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Ahstract 

The aim of the paper is to derive the equations expressing the static equilibrium of 
membrane shells without introducing the bending theory. The first part gives a comprehensive 
introduction to the notions of tensor analysis which are needed in the forthcoming mechanical 
applications and contains a brief sketch of the background in classical differential geometry. 
The derived formulas are illustrated on some simple examples in the last chapter. 

Introduction 

The stresses in membrane shells are usually determined by applying 
Pucher's differential equation, which enables us to calculate the projections 
of the stress components onto an extel'nal coordinate system. In this paper a 
general equation is pl'esented, by means of which the stress components can 
be expl'essed in an arbitl'ary surface coordinate system. This equilibrium 
equation is usually introduced as a special case of the bending theory. The 
aim of this paper is to derive the equation dil'ectly, applying as simple tools as 
possible. The geometry of the curved, two-dimensional sm'faces, as the mathe
matical background of the equilibrium equation, is discussed. The paper is in
tended to be a comprehensive introduction for graduate students in civil en
gineering and architecture. 

Pucher's differential equation excellently demonstrates the fact, that 
the application of coordinate systems is of advantage when describing physical 
phenomena mathematically. This fact is generally accepted, but we must not 
forget, that the physical phenomena are totally independent of our coordinate 
systems. The representation of physical phenomena in coordinate systems may 
be regarded therefore as a disturbing type of description. 

It is self-evident, that if a natm'allaw holds, its representation holds in 
an arbitrary coordinate system, as well. There are a couple of rules, which 
permit us to transform the representation of a natural law from a coordinate 
system into another one. If the coordinates of a phenomenon observed in 
several coordinate systems are transforming under these rules, the phenomenon 
is said to he coordinate-invariant or simply invariant. 
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To eliminate the mentioned disturbing effect of the coordinate systems, 
basically two ways are possible: 

The "direct" description, which doesn't use any coordinate systems. The 
technical application of this type of equations may be sometimes cum
bersome. 
The formulation of general equations, where the form of the coordinate 
system itself is "blank". During technical applications any type of coordi
nate system may be "substituted" into the equation. 

In the section 1.1 we 'will introduce the basic notions by the "direct" 
way for the sake of comparison. Further on the second way will be followed and 
the equivalence ofthe two different descriptiom: "\Vill be indicated at appropriate 
places. 
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1. IHathematical preliminaries 

1.1. Invar£ant quantit£es - tensors 

1.1.1. Scalars 

Physical phenomena are quantitatively described by numbers. In the 
simplest case a single numerical data identifies the observed variable. This 
type of physical variables are called scalars. For example: volume, mass, 
temperature. 

If each point of the physical space is associated with a number, we arrive 
at a scalar field. For example if we measure the temperature at each point of a 
room, this data is represented by a scalar field. Two-dimensional scalar fields 
can be visualized as (generally curved) surfaces in the three-dimensional space. 

Scalars can be interpreted as homogeneous, linear scalar-scalar functions. 
A function is called homogeneous and linear if the following equations hold: 

f(a) f(b) = f(a + b) (1) 

f(l.a) = If(a) (2) 
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The scalar S defines for example the homogeneous linear scalar-scalar 
function h (x) = sx. For the sake of generality, scalars interpreted as homo
geneous linear functions will be called Oth order tensors. The meaning of this 
,viII (hopefully) become evident in the following sections. 

1.1.2. Vectors 

Physical quantities identified by a number and a direction are called 
vectors. For example: velocity, acceleration, force. Vectors may be visualized 
as directed intervals. The n-dimensional vector space is the set of all n-dimen
sional vectors, where vectors can be added ,vith each other in the usual way 
and can be multiplied by scalars. The three-dimensional Euclidean space is for 
example the vector space of the above-mentioned directed intervals. Two vec
tors are called equivalent in the Yector space, if they haye the same direction 

and magnitude. 
If each point of the physical space is associated with a vector, we arrive 

at a vector field (not to be confused with the vector space). For example if we 
measme the magnitude and direction of velocity of the partieles on the sm
face of a streaming liquid, this set of data is represented by a t"wo-climensional 

vector field. As an other example we can measure the principal stresses at each 
point of a three-dimensional elastic continuum to arrive at three different three
dimensional vector fields. 

Vectors can be interpreted as homogeneous linear scalar-vector or vector
scalar functions. Vector v defines for example the scalar-vector function 
(= vector-valued function with independent scalar variahle) g( x) = vx or the 
scalar-vector function scalar-valued function ,vith independent vector 
variahle) k(x) = vx. Vectors interpreted as homogeneous linear functions will 
he called 1st order tensors. 

1.1.3. Second order tensors 

Certain physical quantities can he descrihed neither hy scalars nor by 
vectors. This is the point, where second order tensors are introdUCed. Second order 
tensors are homogeneous linear vector-vector functions (= vector-valued func
tions with independent vector variahle). If each point of the physical space is 
associated with a second order tensor, we arrive at a tensor field. A 2nd order 
tensor field expresses the homogeneous linear connection hetween two vector 
fields. Second order tensors can hardly be directly visualised. We can form some 
image, no·wever, hy observing, that the application of a tensor to the unit sphere 
(formed by unit vectors of the three-dimensional Euclidean space) distortes 

the sphere into a general ellipsoid. During this transformation the unit vectors 
are rotated and their length changes, as well. 
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Two basic numbers are associated 'with a tensor: the order and the die 
mension. The order of the tensor fixes the number of vectors between which 
the tensor defines a functional relation. The dimension of the tensor fixes the 
dimension of the space where the above-mentioned vectors are interpreted. 

To mention some examples for second order tensors: 
The rotation tensor describes the rotation of a rigid body by defining a 

functional relation hetween the vectors associated with the points of the origie 
nal and the rotated body. 

The planar state of stress is described by the stress tensor defining a func
tional relation between a direction vector and the stress vector in that direce 

tion. 

1.2. Representation in coordinate systems 

The n-dimensional base is a syfltem of n linearly independent vectors. 
We ·will use mainly 2-and 3-dimensional bases. If a tensor is given \vith respect 
to a base, we speak about representation in a coordinate system. 

1.2.1. Orthogonal systems 

In the simplest case the vectors of our base ar~ mutually perpendicular 
unit vectors, this is called an orthogonal coordinate system. The base consisting 
of the vectors eel)' e(2)' and e(3) \"ill be denoted by K. The orthogonality of this 
base can be expressed by using the scalar (dot) product: 

and 

e(l)e(2) = e(2)e(3) = e(l)e(3) = 0 

The above equations can be expressed more concisely by 

{
lifi=k 

e(i)eO,) = 0 if i " k 

(3) 

(4) 

(5) 

(In the forthcoming formulas the latin indices i, j, k, etc. are assumed to be 

equal to 1, 2 or 3.) 
The symbol 

(6) 

is commonly used and called the Kronecker-delta. According to (5) and (6) the 
Kronecker-delta is defined by 

{
lifi=k 

(j. = 
lk 0 if i " k 

(7) 
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1.2.1.1. Vectors 

Since the vectors of the base K are linearly independent, an arbitrary 
vector can be expressed with respect to this base as 

(8) 

The set of numbers vi = (v l , V 2,V3) is called the coordinates of the vector v in 
the system K. We alTive at the geometrical interpretation of the coordinates 
if eq. (8) is multiplied by the vectors em' ("Multiplication" "\VilI mean, that we 
form the dot product ;v-ith each memher in the equation) 

(9) 

The above formula contains three equations, depending on, which base vector 
was eq. (8) multiplied ,v-jth. Equation (9) demonstrates, that the coordinates l'i 
are the orthogonal proj ections of the vector onto the coordinate axes. 

In calculations the vector v is often substituted hy the coordinates Vi' 

which doesn't mean, that tbe two things are identical. If we change the coor
dinate system, the coordinates change, but the vector doesn't. We introduce 
the notation 

Vi = K(v) (10) 

expressing, that Vi is the image of v in the system K. 

1.2.1.2. Second order tensors 

A second order tensor is uniquely given if we know the transformed 
version of an arbitrary vector v. It seems to be logical to deal \dth the transfor
mations of the base vectors first, since if 

(11) 

and 

(12) 

holds, than obviously 

Tu = v (13) 

where 

(14) 

Multiplying (14) hy e(I()' we arrive at 

(15) 
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The left hand side can be expressed by using (9) ~ 

(16) 

Introducing the notation 

(17) 

we arrive at 

(18) 

Forming a table with the values tUe in the following way is called the matrix 
of the tensor T in the system K, more concisely K(T): 

(

t11 t12 t13\ 

tif{ = t21 t22 t~3) 

t31 t32 t33 

(19) 

The determinant of the above matrix is called the determinant of the tensor 
T in the system K and is denoted by 

det tile = t (20) 

We ·will. calculate as an illustrative example the elements of the matrix of the 
planar rotation tensor F in the K system. The vector transformation can be 
written as: 

a' = Fa (21) 

With coordinates: 
2 

a~ = :2ftr.{Jap (22) 
,,=1 

(In the forthcoming formulas the greek indices wm be equal to I or 2.) Simi
larly to (17): 

(23) 

Figure 1 demonstrates, that by rotating the base vectors of the planar system 
K we arrive at the vectors 

I I' e(l) = e(l) cos rp T e(2) srn rp 
(24) 

e(2) = e(l) ( -sin rp) + e(2) cos rp 

According to this the representation of the tensor F in the system K is given by 

(

COS rp sin rp ) 
h.p = K(F) = -sin rp cos rp 

Using (25) an arbitrary vector can be transformed in K. 

