
Of course,
5igt — o, (89)

holds, as well.

The above given definitions may be easily generalized for contravariant and
mixed representations, the determinant of which is an invariant sealar. It is
worth observing, that in the equations (80) and (82) the relation between the
vector coordinates is the opposite of that between the vectors. This is the origin
of the name “contravariant™.

As an illustrative example for the transformation rules we will calculate
the relation between the tensor coordinates given in an orthogonal system by
eq. (17) and in a skew system by eq. (53) in two dimensions. Coordinates are
illustrated in Fig. 3.

€2

S

em

Fig. 3. Relative position of the planar K and A system

In the examined planar case

K(T) = eyfy; (90)
holds. Let
ag = ‘a 8 = €y (91)
cos @
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The elements of the transformation matrix § are readily derived as:

Now we can calculate the components of the matrix 7,
ATy, = /3 (Bitry + Bitin) + ﬁl(ﬁlf% Stho) = (93)
= cos? g ty, —~ sin? ¢ tyy - sin @ cos @ty + o)

-/4@)12 = Z:12 = ﬁ%(f}%tn -+ ﬂgfle) ﬁl( % 01 + 5%%2) =

A(T) 5

H

= p5 (317511 + .3%12) + 55(&%“'21 - /3%329 =

= CO0S (P iy —- SiN Py,

z 1 2 2/ o1 2,
A(T) gy = 15 = F5(B3t1y + Bitra) + B5(Bstar + Bilas) = oo
By this example we wanted to underline, that the computation of the trans-
formation has to do only with the different representations of the same physi-
cal quantity in different reference frames. If a tensor equation holds, than it
holds in an arbitrary coordinate system, but in each system the form of the

equation will be different. according to the rules of transformation derived in
this section.

1.4. Differentiation of tensor fields
1.4.1. Scalar field
1.4.1.1. Directional derivative

For the sake of simplicity we will treat a two-dimensional scalar field,
which can be visualized as a curved surface in the three-dimensional space.
This surface will be denoted by Z.

We will investigate the surface at point P, which corresponds to the point P
of the scalar field. If we intersect the surface Z by a plane passing through P
and orthogonal to S (the plane, on which we interprete the scalar field), then
the result is a curve on the surface. The intersection of this orthogonal plane
with S is a straight line, which will be denoted by e. Let us proceed now on e
by the distance e. The value of the scalar field will be denoted by z’, at the
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Fig, 4. Scalar field as curved surface

original point P with z. Now the directional derivative of the scalar field at
point P in the direction e is defined by

. (2" —Z)
im —

z—0 &

(94)

This can be visualized as the directional tangent of the surface curve at point
P in the plane of intersection. This is illustrated in Fig. 5:

Remark, that the directional derivative has been introduced without the use
of any coordinate systems.

Z
pd P P
- /V ,/ // i /r // /
A AN A R AR A-Y
L S S L L L
-~

Fig. 5. Directional derivative of scalar field




102 G. DOMOKOS

1.4.1.2. Partial derivaiive

We will now use in the plane a coordinate system x,). In this system the
scalar field can be interpreted as a sealar function in two variables in the form
z = f{x(,). If we calculate the directional derivatives in the directions of the
coordinate lines, we arrive at the expressions

(95)

which will be called the partial derivatives. The quantities =, can be represented
by two scalar fields. (The partial derivatives of an n-dimensional scalar field
are represented by n separate scalar fields in n dimensions.)

1.4.1.3. Gradient field

Despite the fact, that the partial derivatives of a scalar field depend on
the coordinate system, we are able to define a coordinate-invariant quantity
with the aid of them. Let’s regard the partial derivatives as the components of
a vector given in the same coordinate system as the original scalar field. We
can decide, whether they are actually vector coordinates by the transforma-
tions rules derived in eq. (82/b). In the original system we have

Oz
3y, = (96)

-

ox

(=)
Transforming now to the new coordinate system ¥ by the eq. (88) we arrive at

0z Oz Oxg,

= z.68 (9%)

F R,
Sy =

8.\_"(_1) 8x(ﬁ) 65(1)

This illustrates, that the partial derivatives transform under the rule for vector
coordinates. The physical invariant vector determined by the partial deriva-
tives will be called the gradient of the scalar field. The gradient of an n-dimen-
sional scalar field is an n-dimensional vector field. The gradient vector field
will be denoted by g.

We will try to visualize the gradient field in two dimensions. Figure 6
demonstrates a two-dimensional scalar field as a curved surface z = f(x, y).
At point P of the surface the tangents parallel to the coordinate planes are
indieated.

This tangents determine the tangent plane P,P,P, The partial derivatives
are the directional tangents of the lines e, and e,, therefore
_ oP, ad s — OP,

oy *y

P, *7 op,

(98)
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Z
/ .

..o

Fig. 6. The gradient

0P,

0P,
vector g from the orthogonal P’ projection of the point P, then we find, that
g is orthogonal to P, P,, since the tangent of g can be expressed as

The tangent of the interval P, P, on the plane xy is . If we measure the

OP,
0P, 0P,
oP, - op,
0P,

and is found to be the reciprocal value of the tangent of P,P,. The vector g
indicates at each point the direction and magnitude of the fastest rate of change
of the scalar field.

1.4.2. Vector field

1.4.2.1. Directional derivative

We will consider a three-dimensional vector field. This field defines the
vector v at point P. Now we select an arbitrary straight line (direction) e pass-
sing through P and proceed along this line by a distance ¢ to arrive at point
P’. The vector defined by the vector field at this last mentioned point will be
denoted v'. The directional derivative of the vector field at poiut P in the di-
rection e is then defined by

=)

lim Y (99)

g0 E
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.
N

Ng
~

Fig. 7. Directional derivative of vector field
This is illustrated by Fig. 7.
Remark, that the directional derivative of the vector field has been introduced
without the use of any coordinate systems, similarly to the directional deriva-
tive of the scalar field. The directional derivative of an n-dimensional veetor
field iz a vector field of the same dimension.

1.4.2.2. Pariial derivative

The vector field will be interpreted in the coordinate system x,. In this
ystem the vector field can he interpreted as a vector-vector function in one
rariable, since the vector v is the function of the position vecter x, both vectors

i

ot

ven with their coordinates. We are going to determine the directional deri-
ratives in the directions of the coordinate lines. In order te do this, we can

<‘(l)3

write the vector field in the form

v =vag (100)
on the basis of equations (27) and (32). Differentiating eq. (100) by the jik
variable we arrive at

= (ag), (101)

Applying the rule for product differentiation vields

i i p
a) Vi =U.8p — Ve, (102)

or resolved to covariant components

by v,;= 'vivja(f) — 2

i

The first member contains the partial derivatives of the scalars o' and v,
multiplied by the base vectors. This partial derivatives can be determined on
the basis of section 1.4.1.

The second member contains the partial derivatives of the base vectors
multiplied by the scalars ' and v, In a straight (orthogonal or skew) coordi-
nate system this derivatives disappear, of course, since the base vectors are of
constant magnitude and direction. To visualize the meaning of the second
member, let’s regard Fig. 8:
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Fig. 8. Connection between vectors and veetor coordinates

It can be observed, that in a straight coordinate system the change of the
vector coordinates sufficiently describes the change of the vector, therefore
the first member of the partial derivative contains emough information. In
curvilinear systems this is not the case:

The vectors in Fig. 8/b are equal, but their components aren’t. In Fig.
8/c the opposite happens, the vectors are not equal, but their components
are. In section 1.4.1.2, we didn’t meet this “second member”, because the re-
presentation of scalar fields is independent of the base vectors.

1.4,2.3. Christoffel symbols

In section 1.4.2.1. we observed, that the directional derivative of a vector
field is a vector field, as well. According to this the vector field ag,,; can be

resolved to components in the bases a(;, or a®;

{

. %) __ & .
agy; = Lipa™’ = Iijag, (103)
Multiplying the above equation by a;y we arrive at
o - Jd _n
agyag = Lipa agy = Lyjor = Ty (104)

Equations (103) and (104) are equivalent definitions for the quantities I" with
three indices. The quantities I';;, and I'j; are called the Christoffel symbols of
the first and second kind, respectively. They were introduced by the mathe-
matician Elvin Bruno Christoffel. The /" symbols are cube-matrices, with
27 components in 3 dimensions. The first index of the Christoffel symbol refers
to the variable (base vector field) to be differentiated, the second tells, in which
direction it has to be differentiated and the third identifies the component of
the directional derivative resolved alveady in the coordinate system. We are
now going to derive some useful formulas in connection with Christoffel
symbols,
Multiplying (103) with the hase vectors we arrive at
Iy, = Tig, and I'yjyg” = I (105)

ij
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This illustrates, that the third index of the Christoffel symbols can be
“moved” up or down by the method first described in eq. (68). This does not
hold for the first two indices, since the Christoffel symbols are not third order
tensors.

Differentiating eq. (74) by the jth variable yields
Bliyr) = Toij = Roji = By (106)

which displays the symmetry of the Christoffel symbols with respect to the
first two indices. Differentiating eq. (38) by the kth variable yields

iz = By R0 T 3Ry (107)
Comparing this with (103) we find, that
ijre = Ly + L (108)

Writing the above result cyclically thrice, we arrive at the equation system

a) fkij -+ iji = Eijn (109)
b) Fkif - Ffjlf = Ejrri
) Ly + Ly = 8o

Composing now the equation (b/) -+ (¢/) — (a/) yields

— 1
2Fijlc == &jiri T 8rivj — 8ijok (110)

This formula is convenient when calculating the Christoffel symbols in a coordi-
nate system where the coordinates of the metric tensor are already known.
By using eq. (70) we arrive at
a) p;fr._—_}“ﬁ _O_g_rz_fl___algr (111)
23' agis 00 Lg 00

by using the result
b)

Q)[Q)
g |0y

w

1.4.2.4. Tensor derivative
Applying the symbols introduced in (104} to (102) vields
Vo= vy + o' Tag, (112)

By changing the indices of the last two members we arrive at

7’] = (ifi,j —§— l7lc]1},()a(i) = 'Ul]ja(i) (113)
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Writing the equation for the components only (by multiplying with a®)

o = ‘Li + T (114)

7 ke

e e TR
Vilj = Vg LI;TU

The above expression will be called the covariant derivative of the vector
field v. The covariant derivatives ¢'|; are analogons to the partial derivatives
of the scalar field. They depend on the choice of coordinate system, but, as
we did with the partial derivatives, it is possible to define a coordinate-inva-
riant quantity by using them as coordinates. This invariant will be called the
second order tensor derivative of the vector field. The second index of the ten-
sor derivative is always covariant, this is the reason to call the quantities v’
the covariant derivatives. This characteristic was inherited from the fact, thar
we interpreted the position vector x in a contravariant (traditional) way.
Resolving the position vector into covariant coordinates we could derive the
contravariant derivative, but this has no practical reason.

In the case of the gradient vector we proved, that the partial derivatives
of the scalar field transform under the rule prescribed for vector coordinates.
Now we are going to do the same for the coordinates of the second order tensor
derivative. In order te do this we calculate the covariant derivative of the
vector v in the system &,:

v, = v;| 20 (115)

Applying the “chain rule” yields

= v,} ;208! (116)

Comparing the right hand side of the above two equation yields

! - BENOY-Y L

v ;30 = vy, (1)
Multiplying this with &4, = BE a, we arrive at
K aj

VR %;151?/3% (118)

Comparing the above equation with (86/b) we see, that our statement is
proven, the covariant derivatives are actually the coordinates of a tensor.

Summarizing our results we can say, that the covariant differentation is
an analogon of the partial differentiation and differs from the latter only in the
curvilinear representation of tensor fields of order higher than zero.

1.4.3. Second order tensor field

We are going to introduce the derivative of the second order tensors. On
the basis of the previously derived equations it will not be quite surprising,
that the derivative of a second order tensor field is a third order tensor field.
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We are going to deliver a rather formal description, but later we will examine
the derivatives of specific second order tensor fields.