(25) 
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cosP 
/ 

I sinf 

Fig. 1. The tensor of planar rotation 

1.2.2. Sh:ew systems 

1.2.2.1. Vectors 

The vector v can be expressed not only in the system K, but in an arbitra
ry system A determined by the base vectors aUl on the condition, that the 
base vectors are linearly independent: 

o (26) 

V denotes the volume of the parallelepyds spanned by the three vectors. The 
\'ector v can be expressed as 

v = ::2 v iaU) (27) 
l 

Similarly to (10) Vi = A(v). In the skew system A the scalar product of the 
vector v and the base vectors isn't equal to the vector coordinates, since the 
scalar product of two different base vectors isn't zero. We ,vilI introduce there
fore the reciprocal base aU) by 

(28) 

::Ylultiplying eq. (27) by 3,(I{) yields 

(29) 

which indicates, that the coordinates of v in the system A are equal to the 
orthogonal projections to the reciprocal base in the proper scale. This is illustra
ted in the plane by Fig. 2. 

Since the base vectors of the reciprocal system are linearly independent, 
v can be expressed as 

(30) 

Multiplying (30) by aU) yields: 

(31) 
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Fig. 2. The skew reciprocal base 

That means, that in the skew system A the vector v can be equally given by 
the numbers Vi or Vi' The numbers Vi ;v-ill. be called the contravariant coordi
nates, the numbers Vi the covariant coordinates of the vector v in the system A. 
In the orthogonal system K the contTavariant and covaTiant coordinates na
turally coincide. For further use we intToduce the notation 

(32) 

Let's now examine the geometTical inteTpretation of the symbols Vi and Vi, For 
the sake of simplicity we will work in the plane. Si milady to the notation intro
duced ahove, the Teciprocal vectors u(,,) "\\-ill. be denoted by a(O:). Rewriting now 
the two previous equations "'With the ne"w notations yields 

(33) 

and 

(34) 

Equation (34) contains the projections of v in the directions of the vectors a(o:) 
expressed in proper units. Since the vectOTs a(,,) aTen't unit vectors, we have 
to choose the quantity I a(",) I as unit. If we don't, than the magnitude of the 
projection may be calculated by 

(35) 

Summarizing the above investigations: the covariant coordinates mean the 
orthogonal projections, the contravariant components the projections in the 
direction of the coordinate axes. We are now interested in the problem, how to 
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calculate the covariant coordinates from the contravariant ones. Expressing v 
in both ways: 

Let's multiply eq. (36) by a(i) yielding 

vi{ = .::f via(i)a(i{) 
i 

(36) 

(37) 

The above equation demonstrates, that the connection between the two repre
sentations is given by the scalar products of the base vectors. This products 
depend on t"WO indices, "WP. introduce the notation 

(38) 

The numhers gu: are the elements of a matrix. Substituting (38) into (37) 
yields 

(39) 

If the inverse of the matrix gil: exists (let's denote it hy ik), than it is easily 
derived, that 

(40) 

There are some useful applications of the above derived results. Let's calculate 
the scalar product of two vectors in the skew coordinate system! We ,vill 
treat the follmving two Yectors: 

The scalar product in contravariant representation: 

"" i k U V = ..:;;;;;,. u v a(Oa(k) 
ik 

By using the formerly introduced gik notation: 

"" i k uv =..:;;;;;,. uv gik 
ik 

Deriving the same expression by using the co variant components: 

u v = :2 uiv"ik 

ik 

Now let's substitute eq. (39) into eq. (43): 

11 v = :5.' uiv" ."'=i { 
i 

(41) 

(42) 

(43) 

(44) 

(45) 
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and similarly: 

(46) 

Equations (45) and (46) closely resemble to their analogons in orthogonal 
coordinate systems. 

1.2.2.2. Second order tensors 

We will proceed as we did in orthogonal systems. A second order tensor 
is given in the most natural and simple \I!ay if we know the h(i) transformed 
versions of the a(i) hase vectors. Knowing this vectors the transformation of 
an arbitrary vector may be executed, since if 

and 

then on the hasis of (13) and (14) ohviously 

Tu= v 

" '" z,1·· v = ~ < u(O 
; 

Let's multiply (50) 'with 1l(J;): 

The left hand side can be written hecause of (31) and (32) as: 

Let 

According to this: 

( 47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

To calculate the quantities til; we used the hase vectors aU)' therefore the mat
rix tile "will he called the covariant representation of the tensor T in the skew 
system A. The contravariant representation t

ik may be derived in a similar 
way. Remark, that transforming the components of the vector u by the 
matrices tik or t ik we always arrive at y components of different representa-
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tion. To avoid this inconvenience let's introduce the mixed representation of 
the tensor T by 

and 

where naturally 

and 

i _ (i) 
t./{ - a hUe) 

v· ! 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

The sequence order of the indices is not indifferent, since the matrices t: i! 

and t/ are in general not identical. \,Ve will introduce now the so-called Einstein 
summation convention for the dummy indices: 

(61) 

If the dummies are the indices of a mixed representation tensor, then this 
summation is called the contraction of the tensor resulting a tensor of order 
0, that means, a scalar. This operation is equivalent to the summation of the 
components in the main diagonal. 

In generality: by summing a tensor of order n to a single pair of dummy 
indices we arrive at a tensor of order (n-2). 

Let's examine now the meaning of the symbols gi!: and gik introduced 
in eq. (38). By comparing (53) with (38) we can observe that the symbol g!!c 

is the covariant representation of the E unit tensor, since on the basis of the 
equations (3) and (38) this tensor maps the base vectors onto themselves. 
Similarly the symbol i k is the contravariant representation of the unit tensor. 
In the orthogonal system we havc naturally 

Ik ~ 
gik == g == Ui/{ (62) 

The symbols glk and gi/{ are usually called the components of the metric tensor. 
This name will be explained later. 

We are going to investigate the relationship between the four possible 
representations of a second order tensor T in the skew system A. Since the 
various representations can be computed by using the covariant and contra
variant base vectors, the transformation rules between the representations can 
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be derived from the relation between the base vectors. Let's express the 
vectors a(i) as a linear combination of the vectors a(i): 

(i) ik 
a = n a(k) (63) 

By multiplying eq. (63) with aU) we arrive at 

ilc ili 
n =g (64) 

According to this the correspondence between the two systems is given by 

(a) 

(b) 

(65) 

Equation (65) enables us to determine the relation hetween the different 
tensor representations. T . 

Let: 

tik = a(i)h(k) 

If we substitute (65jh) into (66), we arrive at 

(i) 
tik = gn,a h(f{) 

On the hasis of (55): 

(66) 

(67) 

(68) 

The relation hetween two arhitrary representations of the tensor T may be 
derived in a similar way. Remark, that the multiplication 'with i" or gik results 
the "moving" of an index up or dovv"11, respectively. Applying this to the metric 
tensor G: 

(69) 

Developing this equation for two dimensions we arrive at the follo"\ving for
mulas: 

1, 21 g12 g-=g =-- (70) 
g 

where g denotes the determinant according to (20). 

1.2.3. Curvilinear systems 

The location of a point in space may be identified not only by the coor
dinates introduced before, but by the means of other parameters, as well. We 
,till use the parameters 0 i • Let A(x) = Xi the representation of the position 
vector x in the skew system A. The functional relation 

Xi =f(0) (71) 
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has to exist. Let's consider the parameters 6; as the coordinates of the position 
vector x. If the function f is non-linear, then the quantities 6 i are called the 
curvilinear coordinates of x. This fact will be denoted by 

(72) 

The transformation of the coordinates to the system A G can be carried out 
only in the case if the function f is invertible, i.e. the mapping is unique both 
ways. The curvilinear coordinate systems are often applied, for example the 
spherical coordinate system, called the spatial polar system, as well. For this 
special case eq. (71) may be 'written as 

Xl = r cos cp sin y (73) 

X 2 = r sin (p sin y 

X3 = r cos y 

In the system A G correspond to the constant value of any single parameter a 
curved surface in the three-dimensional space. If two parameters are simulta
neously constant, then we arrive at space curves (lines) after which the A G 

system was named. ("Curvilinear system") The system AG can be treated 
locally as a skew system. In other words, the system A G defines a skew system 
A at each point of the three-dimensional space. The base vectors of the local 
system A are given by the tangent vectors of the coordinate lines 

(H) 