Multiplying the covariant #; representation of the tensor T with the contra-
variant vector components u' and v’ we arrive at the scalar s:

s = t,-juivj (119)

Differentiating the above expression by the kth variable and considering
{114) yields

- iJ Y A S S g
Sap = b UV zfij.u ,,‘_.L - LI'.-U vy = (120)

This can be written in the following form, as well:

S = (40 ') = il“,ku‘;vj + U z] -+t ;kvj (121)

by accepting the following definition
tijikulvjz‘- ol v — 1 wa,l——r vl I (122)

Changing the dummy indices we arrive at the form

bl v’ = (4o, — 6,0, — b, Tijyu't? (123)
Thls equation holds for an arbitrary matrix f; and given components u' and
v’ if and only if

bl e =t == il — 1Ty (124)

The above expression is the definition of the covariant derivative of the tensor
T in the representation #;;. This can be expressed by

1

T, =11, (125)

YK Ijjk

As mentioned before, we assume, that the quantities tij}!c represent a third

order tensor. To prove this, we use the same procedure as we did in the equa-
tions (115)—(118):

T,; = ;728" (126)

a® @) .0 pk -
TZ:T‘A:{('E_' tz}!,\ a ;‘31— (12'()
1yl 2080 = 1,02} (128)

b5 ;i = tr,!Aﬁfﬂjlg% (129)
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Similarly to eq. (124) we arrive at the following expressions:

tfjl/x = t.i'ek + t.l--zﬂj{l - tfl‘pj'k (130)
| = o — 1T + 5 Ty (131)
i), = "+ /Ty + " T, (132)

Based on our experiences with second order temsors we can generalize for
higher order ones: The covariant derivative of an nth order tensor in a given
representation can be computed by calculating the partial derivatives of the
scalar tensor components and adding n members with Christoffel symbols.
The result is an (n 4 1) th order tensor.

1.4.4. The Riemann—Chrisioffel tensor

Equation (118) demonstrates, that the components of the covariant deriva-
tive of the vector v are the representation of a second order tensor. In eq.
(124) the covariant derivative of second order tensors is introduced. Based on
this, we are going io execute covariant differentiation on the second order
tensor derivative of v. Let

viijik = ”iiji; (133)
Applying eq. (124) to the above expression yields
Uiéj!:z (/Uffj_vmrl?>=lf~(vlﬂj—vnr zr;)]-,f (v — vy, Fm)F:J (134)

We want to investigate, whether the indices in the covariant derivative can
be changed or not, in other words, whether v, }J, = 7, l or not. In the case
simple partial differentiation this can be done. The quantities v; M can be
expressed b}‘ the simple change of indices:

. ny ! 3m ~
Ciikj = (Vpp — z!x) tj — (v — va”x’)Ffj — (v — v L )Fm (135)
Expressing now the difference of the investigated quantities we arrive at
;| N R, m +
Uil jr — l’if/;_f == VUpejp = Vpsgy — Vmod 5 (136)
o i s L o, s rmt
+ Uy _/F - Fl_]'}\ T iktj bl’jpik ne L[’I:Fij T Um ljF!'k - l'mFIkFlj

Since the indices in the simple partial derivatives can be changed, the first
two terms cancel each other and finally we have

; I ; -
Uiljk = Uiy~ U zn/z] — szvk Iy Fz/ z'ZTrj) (137)

The left hand side of the above equation is obviously the representation of a
third order tensor. This fact implies, that the bracet on the right hand side
has to be the representation of a fourth order tensor, the first index of which
is contravariant and the following three covariant.
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Up to now we had to do only with tensors of order equal or lower than
three. The appearance of a fourth order tensor doesn’t imply difficulties, be-
cause all our former definitions for tensors are easily generalized. Returning
now to eq. (137), let’s denote the fourth order tensor by

m
l’i!j;; - vi],kj = Unmliji (138)
The quantities r;;, will be called the representation of the fourth order
Riemann— Christoffel tensor. Now it is easy to answer our previous question:
the indices of the covariant derivative can be changed if and only if

Pre=10 (139)

The Riemann— Christoffel tensor is of course invariant under the transforma-
tion of coordinates, therefore if an equation holds in an arbitrary coordinate
system, then it holds in each one. If we choose the orthogonal coordinate sys-
tem, then eq. (139) is trivial, therefore it holds always. Now we have to ask.
whether the orthogonal coordinate system exists in the examined space or not.
This is not a trivial question, since in an equivalent way we may ask, whether
the structure of the examined space satisfies the euclidean axioms, or not.
The two dimensional case is discussed in the following section. The three di-
mensional case goes beyond the range of this paper, but remark, that the first
man to estahilish a non-euclidean geometry without contradictions was
Jénos Bélvai. His geometry is the so-called hyperbolic geometry. Later the
elliptic geometry was elaborated. In the hyperbolic geometry the curvature
of space is a negative constant, in the elliptic geometry a positive constant.
The most general geometry is due to Bernhard Riemann. In the Riemann geo-
metry the curvature of space is non-constant. The general relativity theory of
Albert Einstein was based on the Riemann geometry.

This illustrates, that the Riemann-Christoffel tensor is closely related to
the curvature of space, therefore it is called the Riemann— Christoffel curva-
ture tensor.

1.5. Geometry of curved surfaces

When Carl Friedrich Gauss was asked to participate in the geodesic
surveying of the county Hannover, the great german mathematician medita-
ted for a long time over the sufficient and necessary condition of the existence
of a measure-preserving planar map of a hilly landscape. His investigations
resulted in one of the most outstanding theorem of his career, he himself cal-
led it “Theorema egregium®. He proved, that at each point of the surface a
sealar quantity can be calculated which is invariant under the transformation
of coordinates. This scalar is now called the Gauss-curvature of the surface.
The necessary and sufficient condition for the surface to have a measure-pre-
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serving map in the euclidean plane is the disappearance of the Gauss curva-
ture. It is surprising, that despite the fact, that the surfaceis enbedded in the
three-dimensional euclidean space, it is theoretically possible, to measure the
Gauss curvature “in the surface” for example flat, two-dimensional creatures
moving exclusively in the surface could do that.

If the Gauss curvature doesn’t disappear, then the surface can’t be map-
ped in a measure-preserving way onto the euclidean plane, that means, that
the euclidean geomeiry doesn’t hold on the surface. In this section we will
try to get acquainted with the intristic geometry of this non-euclidean surfaces.

1.5.1. Interpretation of the metric tensor

We will investigate the geometrical meaning of the metric tensor intro-
duced in eq. (38). We consider a plane with coordinates x,, and the infinitesi-
mal line element ds will be resolved to components in this coordinate system.

ds = dx"a, (140}
We will now multiply ds with itself arriving at
ds ds = d*dv’a g, = dids’g,, (141)

which is the square of the length of the line element. Equation (141) is a straight-
forward generalization of the Pythagoras formula, in differential geometry it is
called the first fundamental form of the surface. In the usual orthogonal coordi-
nate system the coordinates of the metric tensor are represented by the
unit matrix, and the well-known form of the Pvthagoras theorem holds. If
we introduce an other coordinate system in the plane and transform the com-
ponents of the metric tensor under the rule given in eq. {(86) then the validity
of the euclidean geometry will not be disturbed.

Orthogonal coordinate systems are. all the same, equivalent to any other
coordinate system, therefore we can prescribe, in which arbitrary coordinate
system we wish the metric tensor to be represented by the unit matrix.

1.5.2. Classification of two-dimensional surfuces

Now we ask the inverse question as before: what happenes, if we define
in a region of the plane the components of the metric tensor arbitrarily in a
given coordinate system, and there is no coordinate transformation, under
which the representation becomes identic with the unit matrix? In this case
the given g metric tensor field defines a non-cuclidean geometry in the plane.
This can be visually realized by bending the plane into the three-dimensional
plane. This bending must include siretching, as well. This is the reason, why
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non-euclidean surfaces are often called curved surfaces. This name refers to the
enbedding of a surface with non-euclidean metric into a higher dimensional
euclidean space. If the mentioned bending doesn’t include stretching, then we
arrive at the well-known developable surfaces with euclidean metrie.

We conclude from this, that the metric uniquely determines the geometry
of the surface, but it doesn’t uniquely determine the form of the surface in the
embedding euclidean space.

It is hard to visualize curved spaces if their dimension is higher than two,
because for the visualization we need the embedding euclidean space, the di-
mension of which is always higher than the dimension of the curved space. In
the case described just before the embedding space had one dimension more
than the curved surface. This is not bound to be so, since a one-dimensional
wire can be bent in a way, that it can’t be embedded in a two-dimensional
surface. (Remark, that the intristic geometry of a wire doesn’t change by
bending.)

The two-dimensional surfaces will be classified on the bases of the mi-
nimally necessary dimension of the embedding euclidean space. If this dimen-
sion is two, then the surface is called a plane, if it is three, then the surface is
called a hypersurface, if it is larger than three, then it is called a general two-
dimensional surface. In this general case the intristic geometry of the surface
is described by the Riemann-Christoffel tensor. To calculate the components
of this tensor we need the coordinates of the metric tensor and their derivatives
only, therefore we can say, that the intristic geometry of the surface is comple-
tely described by the metric tensor. However, this calculations are rather cum-
bersome, so it is difficult to see the connection between the given metric tensor
field and the intristic geometry.

We are now especially interested in the description of hypersurfaces,
which is a special case. The intristic geometry of a hypersurface can be descri-
bed by a tensor field, which is much simpler than the Riemann — Christoffel
tensor, but can’t be applied to general two-dimensional surfaces. We are going
to get acquainted with this simpler tensor field.

1.5.3. The second order curvature tensor

We are going to investigate a region of a two-dimensional hypersurface
embedded in the three-dimensional euclidean space, with coordinate system
%, in the surface. At point P we can regard the tangent plane of the surface
and the normal vector of the tangent plane. This normal vector is called the
normal vector of the surface at point P. With the aid of this we are able to
define a normal vector field a, with

3(3)3(3) =1 (142)
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The orthogonality condition with the base vectors yields

The direction of the a . vector field depends on the surface coordinates, but
not the magnitude. Thevefore the partial derivatives of the unit normal vector
field are surface vector fields, that can be resolved in the surface coordinate
system:

agy, = — b.a? (144)

Multiplying this with a., we arrive at
agmay = — byaPag = — b 0= —b, (145)
The quantities b, ave the representation of a second order tensor, this can be
demonstrated by the transformation equations. Now we will derive some useful

formulas in conneciion with this tensor. Differentiating (143) and by using
(143) we arrive at
Al = — A Aer = b (146)

fi£3

Writing eq. (104) in the above introduced coordinate system yields

a(:)"ﬁ - ‘F:ﬁ'."a(y) + r ‘33‘(3) (147)

5
On the basis of the two previous equations we have
by = 2ypy = Lipo (148)

Using the derived formulas for the Christoffel symbols the last equation can
be re-formulated as

bzﬁ:I‘aﬁ.’S:Fi/’J:—I‘szﬁ:—FBPz:—Fm?,ﬁ (149)

The tensor B represented by the matrix b,; will be called the second order
curvature tensor. Other representations of the tensor are found by multipli-
cation with the metric tensor:

b5 = byg* b’ = big”’ (150)

vp8

The mixed representation can be derived by interpreting eq. (144) in an other
representation:

3(3)7: = bl;a(ﬁ) (151)
From the above equation follows, that

daggy = agy,dx" = — b a?d* (152)
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Let’s multiply the infinitesimal vector with the line element ds by using equa-
tions (140) and (152):

daggds = — b,,a7dx"a ., dx’ = — b, ;00 dx"dx’ (153)
daggyds = — b, pdx*dx” (154)

In classical differential geometry the right hand side of eq. (154) is called the
second fundamental form of the surface. The coefficients b;;, byp == by, by
were denoted by E, F, G by Carl Friedrich Gauss.

o2
X

Fig, 9. Connection between the curvature and the unit normal vector

We will now iry to visualize the components of the second order curva-
ture tensor in mixed representation. We assume, that all components but 5]
disappear, and we intersect the surface with a normal plane along a x® line.
This is demonstrated in Fig. 9.

Since a 4, = I, the length of the infinitesimal vector

1 el
daggy = agy., dx! = — bag,dx? (155)

is equal to the angle dg between the surface normals at point 4 and B. If this
angle is divided by the length of the vector a,,dx?!, then we arrive at the cur-
vature of the surface line xV), which is equal to the curvature of the surface in
the direction xD.

d ldag, |
dp _ 18w _ gy (156)
ds ENY
Now let’s assume, that b} = 0 but bf = ()
Figure 10 illustrates, that
dagyy = agy, dvl = — biag,dy! (157)
so the twist of the surface is
_‘ﬁ= |da,| = || lag)| (158)
ds lagy™| |ag))
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Fig. 10. Connection between the twist and the unit normal vector

If ag) = a(y), then brf = by and both components are equal to the twist of the
surface along the coordinate lines. If the opposite holds, that the two compo-
nents aren’t equal. but they are closely related by eq. (158) to the twist.