(The derivation of vector fields will be discussed in section 4.2 in detail.) 
Up to now we were dealing with the curvilinear representation of the position 
vector x, hut this doesn't answer the question ahout the curvilinear represen
tation of an arbitrary vector v \,ith origin differing from the origin of the 
coordinate lines. For convenience we define the curvilinear representation 
AG(v) as the representation of v in the skew system A determined hy the 
system AG at the origin of v hy the equation (74). Remark, that the represen
tation of the metric tensor depends on the coordinates, as well 

ox ox 
go: = 06; 06" 

(75) 

1.3. Transformation of coordinates 

Our aim is to determine the transformation rules for tensor coordinates 
if we s"\Vitch from system A G to A:G. The hase vectors are those defined hy 
eq. (74): 

7 
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OX 
aU)= (J0

1 

and the base vectors of the system AG 

where 

x =/(0 i ) 

0 i = h(ei) 

Let's express the vectors ii(i) as the linear combinations of the vectors a(i): 

ii(i) = p{a(j) 

(76) 

(77) 

(78) 

(79) 

(80) 

According to this equation the matrix f3 (which is quadratic, of course) inherits 
the first index from the original system, the second one (with-) from the trans
formed system. Let 

On the basis of (80) and (81): 

i -i-
V = V a(i) = v a(i) 

Ca) Vi = vi'pf, 

(b) Vi =vk f3'rc 

(81) 

(82) 

\Ve can determine the relation between the representations gik and gi!; of the 
metric tensor: 

(83) 

and on the basis of (80): 

(84) 

Based on the above formulas the general transformation rule for the coordina
tes of a second order tensor t is easily derived. Let 

and on the basis of (80) and (82): 

a) 

tile = a(i)h(l;) 

tile = ii(i)h(!;) 

(85) 

(86) 
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Remark, that eq. (86) serves in many cases as an alternative definition for 
tensors. In practical applications we can decide often on the basis of this for
mula, whether the examined phenomenon can be described by a tensor or not. 
We have to measure in an experiment the coordinates in two different coordi
nate systems, and if the measured quantities transform under the rules prescrib
ed by eq. (86), then they are the representations of a tensor. The connection 
between the two coordinate systems is given by the matrix fJ. 

Based on the equations (76), (77), (78) and (79) we can define now the 
components of the matrix fJ by the equations 

and 

Of course, 

holds, as well. 

fJr = ae" 
ae i 

(87) 

(88) 

(89) 

The above given definitions may be easily generalized for contravariant and 
mixed representations, the determinant of "'which is an invariant scalar. It is 
worth observing, that in the equations (80) and (82) the relation between the 
,-ector coordinates is the opposite of that between the vectors. This is the origin 
of the name "contravariant". 

As an illustrative example for the transformation rules we ""ill calculate 
the relation between the tensor coordinates given in an orthogonal system by 
eq. (17) and in a skew system by eq. (53) in two dimensions. Coordinates are 
illustrated in Fig. 3. 

:~'C?S" 
e11) 

Fig. 3. Relative position of the planar K and A system 

In the examined planar case 

(90) 

holds. Let 

(91) 

7* 
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The elements of the transformation matrix {3 are readily derived as: 

{3f = em = cos rp (3f = sin g' 
a(l) 

(3~ = 1 

Now we can calculate the components of the matrix tu,: 

= cos (P <12 T sill (P t21 

= cos (P t21 + sin (p t12 

R2(R1t I R2. )_ 
Vi fJi 21 T fJi&22 -

sin rp cos cp( t12 

>4('0') _: _ R1(R1 I {<2 ) I {<2(R1 
J:1 - 22 - [22 - IJ'i fJZhl T IJ'it12 T fJ'i fJZhl 

(92) 

(93) 

By this example we wanted to underline, that the computation of the tram
formation has to do only \vith the different representations of the same physi
cal quantity in different reference frames. If a tensor equation holds, than it 
holds in an arbitrary coordinate system, but in each system the form of the 
equation will be different, according to the rules of transformation derived in 
this section. 

1.4. Differentiation of tensor fields 

1.4.1. Scalar field 

1.4.1.1. Directional derivative 

For the sake of simplicity we will treat a two-dimensional scalar field, 
which can be \isualized as a curved surface in the three-dimensional space. 
This surface will be denoted by Z. 
We ,,,ill investigate the surface at point P, which corresponds to the point P 
of the scalar field. If we intersect the surface Z by a plane passing through P 
and orthogonal to S (the plane, on which we interprete the scalar field), then 
the result is a curve on the surface. The intersection of this 'orthogonal plane 
vvith S is a straight line, which ,,,ill be denoted bye. Let us proceed now on e 
by the distance c. The value of the scalar field will be denoted by z', at the 
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Fig. 4. Scalar field as curved surface 

original point P ·with z. Now the directional derivative of the scalar field at 
point P in the direction e is defined by 

This can be visualized as the directional tangent of the surface curve at point 
j5 in the plane of intersection. This is illustrated in Fig. 5: 
Remark, that the directional derivative ha;:: been introduced "without the use 
of any coordinate systems. 

/ 
'/ / / 

/ 

Fig. 5. Directional derivative of scalar field 
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1.4.1.2. Partial derivative 

We will now use in the plane a coordinate system xC,,), In this system the 
scalar field can be interpreted as a scalar function in two variables in the form 
z = f(x(",»). If we calculate the directional derivatives in the directions of the 
coordinate lines, we arrive at the expressions 

8z 
--=Z'et 
aXC",) 

(95) 

which ,,,ill be called the partial derivatives. The quantities Z'''' can be represented 
by two Ecalar fields. (The partial derivatives of an n-dimensional scalar field 
are represented by n i'eparate scalar fields in n dimeni'ions.) 

1.4.1.3. Gradient field 

Despite the fact, that the partial derivatives of a scalar field depend un 

the coordinate system, we are able to define a coordinate-invariant quantity 
,dth the aid of them. Let's regard the partial derivatives as the components of 
a vector given in the same coordinate system as the original scalar field. \Ve 
can decide, whether they are actually vector coordinates by the transforma
tions rules derived in eq. (82jh). In the original system we have 

Clz 
z,_ ==--

~ ClXe,,) 
(96) 

Transforming no",- to the new coordinate system x by the eq. (88) we arrive at 

z,;: = r ~z = r 8z ~~(P) =- ::;"J3g 
ox"") oXC/l) OX(2) -

(97) 

This illustrates, that the partial derivatives transform under the rule for vector 
coordinates. The physical invariant vector determined by the partial deriva
tives ,,,ill he called the gradient of the scalar field. The gradient of an n-dimen
sional scalar field is an n-dimensional vector field. The gradient vector field 
",ill be denoted by g. 

We ,dli try to visualize the gradient field in two dimensions. Figure 6 
demonstrates a two-dimensional scalar field as a curved surface z = f( x, y). 
At point P of the surface the tangents parallel to the coordinate planes are 
indicated. 
This tangents determine the tangent plane P 1 P ~P 3' The partial derivatives 
are the directional tangents of the lines e1 and e2, therefore 

(98) 
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Fig. 6. The gradient 

The tangent of the interval PIP? on the plane xv is OP1
• If we measure the 

~ - -' OP? 

vector g from the orthogonal P' projection of the point P, then we find, that 
g is orthogonal to PIP 2' since the tangent of g can be expressed as 

OP3 
OP,;! 
OP3 

OPI 

and is found to be the reciprocal value of the tangent of P 1P 2• The vector g 
indicates at each point the direction and magnitude of the fastest rate of change 
of the scalar field. 

1.4.2. Vector field 

1.4.2.1. Directional derivative 

We will consider a three-dimensional vector field. This field defines the 
vector vat point P. Now we select an arbitrary straight line (direction) e pass
sing through P and proceed along this line by a distance e to arrive at point 
Pi. The vector defined by the vector field at this last mentioned point villI be 
denoted Vi. The directional derivative of the vector field at point P in the di
rection e is then defined by 

lim (v' - v) (99) 
e-O e 
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Fig. 7. Directional derivative of vector field 

This is illustrated by Fig. 7. 
Remark, that the directional derivative of the vector field has been introduced 
"without the use of any coordinate systems, similarly to the directional deriva
tive of the scalar field. The directional derivative of an n-dimensional vector 
field is a vector field of the same dimension. 

1.4.2.2. Partial derivati1:e 

The vector field will be interpreted in the cOOTdinate system Xi' In this 
system the vector field can be interpreted as a vector-vector function in one 
variable, "iuce the vector v is the function of the position vector x, both vectors 
given "with their coordinates. We are going to determine the directional deri
vatives in the directions of the coordinate lines. In order to do this, we can 
write the vector field in the form 

(100) 

on the basis of equations (27) ~1lld (32). Differentiating eg. (100) by th;> jth 
variahle "we arrive at 

V'j = (viaU))'j 

Applying the rule for product differentiation yields 

a) 

or resoh-ed to covariant components 

b) V'j = vl'ja
U

) - vIaU\ 

(101) 

(102) 

The first member contains the partial derivatives of the scalars Vi and VI 

multiplied by the base vectors. This partial derivatives can be determined on 
the basis of section 1.4.1. 