1.5.4. Covariant derivative of surfuce tensor fields

A general vector field with origin on the surface can be resolved into in-
surface and normal components:
v =1, = v,a® - p,a® (159)

This equation is differentiated according to eq. (113), yielding

vig = 0] ,a" = v,1,a® & 1] a® (160)

We conclude from equations (143) and (144), that

85y a0 = 0 (161)
therefore on the basis of (1053)
[yo=14=0 (162)
Similarly
Iyg,=1T33,=10 (163)

The previous equations demonstrate, that the Christoffel symbols disappear
on the surface, if they have more than one index equal to three. Using this
fact and equations (148) and (160) we arrive at

U, |p= Vg — Uyl 5 — v3h g (164)

p= Vu

48]

and

Ugls= Vg vybj (165)
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The first two terms in eq. (164) are the plane analogons of the covariant deri-
vative defined in eq. (114). We introduce the folloxung notation for them:

Vailp = Upop — vyl ag (1606)
According to this

A R . -

L_.:ﬁ " 1’;“3 - l'3bz,’3’ (15‘)
and similarly

zi! = o7 T

V=N 0T, (168)

In the case, when v is an in-surface vector field (v, = 0) there is no difference
between the two covariant derivatives.

Vip = e, -+ v'b 52 (169)

I

Remark, that despite the fact, that v is an in-surface (or tangent) vector field,
the partial derivatives have a normal component, as well. We are going to
deal with second order surface tensor fields only, which transform tangent
vectors into tangent vectors. For this special type of tensors the results for
vector fields are easily generalized, and by using equations (132) and (168)
we arrive at

1.5.5. Connection between the quantities related to the curvature

Up to now we mentioned three quantities, which are related to the cur-
vature of the surface: the Gauss curvature, the Riemann — Christoifel curvature
tensor and the second order curvature tensor. The first and the third one can
be applied in the analysis of hypersurfaces, more general surfaces can be in-
vestigated by the Riemann — Christoffel tensor. The Riemann-Christoffel tensor
has in two dimensions only one independent component, the r',,. This com-
ponent is equal to the determinant of the mixed representation second order
curvature tensor and to the Gauss curvature of the surface ! We are going now
to prove the above statement formally, as well.

By differentiating the base vector field twice we arrive at

3
a,i) By F~[5 /a((s) .Z_‘~I3(F a(é) b’l 3(3)) a(s) —_— bmpb, aw) (1 (1)

which is equivalent to

ey, = (Toge, - TigTs, — bgbl)agy + (Digh, -+ b )ag,  (172)

The expression for a,.,. can be derived by changing the indices in the expres-
sion. Equating the coefficients of a4 in the two expressions yields
5 5 5 5 5 -
I T, +Ti Aep — o', = b, bz — b_gh; (173)

ay”B

B
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Comparing the left hand side of the above equation with the coefficient of v,
in eq. (137) yields for the two-dimensional representation of the Riemann-—
Christoffel tensor

S _d s i pE g ~
Py = Lopep — Logey -+ T2 lep — Il (174)
Let us “lift” the index « and substitute into eq. (173)
fx g2 3d %70 e
7..',3./ = b;. I B 136’/ (1(0

The symmetry properties of the tensor B imply, that only the component
2 . . .
r?flg_ can be independent. By substituting

v=2 f=1 »=2 H=1 (176)
we arrive at
rige = babi — bib3 177)

The right-hand side is determinant of the mixed representation of the second
order curvature tensor, which is equal to the Gauss curvature. Thus we de-
mounstrated the connection between the curvature quantities.

2. Theory of membrane shells

Shells, in which bending moments can be neglected are called membrane
shells. Membrane theory assumes the following things:

~ The material of the shell is isotropic and obeyes Hooke’s law.

— The thickness of the shell (and the bending moments) can be neg-
lected.

— The state of stress of the shell is fully described by the membrane
forces acting in the mean surface.

— Supports along the boundary are tangent to the mean surface.

~— Deformations due to membrane forces are not hindered by boundary
conditions.

The above conditions hold, of course, only approximately in the reality,
therefore membrane theory can provide only information with restricted ac-
curacy ahout a real structure. According to the above assumptions the shell is
in plane state of stress, membrane forces having normal (N, N,) and shear
(N,, = N, ) components only in the mean surface. The state of stress is
completely described by the three mentioned membrane force fields. To de-
termine them we need the equilibrium equations and the boundary conditions.
The latter ones go beyond the range of this paper.

Results based on membrane theory may serve as a particular solution for
the bending theory.
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2.1. The siress tensor

We will investigate surface on which external forces are acting. By in-
tersecting the surface with a line /s we need a force Ar to retain the surface
in the original position. Point P of the surface is contained in line 4s, and the
vector

T (178)
4s—0 As ds

defines the stress vector in the given direction at point P. By changing the
direction of As, the direction and magnitude of ¢ changes, as well. The state
of stress in the surface is deseribed by the mathematical relation between the
direction and the stress vector. We will try to derive this relation in a closed
formula.

2.1.1. Introduction of the surface stress tensor in orthogonal coordinale systems

We assume. that the intristic geometry of the investigated hypersurface
is euclidean, therefore we can estabilish an orthogonal coordinate system. We
investigate the equilibrium of the infinitesimal orthogonal triangle illustrated
in Fig. 11.

The sides of the triangle will be represented by their outer normals:
dsiy = eqdsg,) (179)

The outer unit normal to the side P, P, is n, therefore this side is represented
by the vector

ds = nds (180)

- Of course, it would be possible to represent the triangle sides vectorially
by themselves. Our previous approach is easy to generalize to curvilinear coor-

/
~/
e

s

Fig. 11. Shell element in orthogonal coordinates
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dinates, but at the end of the next section we will demonstrate the last men-
tioned method, as well.

The sum of the vectors defined in equations (179) and (180) is zero, be-
cause the vector triangle is similar to the original one.

nds - e(l)dsl —}“ 3(2)d52 (181)

The stress vector t will act upon the side P,P,, the vectors t,, on the sides
PP_. The equilibrium condition for the triangle is given by

t ds = t(l) dSl -}“ t(?_) d32 (182)
Dividing equations (180) and (181) by ds and comparing them yields
ds, ds,
n= em + — e 183)
P (183;
t= s £ ds, £
ds T (2

The coordinates of the vectors n and t are identic in the two bases (ey), e
and f(;y, f). This means, that the matrix transforming the vectors into each
other is identic with the matrix of the base transformation, which is a repre-
sentation of a tensor. This tensor will be denoted by N and called the surface
stress tensor. The coordinates of the surface stress tensor are in the orthogonal
representation identic with the stress vector components in the coordinate
directions:

- {"‘x Ty} (184)

G_w L

I{(N) —_ n:ﬁ — [7111 ny,

This relation holds only in orthogonal systems. We are now going to investi-
D o] =
gate the more general case.

2.1.2. Introduction of the surface stress tensor in general coordinate systems

We will proceed as we did in the previous section, but without making
any restrictions to the intristic geometry of the hypersurface, therefore the
investigated triangle in Fig. 12 isn’t orthogonal any more
The contravariant base vectors coinecide with the sides of the triangle. The
sides will be represented by their outer normals, as before. On the basis of
(38) we know, that
lag)| = V:‘;’«—z (185)

t
According to this

a® . am
dsy = ———ds, ds;= -@- ds, (186)
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~0

D

Sy

Fig. 12. Shell element in general coordinates

The outer unit normal to the side P, P, will be denoted by n as before, this side
will be represented (similarly to (180)) by

ds == nds (187)
The geometry of the triangle is expressed by
[6)] €3}
nds———— ds, +———ds, (188)
Vg |'g*

Resolving n into covariant components yields
n = n_a® (189)
Substituting into (188) yields (190)

n,Vg=ds=ds,
The force equilibrium is expressed similarly to eq. (182) by
tds = tyy ds; + to ds, (191)
By comparing (190) with (191) we arrive at
R (192)

The left hand side of the above equation is coordinate-invariant, therefore the
right hand side has to be invariant, as well. This is only possible, if the expres-

sion t(lﬂ/ g transforms under the same laws as a tensor in contravariant
representation. Resolving into contravariant components yields

te = 13 (193)
Calculating the right hand side of (192):
L V87 = tia,, | g% (194)
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By introducing the notation
s V gﬁﬁ = nf* (193)
we arrive at
ty ) g™ =n¥ag, (196)

Summarizing our results: The contravariant components of the surface siress
tensor express the stress components in the direction of the coordinate axes
multiplied by the magnitude of the covariant base vectors. Comparison be-
tween (192) and (196) vields

f= n“ﬁnza(w (197)
which is equivalent to the scalar equation
"= n*n (198)

We will now investigate the case, when the triangle sides represent themselves
vectorially illustrated in Fig. 13.

R

. d Sy 9
I}

Fig. 13. Shell element in transformed general coordinates

We will denote the covariant representation of the unit vector in the direction
of the side P, P, by f,. Equation (190) can be directly expressed by this com-
ponents. Since f is orthogonal to n, the covariant coordinates of the two vectors
will be identic, if we change the covariant and contravariant base, and the
sign of one of them. In this new system the coordinates of the two vectors are
equivalent and can be changed in the formulas. We are now going to give a for-
mal description of the above described conclusion. The analogous reference for
the equations is given.

a(l) 3(2)
dsl == ﬁ dsl ng - v dsil see (186) (199)
/ o
el

ds = fds see (187) (200)
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a® a® )
fds = —— ds, -+ —ds® see (188) (201)
Ve Veg*
fVg=ds = ds, (202)

By comparing (202) with (190) we see, that our previous conclusion was
correct.

2.1.3. Connection between the physical components and the tensor components

In connection with eq. (195) we already investigated the physical inter-
pretation of the covariant components of the stress tensor. This investigation
is necessary, because the final aim of our calculations is the determination of
the physical components. Equation (196) can be transformed to

1 Vs . .
)= — =T li_‘s ‘n¥ag, (203)
I'g | 8pp
Introducing a new notation this can be written as
N.pag .
(@) =~ (204)
1 8pp

Comparing the above formula with eq. (185) we see, that the quantities N,
are the physical components of the vector t along the skew axes. On the basis
of (203) and (204) we arrive at

N,p= l, 885 29 (205)

ey
[

We will now investigate by using the transformation rule (86), whether the
quantities Vg are the representation of a tensor, or not. The transformation
equation will be written for the component N,

ﬁﬁwn ﬁlﬁ( 12 2
/5’1 1011 515( 12 L gz
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By applying the sV = 17, x¥ = x! inverse transformation, where

=0 =gl (207)

4 1

holds and by substituting (207) into {206) yields the condition

)
L/ 82 _q (208)
=
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which holds exclusively in orthogonal systems. This indicates, that the physical
components don’t represent a tensor, but in a special case they coincide with
the tensor components. In the general case the physical components may be
computed on the hasis of eq. (205) from the tensor components.

2.2. Equilibrium equations

The equilibrium of the structure is expressed by the equilibrium of the
parts. In our case it is sufficient to investigate the force equilibrium of the
infinitesimal shell element illustrated in Fig. 14. because in membranes there
are no bending moments.

&
e pdxdx-

Fig. 14. The equilibrium of the shell element

The area dS of the shell element is given by

dS =1 g g cos =1 augﬂlfl e =g (209)

811 8a2

on the basis of (141). The distributed external load will be denoted by p. the
resultant of the load acting upon dS is on the basis of (209)

P=plg (210)
The equilibrium is expressed by the formula
Tey.+~P=0 (211)
where
Ty = tydsey (212)

On the basis of Fig. 12 and eq. (141) we have

dsy = | 8a—o@— (213)
which can be written according to (70) as

ds(u) = ls;-gg"z (2 14)
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Substituting now into (212) and by using (196) we arrive at
Ty = Vgg™tey =V gnfay, (215)
To differentiate the surface vector field T, we use the following form of eq.
(169):
Vag = 80,(175 + L) + v7b A (216)

By using this equation we can write (211) for the in-surface equilibrium and
the normal equilibrium separately:

[(Vgn*) 4 | gn? Tis]acy — Pragy g =0 (217
| gn*fbgac + | g PPag =0 (218)

Writing now scalar equations yields
1 9lg

L . —ij n*f L n*. s+ n’ﬁf’;ﬁw * = (219)

n*b,, — PP = (220)

The above equations can be written on the basis of (11) and (117) in the fol-
lowing concise form:

p— P = (221)

b, — PP = (222)

By substituting the expressions for the metric tensor components and the
Christoffel symbols into the above formulas we arrive at a differential equation
system with three unknowns for the three independent components of the stress
tensor. Since (221) contains a free greek index it contains two independent
equations, which means, that we have three equations for three unknowns.