The second member contains the partial derivatives of the base vectors 
multiplied by the scalars v' and Vi' In a straight (orthogonal or skew) coordi
nate system this derivatives disappear, of course, since the base vectors are of 
constant magnitude and mrection. To "visualize the meaning of the second 
member, let's regard Fig. 8: 
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b) c) 

Fig. 8. Connection between vectors and vector coordinates 

It can be observed, that in a straight coordinate system the change of the 
vector coordinates sufficiently describes the change of the vector, therefore 
the first member of the partial derivative contains enough information. In 
curvilinear systems this is not the case: 

The vectors in Fig. 8/b are equal, but their components aren't. In Fig. 
Sic the opposite happens, the vectors are not equal, but their components 
are. In section 1.4.1.2. v,-e didn't meet this "second member", hecause the re
presentation of scalar fields is independent of the base vectors. 

1.4.2.3. ChristojJel symbols 

In section 1.4.2.1. we observed, that the directional derivative of a vector 
field is a vector field, as well. According to this the vector field aU)' j can be 
resolved to components in the hases a(i) or a(i): 

(103) 

Multiplying the above equation by a(h) we arrive at 

r (I) r -I r 
aCi)'jaCk) = ij1a aU;) = ij1fh = ijk (10-1) 

Equations (103) and (104) are equivalent definitions for the quantities r with 
three indices. The quantities r ijk and r;j are called the Christoffel symbols of 
the first and second kind, respectively. They 'were introduced by the mathe
matician Elvin Bruno Christoffel. The r symbols are cube-matrices, with 
27 components in 3 dimensions. The first index of the Christoffel symbol refers 
to the variable (base vector field) to be differentiated, the second tells, in which 
direction it has to be differentiated and the third identifies the component of 
the directional derivative resolved already in the coordinate system. We are 
no\y going to derive some useful formulas in connection \\>ith Christoffel 

symbols. 
Multiplying (103) 'ivith the base vectors we arrive at 

(105) 
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This illustrates, that the third index of the Christoffel symbols can he 
"moved" up or down by the method first described in eq. (68). This does not 
hold for the first two indices, since the Christoffel symbols are not third order 
tensors. 
Differentiating eq. (74) by the jth variable yields 

(106) 

which displays the symmetry of the Christoffel symbols '\\ith respect to the 
first two indices. Differentiating eq. (38) by the kth variable yields 

(107) 

Comparing this with (103) we find, that 

(108) 

Writing the above result cyclically thrice, we arrive at the equation system 

(109) 

b) r kij r ijl{ = gjk'i 

c) r jki r ijk = gki'j 

Composing now the equation (b/) + (cl) - (a/) yields 

(lIO) 

This formula is convenient when calculating the Christoffel symbols in a coordi
nate system where the coordinates of the metric tensor are already knO'Vll. 
By using eq. (70) we arrive at 

d) rt _ 1 og og _ 1 olr-g ir--- --r--=- __ T 

2g 8gis 8e Vg oe 
(lIl) 

by using the result 

b) 
og . =gglS 
ogis 

1.4.2.4. Tensor derivative 

Applying the symbols introduced in (104) to (102) yields 

(lI2) 

By changing the indices of the last two members we arrive at 

(lI3) 
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Writing the equation for the components only (by multiplying with a(k») 

(114) 

Vdj = Vi'j - v/ir;j 

The above expression will be called the covariant derivative of the vector 
field v. The covariant derivatives Vifj are analogons to the partial derivatives 
of the scalar field. They depend on the choice of coordinate system, but, as 
we did with the partial derivatives, it is possihle to define a coordinate-inya
riant quantity by using them as coordinates. This invariant \vill he called the 
second order tensor deriYative of the vector field. The second index of the ten
sor derivative is always covariant, this is the reason to call the quantities v'i j 

the covariant derh-atives. This characteristic was inherited from the fact, that 
we interpreted the position vector x in a contravariant (traditional) way. 
Resolving the position vector into covariant coordinates we could derive the 
contravariant derivative, hut this has no practical reason. 

In the case of the gradient vector we proved, that the partial derivatives 
of the scalar field transform under the rule prescrihed for vector coordinates. 
Now we are going to do the same for the coordinates of the second order tensor 
derivative. In order to do this we calculate the covariant derivative of the 
vector y in the system a(i~: 

Applying the "chain rule" yields 

Comparing the right hand side of the ahove two equation yields 

v- !"a(i) = 1'.1 .a(i)fJ~ 
1 I} 'I J 1 

Multiplying this with a(t;) = fJ¥.au{) we arrive at 

'-1- - . I fJ"fJ j 
Vk,j - vie j It .7 

(lIS) 

(116) 

(117) 

(lIS) 

Comparing the ahove equation , ... ith (86th) we see, that our statement is 
proven, the covariant derivatives are actually the coordinates of a tensor. 

Summarizing our results we can say, that the covariant differentation is 
an analogon of the partial differentiation and differs from the latter only in the 
curvilinear representation of tensor fields of order higher than zero. 

1.4.3. Second order tensor field 

We are going to introduce the derivative of the second order tensors. On 
the hasis of the previously deriYed equations it ,vill not he quite surprising, 
that the derivative of a second order tensor field is a third order tensor field. 
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We are going to deliver a rather formal description, but later we -will examine 
the derivatives of specific second order tensor fields. 
}Iultiplying the covariant tir representation of the tensor T with the contra
variant vector components u' and v' we arrive at the scalar s: 

(119) 

Differentiating the above expression by the kth variable and considering 
eq. (1l4) yields 

(120) 

~ i I j. ' .J i ir! j i lri 
~;J'u ,/.v ,.. t;,u V !/. - t,.,ll /;1 V - t;J'u, V 1-:1 

• I i. • J I • J • 

This can be written in the folIo'wing form, as ",-eH: 

(121) 

by accepting the foIlo'wing definition 

(122) 

Changing the dummy indices we arrive at the form 

(123) 

This equation holds for an arbitrary matrix tij and given components u' and 
vJ if and only if 

(124) 

The above expression is the definition of the covariant derivative of the tensor 
T in the representation tij • This can be expressed hy 

(125) 

As mentioned before, we assume, that the quantItIeS tulle represent a third 
order tensor. To prove this, we use the same procedure as we did in the equa
tions (115)-(118): 

T ! -(I) -(j) 
-=t-~I-·a '" 'k l].It -

(H) 

m _ T a I (i) (j)fJH 
l',Ie= ,!.--=tu,·a a f, , ii<k) " .. 

t-71~ iiU)iiU) = t,1 .a(i)aU)IB~ 
lJ !.. 'J ll, !.. 

t;] I k = t ij I kfJffJJfJ~ 

(126) 

(127) 

(128) 

(129) 
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Similarly to eq. (124) we arrive at the following expressions: 

i I i I Iri irl 
t' j " = t. j ,,, T t' j Icl - t' l jk 

tJI t·j tJrl 
I t.lrj 

i le = i 'k - I i/( T i k( 

.i] I - t ij -L tljri -L tilr'i 
~ k - 'k I lel I lel 
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(130) 

(131) 

(132) 

Based on our experiences with second order tensors we can generalize for 
higher order ones: The covaI"iant derivative of an nth order tensor in a given 
representation can be computed by calculating the partial derivatives of the 
scalar tensor components and adding n members with Christoffel symbols. 
The result is an (n 1) th order tensor. 

1.4.4. The Riemann-Christoffel tensor 

Equation (U8) demonstrates, that the components of the covariant deriva
tive of the vector v are the representation of a second order tensor. In eq. 
(124) the covariant derivative of second order tensors is introduced. Based on 
this, we are going to execute covariant differentiation on the second order 
tensor deriyative of v. Let 

(133) 

Applying eq. (124) to the above expression yields 

(134) 

We want to investigate, whether the indices in the covariant derivative can 

be changed or not, in other words, whether Vdjk = vd kj or not. In the case 
simple partial differentiation this can be done. The quantities vii k' can be 

, J 

expressed by the simple change of indices: 

Expressing now the difference of the investigated quantities we arrive at 

vil jk - V;jkj = V;'jk - V;'kj - Vm'kr~ + 

(135) 

(136) 

Since the indices in the simple partial derivatives can be changed, the first 
two term8 cancel each other and finally we have 

I 
! (rm rm rmrl rrnr!) 