3. Applications

3.1. Computation of the metric and curvature quantities of a surface described by
a scalar-scalar function in two independent variables

In the praxis the shape of the shell is usually given in the form z = f(x,v).
which is a scalar-scalar function in two independent variables. Since the shape
of the shell will not be restricted in this section we will stick to a special type
of coordinate system: the orthogonal projection of the xyv lines onto the surface.
This system is illustrated in Fig. 15.
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Fig. 15. Orthogonally projected coordinates

Let’s determine the coordinates of the base vector fields a(,y as two-dimensional
scalar fields: on the basis of eq. (74):

agy= 11+ 0j+ frk (223)
3(2) = 0 -'1‘ 1'j +fy'k (224‘)
The symbols i, j and k describe the unit vectors at the coordinate axes, the

symbols f,, f, the partial derivatives of the function f. By using (38) and the
above equations the components of the metric tensor are expressed as

2 -
gu =3ayamn=1-+Jx (225)
812= 8qya = f.f, = gxn

2
822= 8y =1+ fy
The determinant of the metric tensor is
2 2 .
g=fx+fr+1 (226)
The investigated surface inherits the metric of the embedding euclidean space,
this was the condition we used to determine the coordinates of the metric
tensor. This condition means, that the scalar (dot-) product of twe vectors is
identic in the surface and the embedding space, or (equivalently), the surface
can be locally substituted by the tangent plane. The coordinates of the curva-
ture tensor will be determined by (143). First we need the coordinates of the

agy, vector field, which is orthogonal to both base vectors. By using (143),
(223) and (224) we arrive at

Iz 4 0y + frz=0 (227)
Ox -+ 1oy + frz=0 (228)
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The coordinates of a 4 were denoted by x, ¥ and z. On the basis of (142)
2y 2=1 (229)

By solving the above equations to the three unknowns x, ¥ and z we arrive at

——.f\ N i ‘\—:(’_‘—é—.)__ -3 ._._1___— M k (230)
\f\“l‘fy o Vi i+ /
The partial differentiation of the base vectors yields
aaye = 0-i4+0-j+ fi & (231)
a(l)f}, == 0.1 —:‘ Oj + f;cy k= 3(2)'_\_
Bayy= 01+ 0§+, k

After substituting into {148) we arrive at

g =

{;P (232}

(in this case the greek indices can be equal to x or y). Now we are able to

b=

g !

express the Gauss curvature of the surface as

L — f\\fv) fn (233)

(‘Iq

The mixed representation components of the curvature tensor can be visualized
only under the restrictions we used in equations (156) and (158). In general
they are complicated, for example

b}: f,%f*(\ _ILfY\ f\fvf\y (234>
(fx _'“fv 1)_
With the help of eq. (110) and eq. (225) the Christoffel symbols can be deter-

mined as

Ip= Tl (235)
The Christoffel symbols in mixed representation can be found by the contra-

variant representation of the metric tensor. This is expressed on the basis of

(70), (225) and (226) as
= (236)
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By using (106) we arrive at

Iig= fosty
g

Now we have the metric and curvature quantities necessary to construct the
differential equations.

3.2. Equilibrium equations of the hyperbolic paraboloid

We will now show a possible application of the derived equations. The
surface investigated is the hyperbolic paraboloid. At each point of this surface
two straight lines can be drawn which are contained in the surface. We choose
at first this straight lines as coordinates. We will now have to place the sur-
face into a three-dimensional euclidean system, where the coordinate lines are
exactly the projections of the mentioned straight lines, because the formulas in
the previous section were derived for this type of coordinate systems, This
condition will be fulfilled if the surface is given by the equation

11 e
By == (238)
c
{(The lower indices are there to distinguish this system from the following ones.)
The relative position of surface and coordinate system is illustrated in Fig. 16.
Developing equations (221) and (222) yields
il - 120, + Thy) -+ n'2y 4 n2(31, + I5y) + n2I, = P (239)
n2,, - n2(2I%, + I'1,) + n?,, + n?(30%, -+ I'Y) + nllly, = P2 (240)

nllh - 2nPh,, + nPhy, = P? (241)

If we substitute the quantities computed on the basis of the last section for
the equation (238) and demonstrated in Fig. 16, then we arrive at the following
system of differential equations:

onlt x ont? 3y
+ + +nP = Pl (242)
ox x'l L }l et @) 1.'_’ __:_ _}'2 + C?‘
oA 91
on* on* 3x R
+ n2 J _ ..:_. - n-n = P* (24:3)
o 2 ) 2 2 Oan 2 21 2
oy Xy Ox L i el
) 2 5 k
n?., —— = P? (244)

(¥ 45 + )z
All variables have the index 1, therefore thisisn’t indicated. Figure 16 and eq.

(244) illustrates, that in this coordinate system b;; = by, = 0. The reason for
this is, that the curvature of the surface along the coordinate line disappears,
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A
Zy
z, = X1 ¥y
yC
T, :E fxy:O ; ’I
v = ¢
f, :% £, =0
4‘/
)7 -
i A A LT
Xy
= y? - = X I
9, ]+E7 gw—gzx'—c'y_ 9,= ! o
i
b11=b22=0 bwzbZ = (X.+y:+ci‘ )'y,
1 gt =Y 22 - X
r12 :r21 x2+y7+C‘ r12 r21 X:&-y:&C"

1.02 .1 2 _g
FTRIRTRP r%z

Fig. 16. Hyperbolical paraboloid and related quantities in the x,y,7, system

because this lines are straight. In formal computation this results in the
disappearence of the second partial derivatives of the same variable. The mixed
second partial derivative refers to the twist. The Gauss curvature is computed
by using (233):

2

— 0

k= 245
[(xl)z + () + 62]2 (245)
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The Gauss curvature proved to be negative, which refers to the hyperbolic
character of the surface. Formula (245) indicates, that the orthogonal projec-
tion of the points with constant Gauss curvature is a circle on the x,v, plane.