Vi jk - Vi!kj = Vrn ik'j - ij'k - lj iT; - lle ;j (137) 

The left hand side of the above equation is obviously the representation of a 
third order tensor. This fact implies, that the bracet on the right hand side 
has to be the representation of a fourth order tensor, the first index of which 
is contravariant and the follo"wing three covariant. 
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Up to now we had to do only with tensors of order equal or lower than 
three. The appearance of a fourth order tensor doesn't imply difficulties, be
cause all our former definitions for tensors are easily generalized. Returning 
now to eq. (137), let's denote the fourth order tensor by 

(138) 

The quantItIes r}~k will be called the representation of the fourth order 
Riemann-Christoffel tensor. Now it is easy to answer our pre"dous question: 
the indices of the covariant derivative can be changed if and only if 

(139) 

The Riemann- Christoffel ten::,or is of course invariant under the transforma
tion of coordinates, therefore if an equation holds in an arbitrary coordinate 
system, then it holds in each one. If we choose the orthogonal coordinate sys
tem, then eq. (139) is trivial, therefore it holds always. Now "WC have to ask, 
whether the orthogonal coordinate system exists in the examined space or not. 
This is not a trivial question, since in an equivalent way we may ask, ,"'hether 
the structure of the examined space satisfies the euclidean axioms, or not. 
The two dimensional case is discussed in the following section. The three di
mensional case goes beyond the range of this paper, but remark, that the first 
man to estabilish a non-euclidean geometry ,vithout contradictions was 
J{mos Bolyai. His geometry is the so-called hyperbolic geometry. Later the 
elliptic geometry was elaborated. In the hyperbolic geometry the curvature 
of space is a negath-e constant, in the elliptic geometry a positive constant. 
The most general geometry is due to Bernhard Riemann. In the Riemann geo
metry the curvature of space is non-constant. The general relativity theory of 
Albert Einstein was based on the Riemann geometry. 

This illustrates, that the Riemann-Christoffel tensor is closely related to 
the curyature of space, therefore it is called the Riemann-Christoffel curva
ture tensor. 

1.5. Geometry of wrved surfaces 

,'\Then Carl Friedrich Gauss was asked to partICIpate in the geodesic 
surveying of the county Hannover, the great germ an mathematician medita
ted for a long time over the sufficient and necessary condition of the existence 
of a measure-preserving planar map of a hilly landscape. His investigations 
resulted in one of the most outstanding theorem of his career, he himself cal
led it "Theorema egregium". He proved, that at each point of the surface a 
scalar quantity can be calculated which is invariant under the transformation 
of coordinates. This scalar is now called the Gauss-curyature of the surface. 
The necessary and sufficient condition for the surface to havc a measure-pre-
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serving map in the euclidean plane is the disappearance of the Gauss curva
ture. It is surprising, that despite the fact, that the surface is enbedded in the 
three-dimensional euclidean space, it is theoretically possible, to measure the 
Gauss curvature "in the surface" for example flat, two-dimensional creatures 
moving exclusively in the surface could do that. 

If the Gauss curvature doesn't disappear, then the surface can't be map
ped in a measure-preserving way onto the euclidean plane, that means, that 
the euclidean geometry doesn't hold on the surface. In this section ·we will 
try to get acquainted with the intristic geometry of this non-euclidean surfaces. 

1.5.1. Interpretation of the metric tensor 

We will investigate the geometrical meaning of the metric tensor intro
duced in eq. (38). Vie consider a plane with coordinates x(~) and the infinitesi
mal line element ds will he resolved to components in this coordinate system. 

ds = dxCf.a(~) (140\ 

We vvill now multiply ds with itself arriving at 

(141) 

which is the square of the length of the line element. Equation (141) is a straight
forward generalization of the Pythagoras formula, in differential geometry it is 
called the first fundamental form of the surface. In the usual orthogonal coordi
nate system the coordinates of the metric tf'nsor are l'Pprp,,('ntNI hy tIll' 
unit matrix, and the "well-known form of the Pythagoras theorem holds. If 
we introduce an other coordinate 8ystem in the plane and transform the com
ponents of the metric tensor under the rule given in eq. (86) then the validity 
of the euclidean geometry will not be disturbed. 

Orthogonal coordinate 8ystems are, all the same, equivalent to any other 
coordinate system, therefore we can prescribe, in which arbitrary coordinate 
system we wish the metric tensor to be represented hy the unit matrix. 

1.5.2. Classification of two-dimensional surfaces 

Now we ask the inyerse question as before: what happenes, if we define 
in a region of the plane the components of the metric tensor arbitrarily in a 
gi"'en coordinate system, and there is no coordinate transformation, under 
which the representation becomes identic with the unit matrix? In this case 
the given g metric tensor field defines a non-euclidean geometry in the plane. 
This can be visually realized by bending the plane into the three-dimensional 
plane. This bending must include stretching, as well. This is the reason, why 
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non-euclidean surfaces are often called curved surfaces. This name refers to the 
enbedding of a surface v"ith non-euclidean metric into a higher dimensional 
euclidean space. If the mentioned bending doesn't include stretching, then we 
arrive at the well-known developable surfaces with euclidean metric. 

We conclude from this, that the metric uniquely determines the geometry 
of the surface, but it doesn't uniquely determine the form of the surface in the 
embedding euclidean space. 

It is hard to visualize curved spaces if their dimension is higher than two, 
because for the visualization we need the embedding euclidean space, the di
mension of which is always higher than the dimension of the curved space. In 
the case described just before the embedding space had one dimension more 
than the curved surface. This is not bound to be so, since a one-dimensional 
'wire can be bent in a 'way, that it can't be embedded in a two-dimensional 
surface. (Remark, that the intristic geometry of a wire doesn't change by 
bending.) 

The two-dimensional surfaces v,ill be classified on the bases of the mi
nimally necessary dimension of the embedding euclidean space. If this dimen
sion is two, then the surface is called a plane, if it is three, then the surface is 
called a hypersurface, if it is larger than three, then it is called a general two
dimensional surface. In this general case the intristic geometry of the surface 
is described by the Riemann-Christoffel tensor. To calculate the components 
of this tensor we need the coordinates of the metric tensor and their derivatives 
only, therefore we can say, that the intristic geometry of the surface is comple
tely described by the metric tensor. However, this calculations are rather cum
bersome, so it is difficult to see the connection between the given metric tensor 
field and the intristic geometry. 

We are now especially interested in the description of hypersurfaces, 
which is a special case. The intristic geometry of a hy-persurface can be descri
bed by a tensor field, which is much simpler than the Riemann-Christoffel 
tensor, but can't be applied to general two-dimensional surfaces. We are going 
to get acquainted with this simpler tensor field. 

1.5.3. The second order curvature tensor 

We are going to investigate a region of a two-dimensional hypersurface 
embedded in the three-dimensional euclidean space, with coordinate system 
xC,,) in the surface. At point P we can regard the tangent plane of the surface 
and the normal vector of the tangent plane. This normal vector is called the 
normal vector of the surface at point P. With the aid of this we are able to 
define a normal vector field a(3) with 

(142) 
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The orthogonality condition with the hase vectors yields 

(143) 

The direction of the a(3) vector field depends on the sUl'face coordinates, but 
not the magnitude. Therefore the partial derivatives of the unit normal vectol' 
field are surface Yector fields, that can hc resolved in the surface coordinate 
system: 

(144) 

Multiplying this with aCYl ,,-e arrive at 

(145) 

The quantities b"p are the representation of a second order tensor, this can be 
demonstrated hy the transformation equations. Nmr \',-e will derive some useful 
formulas in connection with this tensor. Differentiating (143) and hy using 
(145) we arriYe at 

ah)'pa(3) = - a(,,)a(3)'p = bp" (146) 

Writing eC[. (104.) in the ahove introduced coordinate system yields 

a r (;,) I r (.1) 
(")'P = "p'la T "P3 U (147) 

On the hasis of the two previous equations we have 

(148) 

Using the derived formulas for the Christoffel symhols the last equation can 
he re-formulated as 

-r,,3p (149) 

The tensor B represented hy the matrix b"p will he called the second order 
curvatlll'e tensor. Other representations of the tensor are found hy multipli
cation with the metric tensor: 

(150) 

The mixed representation can he derived hy interpreting eq. (144) in an other 
representation: 

(151) 

From the ahove equation follows, that 

d d _x - l (f-)d .C!-
a(3) = a(3)'" x - - }"pa x (152) 

8 
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Let's multiply the infinitesimal vector with the line element ds by using equa
tions (140) and (152): 

d a - b (lJ)a·" a·;' -- b ~fJd ~d ;-a(3) S - - ~fJa x a(y) x - - "flu;, x x 

da(3)ds = - b"fJdx~dx;' 

(153) 

(154) 

In classical differential geometry the right hand side of eq. (154) is called the 
second fundamental form of the surface. The coefficients 611' b12 = b21 , b22 

were denoted by E, F, G by Carl Friedrich Gauss. 

/x-

/ 
A 

8 ~x: 

Fig. 9. Connection between the curvature and the unit normal .-cctor 

We will now try to visu alize the components of the second order curva
ture tensor in mixed representation. We assume, that all components but bi 
disappear, and "we intersect the surface with a normal plane along a X(l) line. 
This is demonstrated in Fig. 9. 

Since a(3) = 1, the length of the infinitesimal vector 

d a I b1 a·1 a(3) a(3)'1 x - la(l) x (155) 

is equal to the angle dq; between the surface normals at point A and B. If this 
angle is divided by the length of the vector a(1)dx l , then we arrive at the cur
vature of the surface line X(l), which is equal to the curvature of the surface in 
the direction X(I). 

dcp = i da(3) I 
as I all) ldxl 

Now let's assume, that bi = 0 hut bi 7'- 0 
Figure 10 illustrates, that 

da(3) = a(3)'1 dx1 = - bia(2)aX1 

so the twist of the surface is 

d{} 

ds 
I da(3) I 
I a(l)dx' I 

(156) 

(157) 

(158) 
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Fig. 10. Conllcction hetwecn thc twist and thc unit normal vector 

If a(l) = a(2)' then bi = b~ and both components are equal to the t"wist of the 
surface along the coordinate lines. If the opposite holds, that the two compo
nf'nts aren't equal, hut they are closely related by eq. (158) to the twist. 

1.5.4. Covariant derivative of sll1face tensor fields 

A general vector field with origin on the surface can he resoh·ed into in
surface and normal components: 

v = via(i) = v"a(::<) + v 3a(3) (159) 

This equation is differentiated according to eq. (113), yielding 

V ! a(3) 
3 i 13 

We conclude from equations (143) and (144), that 

a(3h,a(3) = 0 

therefore on the basis of (105) 

Similarly 

(160) 

(161) 

(162) 

(163) 

The previous equations demonstrate, that the Christoffel symbols disappear 
on the surface, if they have more than one index equal to three. Using this 
fact and equations (148) and (160) ·we arrive at 

(164) 

and 

(165) 

8* 
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The first two terms in eq. (164) are the plane analogons of the eovariant deri
vative defined in eq. (114-). We introduce the following notation for them: 

(166) 

According to this 

(167) 

and similarly 

(168) 

In the case, when v is an in-surface vector field (1: 3 = 0) there is no difference 
between the two cuvariant derivatives. 

(169) 

Remark, that despite the fact, that v is an in-surface (or tangent) vector field, 
the partial derivatives have a normal component, as ·well. We are going to 
deal with second order surfacc tensor fields only, 'which transform tangent 
vectors into tangent vectors. For this special typc of tensors the results for 
vector fields are easily generalized, and by using equations (132) and (168) 
we arrive at 

(170) 

1.5.5. Connection betu;een the quantities related to the curvaturP 

Up to now wc mentioned three quantitics, which are related to the cur
vature of the surface: the Gauss curvature, the Riemann-Christoffel curvature 
tensor and the second order curvature tensor. The first and the third one can 
he applied in the analysis of hypersurfaces, more general surfaces can be in
vestigated by the Riemann-Christoffel tensor. The Riemann-Christoffel tensor 
has in two dimensions only one independent component, thc r:\2. This com
ponent is equal to the determinant of the mixed representation second order 
curvature tensor and to the Gauss curvature of the surface! We are going now 
to prove the abovc statement formally, as well. 

By differentiating the base vector field twice we arrh-e at 

ra 
a(~),,,y = ~",ya(,5) 

which is equivalent to 

- (rO I r; r a b bO) I (r: b a(~)'j3y - ~.8'Y -, ~j3 ;y - "fJ;' aiD) i '.8;y (172) 

The expression for a(,),,,C' can be derived by changing the indices in the expres
sion. Equating the coefficients of ala) in the two expressions yields 

(173) 
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Comparing the left hand side of the above equation with the coefficient of vm 
in eq. (137) yields for the two-dimensional representation of the Riemann
Christoffel tensor 

(174) 

Let us "lift" the index (f. and suhstitute into eq. (173) 

,h b~bb b"-b" 
r. '/3y == ;' f3 - P r (175) 

The symmetry properties of the tensor B imply, that only the component 

r:\2 can he independent. By suhstituting 

(176) 

·we arrive at 

(177) 

The right-hand side is determinant of the mixed representation of the second 
order curvature tensor, which is equal to the Gauss curvature. Thus we de
monstrated the connection hetween the curvature quantities. 

2. Theory of membrane shells 

Shells, in which hending moments can be neglected are called membrane 
shells. Membrane theory assumes the following things: 

The material of the shell is isotropic and oheyes Hooke's law. 
The thickness of the shell (and the bending moments) can be neg
lected. 
The state of stress of the shell is fully described by the membrane 
forces acting in the mean surface. 
Supports along the houndary are tangent to the mean surface. 
Deformations due to memhrane forces are not hindered hy houndary 
conditions. 

The above conditions hold, of course, only approximately in the reality, 
therefore membrane theory can provide only information with restricted ac
curacy about a real structure. According to the above assumptions the shell is 
in plane state of stress, membrane forces having normal (Nx' N y ) and shear 
(Nxv = N"xJ components only in the mean surface. The state of stress is 
com'pletely~ described hy the three mentioned membrane force fields. To de
termine them we need the equilibrium equations and the boundary conditions. 
The latter ones go heyond the range of this paper. 

Results based on memhrane theory may serve as a particular solution for 
the hending theory. 
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2.1. The stress tensor 

We 'will investigate surface on which external forces are acting. By in
tersecting the surface with a line Lls 'we need a force Lh: to retain the surface 
in the original position. Point P of the surface is contained in line Lls, and the 
vector 

Llr dr 
t = lim = 

.Js~O LIs ds 
(178) 

defines the stress vector in the given direction at point P. By changing the 
direction of Lls, the direction and magnitude of t changes, as well. The state 
of stress in the surface is descrihed hy the mathematical relation hetween the 
direction and the stress vector. We 'will try to derive this relation in a closed 
formula. 

2.1.1. I ntrodllcti on of the surface stress tensor in orthogonal coordinate systems 

We assume, that the intristic geometry of the investigated hypersurface 
is euclidean, therefore we can estahilish an orthogonal coordinate system. We 
investigate the equilihrium of the infinitesimal orthogonal triangle illustrated 
in Fig. 11. 
The sides of the triangle will he represented hy their outer normals: 

(179) 

The outer unit norm al to the side P 1 P 2 is n, therefore this side is represented 
hy the vector 

ds = n ds (180) 

Of course, it would he possihlc to represent the triangle sides vectorially 
hy themselves. Our previous approach is easy to generalize to curvilinear coor-

ds 

I 
ds 

I 
)' 

ds., 

Fig. 11. Shell element in orthogonal coordinates 
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dinates, but at the end of the next section 'we will demonstrate the last men
tioned method, as well. 

The sum of the vectors defined in equations (179) and (180) is zero, be
cause the vector triangle is similar to the original one. 

(181) 

The stress vector t 'will act upon the side PIP 2' the vectors t(~) on the sides 
PP", The equilibrium condition for the triangle is given by 

(182) 

Dividing equations (180) and (181) by ds and comparing them yields 

dSl I ds~ 
11 = - e(l) -,-- - er"~, 

ds 'ds- J 
(183) 

The coordinates of the vectors nand t are identic in the two bases (e(l)' e(2) 

and tell' t(2»)' This means, that the matrix transforming the vectors into each 
other is identic with the matrix of the base transformation, which is a repre
sentation of a tensor. This tensor will be denoted by N and called the surface 
stress tensor. The coordinates of the surface stress tensor are in the orthogonal 
representation identic with the stress vector components in the coordinate 
directions: 

K(N) = 1l~f3 = (nll 
1Ln 

(184) 

This relation holds only in orthogonal systems. We are now going to investi
gate the more general case. 

2.1.2. Introduction of the surface stress tensor in general coordinate systems 

We will proceed as we did in the previous section, but without making 
any restrictions to the intristic geometry of the hypersurface, therefore the 
investigated triangle in Fig. 12 isn't orthogonal any more 
The contravariant base vectors coincide 'with the sides of the triangle. The 
sides will be represented by their outer normals, as before. On the basis of 
(38) we know, that 

la 1-1i-g I (et), - ~~ 
(185) 

According to this 

a(2) 

ds? = r- ds? - 1, -)? -g--
(186) 



120 G. DOJIOKOS 

Fig. 12. Shell element in general coordinates 

The outer unit normal to the side PIP;:! will be denoted by n as before, this side 
will be represented (similarly to (180)) by 

ds = nds 

The geometry of the triangle is expressed hy 

aeI) 
n ds = -c-::== dS1 \f gll 

Resolving n into covariallt components yields 

n = n"aC") 

Substituting into (188) yields 

The force equilibrium is expressed similarly to eq. (182) by 

t ds = t(l) dS1 

By comparing (190) with (191) we arrive at 

t= n"tc,,)1? 

(187) 

(188) 

(189) 

(190) 

(191) 

(192) 

The left hand side of the above equation is coordinate-invariant, therefore the 
right hand side has to be invariant, as 'well. This is only possible, if the expres
sion te,,) Y g"" transforms under the same laws as a tensor in contravariant 
representation. Resolving into contravariant components yields 

t(f3) = t(;3)aCo:) 

Calculating the right hand side of (192): 

t(f3) V gfJfJ = tffJ) aC,,) v?p 

(193) 

(194) 
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By introducing the notation 

(195) 

we arrive at 

tea) 1f ga':t. = n"-P a(f3) (196) 

Summarizing our results: The contravariant components of the surface stress 
tensor express the stress components in the direction of the coordinate axes 
multiplied by the magnitude of the covariant base vectors. Comparison be
tween (192) and (196) yields 

':t.P t = n n':t.a(,B) (197) 

which is equivalent to the scalar equation 

(198) 

We ,vill nov{ investigate the case, when the triangle sides represent themselves 
vectorially illustrated in Fig. 13. 