The hyperbolic paraboloid is a translational surface, as well. The transla-
tion of a parabola along another parabola in an orthogonal plane and inverse
direction describes the same surface we were investigating until now. We are
looking for an external x,v,z, system, where the orthogonal projection of the
two sets of parabolas coincides with the coordinate lines in the x,y, plane. By
rotating our previous system around the z, = z, axis we arrive at the wanted
equation:

2 2
gy = FS =) (246)
2¢

The relative position of the surface and the coordinate system is illustrated in
Fig, 17.

The equilibrium equations are the following:

(247)
ontt 2x oni? . ; x
S . - - e —n¥ 3‘) =+ n** - ~ = Pt
x x4 yT 4 ay X4yt et x4yt
(248)
) < 21 .
on® o 2y ., on% 12 x Y p
2 ) 2 2 ' =P - 2 1 2 2 2 1 2 2
oy Xy +c Ox x4y L x y 4
y 1
(ntt -+ n‘“) e == PB (249)

i
y

(=% + ¥+ %)

(The indices of the variables are always 2.)

The above formulas demonstrate, that the coordinate directions are now
identical with the directions of the main curvatures, because the mixed partial
derivative disappears. Our computations can be checked by calculating the
coordinate-invariant scalar Gauss curvature in the new system:

he O (250)
[(e? + (3 + F

The above formula is identical with (243) if, and only if

(%)* + () = (=) + (0)° (251)
holds. This relation is always true, because
(2 + O = (& + () =1 (252)

where “r’* means the horizontal distance from the = axis, which is invariant

under any rotation around this axis.

9
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Fig. 17, Hyperbolical paraboloid and related quantities in the x,y,3, system

We already referred to the hyperbolic character of the surface. The origin
of this name is the fact, that the plane sections orthogonal to the axis are hyper-
bolas. We want this hyperbolas to be coordinate lines. In order to do this we
simply have to change the vertical axis with any horizontal one in the x,y,z
system arriving at
— X

X3

33

(253)
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The relative position of surface and coordinate system is illustrated in Fig. 18.
We have now the following equilibrium equations:

1 2 L2 12 2
ontt 11 c*(dy + x%) i on s 3y _ Pt (254)
ox x(c*x? -+ Ay - xY) oy 2% L cly? 4 &t
(255)
522 2.. G2t 209, 1 3,2 902
on® | s €%y | om g C (Zy + 323 " 2¢%y _ p2
P : . il ' ; 7 ; _
Oy Pyt Ox x(cix? L Py at) cx? L Py 4 xt
2¢
(rity— i) —— 2 ps (256)
x(c?x? - By 4wtz

(The constant index 3 of the variables was neglected here again for the sake
of simplicity.)
The Gauss curvature is calculated as

b= — (257)
[e2(xa)* + e3(xg)* + (x3)']?
By transforming the above expression in the original system with
1)1 . :
Ys=5= . Xy =4 (258)

we arrive the eq. (250).

The equivalence of the equilibrium equations in the different coordinate
systems can be investigated only after having solved the equations. After
solution we either transform the tensor components under the rule (86) or we
compute the eigenvectors, but this goes beyond the range of this paper. As a
closing word we’d like to refer to more general coordinate systems. As a first
possibility we mention the case, when the orthogonal projections of the coordi-
nate lines are straight lines, but not orthogonal any more. In this case the
coordinates of the base vector fields are either calculated by directional deri-
vatives, or the equation of the surface has to be expressed in the skew system.
The most general coordinate lines are space curves, which cannot be transform-
ed into a position. where the orthogonal projections are straight lines. In
this case the tangent of the projected curve describes the direction. along which
the surface has to be differentiated.

All surface coordinate systems, which are the projections of the coordi-
nate lines of the embedding space don’t have the “natural” arch length as
parameter along their coordinate lines. This is a disadvantage from the physi-
cal point of view, but the equations are much simpler that way, which is the
engineer’s point of view.

We finished our calculations, and we’d like to investigate, how do our
results correspond to the promises we made at the beginning of this paper.

o%*
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Fig. 18. Hyperbolical paraboloid and related quantities in the xyy;7; system
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The main aim of our investigations was to eliminate the coordinate
systems from the physical description of membranes as far as possible. In
order to do this, we had to develope a mathematical tool, which enables us to
make direct computations with curved surfaces. Despite the fact, that in
technical applications one usually prefers a formal description which is easy
to handle, this doesn’t guarantee, that the same formal description is easy to
understand, as well. The type of description we tried to demonstrate in this
paper can hardly be handled easily by the practical engineer, but we hope,
that we could provide a deep insight for the interested reader in the physical
and mathematical background of membrane theory, which is often camoufla-
ged by the usual methods in computational mechanics. To illustrate, that the
derived results are not “pure theory” we illustrated them on the hyperbolical
parabeloid — and they seem to work.

List of symbols

1. Symbols without indices

unit veetor

stress vector

physical load vector

unit tensor = metric tensor

I
=]

rotation tensor

second order curvature tensor
stress tensor

orthogonal coordinate system
skew coordinate system
curvilinear coordinate system
determinant of the metric tensor
Gauss curvature

oo o RZWEHET o
Q

[

Indices

i, ok, l,m  can be equalto 1,2 or 3
%, fB can be equal to 1 or 2
(By quantities, where both latin and greek indices may occur, we will explain
only the version with latin indices.)

3. Symbols with a single index

e vectors of the orthogonal unit base
fo) transformed versions of the above vectors
agy a contra- and covariant base vectors
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178) stress vectors

Ty physical resultant vectors

Zo; partial derivatives of a scalar field
V., partial derivatives of a vector field

4. Symbols with two indices

i i

ging’ covariant and contravariant representation of the metric tensor
8= bj- mixed representation of the metric tensor = Kronecker delta
fag i representation of the rotation tensor

PN representation of the stress tensor

B B matrices of coordinate-transformations

b.g b2, b3 representations of the second order curvature tensor

Upj partial derivatives of veetor field

vl v |J representations of second order tensor derivative

Ay partial derivatives of base vector fields

L(i) contravariant coordinates of the stress vectors

5. symbols with three indices

Ly ;‘J Christoffel symbols

tijore partial derivatives of a second order tensor

3 jIk representation of the third order tensor derivative
CIO partial derivatives of the base vector fields

6. Symbols with four indices

Tijtm representation of the Riemann — Christoffel tensor

}](,m partial derivatives of Christoffel symbols
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