~~--~----------------------~~ 
p 

ds, 

Fig. 13. Shell element in transformed general coordinates 

We ,vill denote the covariant representation of the unit vector in the direction 
of the side PIP2 by j". Equation (190) can be directly expressed by this com
ponents. Since f is orthogonal to n, the covariant coordinates of the two vectors 
v.ill be identic, if we change the covariant and contravariant base, and the 
sign of one of them. In this new system the coordinates of the two vectors are 
equivalent and can be changed in the formulas. We are now going to give a for
mal description of the above described conclusion. The analogous reference for 
the equations is given. 

see (186) (199) 

ds = fds see (187) (200) 
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a(2) 

-==ds2 

l ' .).) r g--

f If a'2'2dS = ds 
:4' b :::: 

see (188) (201) 

(202) 

By comparing (202) with (190) 'Ne see, that our previous conclusion was 
correct. 

2.1.3. Connection between the physical components and the tensor components 

In connection 'With eq. (195) we already investigated the physical inter
pretation of the covariant components of the stress tensor. This investigation 
is necessary, because the final aim of our calculations is the determination of 
the physical components. Equation (196) can be transformed to 

1 I 

. l;gp{3.n'2Pa({3) 

\ g{J{J 

(203) 

Introducing a new notation this can be written as 

(204) 

Comparing tbe ahove formula with eq. (185) we see, that the quantities N'2{J 

are the physical components of the vector t along the skew axes. On the basis 
of (203) and (204) we arrive at 

(205) 

We will now investigate by using the transformation rule (86), whether the 
quantities N'2{J are the representation of a tensor, or not. The transformation 
equation will be written for the component N n : 

+ p=-f3=-n = fJ~{3~ Vgllll + {3~f3=- (V gll n -L Vg
22 n J --:- f3=-{3=-V g22 n 1 1 22 1 1 all 1 J 1 1 a 2'1. 12' all 21 ' 1 1 a 22 ' 2 2 

I::> '" '" '" 

By applying the xl' = X2, X 21 = Xl inverse transformation, where 

{3I = {3I = 0 {3~ = pI = 1 

holds and by substituting (207) into (206) yields the condition 

r-
11 g22 = 1 
V g22 

(206) 

(207) 

(208) 
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which holds exclusively in orthogonal systems. This indicates, that the physical 
components don't represent a tensor, but in a special case they coincide with 
the tensor components. In the general case the physical components may be 
computed on the basis of eq. (205) fi'om the tensor components. 

2.2. Equilibrium equations 

The equilibrium of the structure is expressed by the equilibrium of the 
parts. In our case it is sufficient to investigate the force equilibrium of the 
infinitesimal shell element illustrated in Fig. 14, because in membranes there 
are no bending moments. 

'pdx:d£ 

dx 

(t t;'L:~,=d;:c ;dx' 

". x' 

',,-

·,-L:;.:dx:)dx: 

Fig. 14. The equilibrium of the shell element 

The area as of the shell element is given by 

g (209) 

on the basis of (141). The distributed external load will be denoted by p, the 
resultant of the load acting upon dS is on the basis of (209) 

P=p g 

The equilibrium is expressed by the formula 

TC~),~+ P = 0 

where 

T(~) = tCc:.)dscc:.) 

On the hasis of Fig. 12 and eq. (141) we have 

ds\,,-) = gC3-,,-)(3-,,) 

which can be written according to (70) as 

ds(,,-) = r gg~" 

(210) 

(211) 

(212) 

(213) 

(214) 
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Substituting now into (212) and by using (196) we arrive at 

T(,,-) = 11 gg"-z. t(,,-) = 11 gna.{3 a({3) (215) 

To differentiate the surface vector field T(z.) we use the following form of eq. 
(169): 

(216) 

By using this equation we can write (211) for the in-surface equilibrium and 
the normal equilibrium separately: 

"Bb a I Ir-p3a - 0 gn-. z.fJ (3) I • g (3) -

Writing now scalar equations yields 

1 oV-;; . 
___ I::l_nz.fJ...L nz.fJ ...L n#Jr;' - P"'= 0 
r- ,,' I '{3' 'z.fJ 

V g ox'" 
Z.t'ib P" 0 n ,fJ- "= 

(217) 

(218) 

(219) 

(220) 

The above equations can be written on the basis of (11) and (117) in the fol
lowing concise form: 

n"'''ifJ- P"- = 0 

nZ.fJb"'fJ - p3 = 0 

(221) 

(222) 

By substituting the expressions for the metric tensor components and the 
Christoffel symbols into the above formulas we arrive at a differential equation 
system with three unknowns for the three independent components of the stress 
tensor. Since (221) contains a free greek index it contains two independent 
equations, which means, that we have three equations for three unknowns. 

3. Applications 

3.1. Computation of the metric and cun:ature qllantities of a surface described by 
a scalar-scalar function in two independent variables 

In the praxis the shape of the shell is usually given in the form::; = f( x,y j, 
which is a scalar-scalar function in two independent variables. Since the shape 
of the shell will not be restricted in this section we will stick to a special type 
of coordinate system: the orthogonal projection of the xy lines onto the surface. 
This system is illustrated in Fig. 15. 
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z 

Fig. 15. Orthogonally projected coordinates 

Let's determine the coordinates of the base vector fields a(,,) as two-dimensional 
scalar fields: on the basis of eq. (74): 

a - 1'1' -L O'j' -L f'k (1) - 1 1 X (223) 

(224) 

The symbols i, j and k describe the unit vectors at the coordinate axes, the 
symbols fx' fy the partial derivatives of the function f. By using (38) and the 
above equations the components of the metric tensor are expressed as 

gn = a(l)'a(1) = I + /; 
g12 = a(1)'a(2) = fxfy = g21 

The determinant of the metric tensor is 

f
2 1f2 'I g= XI YI 

(225) 

(226) 

The investigated surface inherits the metric of the embedding euclidean spac~, 
this was the condition we used to determine the coordinates of the metric 
tensor. This condition means, that the scalar (dot-) product of two vectors is 
identic in the surface and the embedding space, or (equivalently), the surface 
can be locally substituted by the tangent plane. The coordinates of the curva
ture tensor will be determined by (14-3). First we need the coordinates of the 
a(3) vector field, which is orthogonal to both base vectors. By using (143), 
(223) and (224) we arrive at 

I'x + O'y + f,'z = 0 

O'X 

(227) 

(228) 
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The coordinates of a(3) were denoted by x, y and ::so On the basis of (142) 

(229) 

By solving the above equations to the three unknowns x, y and ::s we arrive at 

a - j;: • ~~~===-' J' + 1 . k (230) 
(3)= 1 If" :2 ..Lf2...L I . 1- \ "f' .) , f';) , 1 

x, Y' • x T Jy T 

The partial differentiation of the base vectors yields 

a - 0 i ' 0 1 ' f 1_ (l)'x -- • T • J T xx A (231) 

a(l)'y = O·j + O.j f;:y k = a(2)'x 

a(2)'y = O·i + o.j + ivy k 

After substituting into (148) ,ye arrive at 

(232) 

(in thi;; case the greek indices can be equal to x or y). Now we are able to 
express the Gauss curvature of the surface as 

k = _--=-0 ___ '- (233) 

The mixed representation components of the curvature tensor can be visualized 
only under the restrictions we used in equations (156) and (158). In general 
they are complicated, for example 

b1 = nf;:x + fxx - j,:[vf"y 
1 (f2. , f2 ..L 1)* x T y I -

(234) 

With the help of eq. (1l0) and eq. (225) the Christoffel symbols can be deter

mined as 

(235) 

The Christoffel symbols in mixed representation can be found by the contra
variant representation of the metric tensor. This is expressed on the basis of 
(70), (225) and (226) as 

11_ 1 
g - -f-2 -'-f-=-2 ""---I 

x I y 

(236) 

0 12 _ - fdv 
~ --f2 ..Lf2 ..L 1 

x i Y I 

== g21 

1 
g22 = f2. ..Lf2 ..L I 

x I Y J 
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By using (106) we arrive at 

(237) 

Now we have the metric and curvature quantities necessary to construct the 
differential equations. 

3.2. Equilibrium equGiions of the hyperbolic paraboloid 

We "will now show a possible application of the derived equations. The 
surface investigated is the hyperbolic paraboloid. At each point of this surface 
two straight lines can be drawn "which are contained in the surface. We choose 
at first this straight lines as coordinates. We will now have to place the sur
face into a three-dimensional euclidean system, where the coordinate lines are 
exactly the projections of the mentioned straight lines, because the formulas in 
the previous section were derived for this type of coordinate systems. This 
condition "will be fulfilled if the surface is given by the equation 

(238) 
c 

(The lower indices are there to distinguish this system from the follov,ing ones.) 
The relative position of surface and coordinate system is illustrated in Fig. 16. 
Developing equations (221) and (222) yields 

nll 
'1 

09 I 99(?T2 'T"): 21 I 21(3T2 11-'2 I n--..... :?2 -;- 12 I n '1 T n 21 ril) + nllril = p2 (240) 

(241) 

If we substitute the quantities computed on the basis of the last section for 
the equation (238) and demonstrated in Fig. 16, then we arrive at the following 
system of differential equations: 

anll , 
: ox 

+ n:!2 __ -"-___ _ 

ay 

2 _____ --;-=p3 

(242) 

(243) 

(244) 

All variables have the index 1, therefore this isn't indicated. Figure 16 and eq. 
(244) illustrates, that in this coordinate system bn = b22 = O. The reason for 
this is, that the curvature of the surface along the coordinate line disappears, 
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z - X, y, 
I--

C
-

T, =~ f,,=O 

Tv =~ f,.y=O 

r~, =rf, =r~2 =r~2 = 0 

G. DOMOKOS 

Fig. 16. Hyperbolical paraboloid and related quantities in the X1YIZI system 

because this lines are straight. In formal computation this results in the 
disappearence of the second partial derivatives of the same variable. The mixed 
second partial derivative refers to the tyvist. The Gauss curvature is computed 
by using (233): 

(245} 
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The Gauss curvature proved to be negative, which refers to the hyperbolic 
character of the surface. Formula (245) indicates, that the orthogonal projec
tion of the points ,.,,-ith constant Gauss curvature is a circle on the X1Yl plane. 

The hyperbolic paraboloid is a translational surface, as well. The transla
tion of a parabola along another parabola in an orthogonal plane and inversc 
direction describes the same surface we were investigating until now. We are 
looking for an external X2Y2z2 system, where the orthogonal projection of the 
two sets of parabolas coincides with the coordinate lines in the Xu 2 plane. By 
rotating our previous system around the ZI = ':::2 axis we arrive at the wanted 
equation: 

(X2)2 - (.y2)2 

2c 
(246) 

The relative position of the surface and the coordinate system is illustrated in 
Fig. 17. 

The equilibrium equations are the following: 

(247) 

2x nll ______ _ a 12 n _ n12 __ -"-___ _ n'!.'!. ___ .1: ___ = pI 
.) c-ay 

(248) 

(nIl --'-- n22) 1__ _ __ = p3 
( 

'), <} I .') I x-+y-,c-:;-
(249) 

(The indices of the variables are always 2.) 
The above formulas demonstrate, that the coordinate directions are now 

identical ,."ith the directions of the main curvatures, because the mixed partial 
derivative disappears. Our computations can be checked by calculating the 
coordinate-invariant scalar Gauss curvature in the new system: 

(250) 

The above formula is identical with (245) if, and only if 

(251) 

holds. This relation is always true, because 

(xlf + (YJf = (x 2 )2 + (Yzf = r2 (252) 

where "r" means the horizontal distance from the z axis, which is invariant 
under any rotation around this axis. 

9 
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x3 _y2 
Z. =' 2 
" 2e 

r 2 _r2 - -y 
11 -, 22 - , - '. 

X' +y'+ cc 

ri1=r~2=dl=r~2 =0 

Fig. 17. Hyperbolical paraboloid and related quantities in the X2Y2Z2 system 

We already referred to the hyperbolic character of the surface. The origin 
of this name is the fact, that the plane sections orthogonal to the axis are hyper
bolas. W-e want this hyperbolas to be coordinate lines. In order to do this we 
simply have to change the vertical axis ,vith any horizontal one in the X1)'lZl 

system arriving at 
C)' 

Z3 = __ 3 

X3 

(253) 
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The relative position of surface and coordinate system is illustrated in Fig. 18. 
We have now the folIo'wing equilibrium equations: 

an11 c2
( 4y + x2) ___ n11 + 

ax x(c2x:? + c2y2 + x4) 

an12 3c2y + n12 = pI 
ay c2x2 + c2y 2 + X4 

(254) 

(255) 

2(' (nlly_ 1l12X) ___________ , = p3 
~ x(c2x~ 

(256) 

(The constant index 3 of the variables wu:: neglected here again for the sake 
of Eimplicity.) 

The Gauss curvature is calculated as 

(257) 

By transforming the above expression in the original system with 

(258) 
c 

we arrive the eq. (250). 
The equivalence of the equilihrium equations in the different coordinate 

systems can be investigated only after having solved the equations. After 
solution we either transform the tensor components under the rule (86) or we 
compute the eigenvectors, but this goes heyond the range of this paper. As a 
closing word we'd like to refer to more general coordinate systems. As a first 
possibility we mention the case, when the orthogonal projections of the coordi
nate lines are straight lines, hut not orthogonal any more. In this case the 
coordinates of the hase vector fields are either calculated by directional deri
vatives, or the equation of the surface has to he expressed in the skev,· system. 
The most general coordinate lines are space curves, which cannot be transform
ed into a position, where the orthogonal projections are straight lines. In 
this case the tangent of the proj ected curve describes the direction, along which 
the surface has to he differentiated. 

All surface coordinate systems, which are the projections of the coordi
nate lines of the embedding space don't have the "natural" arch length as 
parameter along their coordinate lines. This is a disadvantage from the physi
cal point of view, but the equations are much simpler that way, which is the 
engineer's point of view. 

We finished our calculations, and we'd like to investigate, how do our 
results correspond to the promises we made at the beginning of this paper. 

9* 
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f , .. 

9 

b .. = 2 cy b'2 =b=1 = -c b 22 =0 
X ( C 2 X 2 • C: y 2 + X") '/; ( C 2 X 2 + C 2 Y 2 • XL) 1,2 

1;2=1;, 
c" 

c2 x2 • C" y=. XL 

12 _,2 - Cl X 
= 12 -, 21 C2 X"C:y2.X' 

I;, 
2 

111 = 

-2c'1' 
X(C 2 X=' c'y2+XL) 

2c' y 
C' x'. cly' + x" 

11 =0 
22 

,2 =0 
I 22 

Fig. 18. Hyperbolical paraboloid and related quantities in the XaYa=3 system 
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The main aim of our investigations was to eliminate the coordinate 
systems from the physical description of membranes as far as possible. In 
order to do this, we had to develope a mathematical tool, which enables us to 
make direct computations v,ith curved surfaces. Despite the fact, that in 
technical applications one usually prefers a formal description which is easy 
to handle, this doesn't guarantee, that the same formal description is easy to 
understand, as well. The type of description we tried to demonstrate in this 
paper can hardly be handled easily by the practical engineer, but we hope, 
that we could provide a deep insight for the interested reader in the physical 
and mathematical background of membrane theory, which is often camoufla
ged by the usual methods in computational mechanics. To illustrate, that the 
derived results are not "pure theory" we illustrated them on the hyperbolical 
paraboloid - and they seem to work. 

List of symhols 

1. Symbols without indices 

e 

P 
E=Q 
F 
B 
N 
K 
A 
A G 

g 

2. Indices 

unit vector 
stress vector 
physical load vector 
unit tensor = metric tensor 
rotation tensor 
second order curvature tensor 
stress tensor 
orthogonal coordinate system 
skew coordinate system 
curvilinear coordinate system 
determinant of the metric tensor 
Gauss curvature 

i, j, k, l, m can be equal to 1, 2 or 3 
x, fJ can be equal to 1 or 2 
(By quantities, ·where both latin and greek indices may occur, we will explain 
only the version ·with latin indices.) 

3. Symbols with a single index 

vectors of the orthogonal unit base 
transformed versions of the above vectors 
contra- and covariant base vectors 
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stress vectors 
physical resultant vectors 
partial derivatives of a scalar field 
partial derivatives of a vector field 

4. Symbols with two indices 

z.iJ 
n"'fJ' n' 

flit, fll 
b bZ.fJ b~ 

7.p': ., fJ 

Vi'j . 
: II 

vdr v Ij 
aY)'j 
t(~) 

covariant and contravariant representation of the metric tensor 
mixed representation of the metric tensor = Kronecker delta 
representation of the rotation tensor 
representation of the stress tensor 
matrices of coordinate-transformations 
representations of the second order curvature tensor 
partial derivatives of vector field 
representations of second order tensor deriyative 
partial derivatives of base vector fields 
eontravariant coordinates of the stress vectors 

5. symbols with three indices 

r r~ 
ij'" ij 

tij,,, 

tij!" 
aU)'j" 

ChJ:istoffel symbols 
partial derivatives of a second order tensor 
representation of the third order tensor derivative 
partial derivatives of the base vector fields 

6. Symbols with four indices 

T ijl{l71 

rJ"'T11 
representation of the Riemann - Christoffel tensor 
partial derivatives of Christoffel symbols 
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