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In engineering practice, there is hardly anything to go on for the ex-
pedient selection of cross-sectional dimensions of hyperstatic structures, a
problem little concerned with in engineering education. either. In what fol-
lows, some simple principles and applications will be presented in the scope
of selecting cross-sectional dimensions of hvperstatic beam structures, ideas
intended by the Author to underlie preparation of introducing a more com-
prehensive study of this subject in graduate and post-graduate structural
engineering eourses.

1. Stating the problem

Let us consider the sketched continuous beam of ideal elastic material,
clamped at the left end, subject to dead and live loads. Cross-sectional dimen-
sions of this beam have to he selected under different stipulations.

To ease theoretical survey and computer treatment, the problem will be
handled by the method of discretization. The original continuous structure
(Fig. 1a) will be substituted by a discrete model of elastic hinges and perfectly
rigid connecting bars (Fig. 1b). The discrete model is acted upon by loads in
discretized form. i. e.. by concentrated forces at har ends (elastic hinges or
cantilever ends). The supports may be placed similarly.
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Fig. 1

The beam analysis will only concern flexural stresses and deformations.
Perfectly rigid bars being assumed to support illimited stresses without defor-
mation. only moments

My M, ....M

in the (n—1) elastic hinges have to be considered.
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Load capacity of the structure is considered to be adequate if absolute
values of moments in each elastic hinge do not exceed the ultimate moment for
that hinge:

- JIiRu < -‘I‘l < JI‘ZPM frer T "T‘I'sz.’ < JI < J'Iz:}?zz :

For this hyperstatie structure, moments arising in each hinge can only be
determined by taking deformations into consideration. In the discrete model
structure only elastic hinges are able to elastic deformation, to angular rotation
proportional to developing bending moments. Deformabilities of elastic hinges
will be described by their flexibilities:

o =hyM,, ... =h M,

After these preliminaries, the problem of determining cross-sectional
dimensions of this hyperstatic structure can be closer formulated: beam behav-
iour being affected by bar cross sections through two parameters, the ultimate
moment and the flexibility, the design problem consists in selecting ultimate
moments and flexibilities

r
e

Mopys +oos M, p, and hy ... R,

so as to meet certain conditions still to be considered.

As concerns stating the problem, let us notice that deductions will not be
restricted to the beam over three supportsin Fig. 1 but affect a continuous
beam clamped at theleft end, discretized by inserting n elastic hinges, and sup-
ported at m elastic hinges (sce Fig. 2). Since hinged support at the left end can
be simulated by selecting h, very high and M, ,, very low, while applying a
support both at 1 and 2. right-end clamping is simulated, the instructions to
be drawn can be stated to refer to continuous heams in general (or even, to
elastic structures described by scalar quantities for each cross section from both
stress and deformation aspects).
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2. Basie relationships

To write basic relationships, dividing points or elastic hinges of the
discretized model structure will be numbered from right to left. beginning with
1. The right-side cantilever end will be numbered 1, here is no elastic hinge but a
force may act (Fig. 2). To make formulae clearer, consecutive elastic hinges will
be assumed to be equidistant, at unit spacings. (This is of course a stipulation on
spacing proportions to be dissolved by multiplying the divisions.) The beam has
m supports (heside clamping). their place is, however, fixed by numbering the
elastic hinges supported by them against vertical displacement. Thus, the right-

side end support is at elastic hinge 7 ,,. the next one at 1_
to clamping at i, .

.. at last that closest

This hyperstatic problem will be solved by the force method. Let eanti-
levered beam with left-end elamping be the primary beam. Now, according to
the force method. there will be m unknowns, namely supporting forces 4,, A4,.

.. A, to be determined from m linear equations expressing zero vertical
displacements of nodes 71, 145, ... [,

Since the design problem involves a multiparameter load system. let us
produce stresses for unit loads. Let us first consider the primary beam. Let
hinge j be acted upon by unit downward force. Hence, moment at hinge i:

M, = —(@i—j) fori >j.
0 fori <7 j.

i

Since similar functions will be frequent in these analyses, the moment
above will be simply denoted as:

My ={i—j}

remarking that term ,rl} ‘“zero parentheses I”” has a value of 1if ] is positive, and
zero if [ is zero or negative.

Analysis by the force method needs primary beam deflections at nodes
supported for the original beam. easv to write according to the notation above.
Vertical displacement f, . of the primary beam due to unit force at j. at support
L sited at i, is given by:

f P /V (l(l _J} {l - i.—\,":} h!') ’

These f,

acting at the supported nodes, hence to supporting forces of unit value. These

; values include displacements at supports due to unit forces

heing preferential in analyses by the force method, displacement at support
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i 4, due to unit value of upward supporting force at i, will be differentiated by
denoting ey ,:

=1

n
— 3 {5 7 _
ey = .Z (U' Z'.Al} T sy hi) = f’:.z’M'
14
To ease survey of formulation, let us introduce matrices

A=le,, ] I =L2,....omk=12 ....m)
and
F=[f;] k=12 ....mj=12 ....n).

A being a quadratic matrix (non-singular in compliance with its physical
meaning in practically important problems), its inverted A~! may be formed.
Elements of this inverted matrix are supporting forces belonging to wunit
vertical displacements of each supporting point as kinematic loads. Multiplying
this inverted by matrix F of support displacements in the primary beam from
the right, i.e., forming matrix product

A-LF

yields a rectangular matrix of m rows corresponding to the number of supports,
and of n columns corresponding to the number of divisions. Every column con-
tains supporting force values arising at m different supports due to unit force
acting at a given dividing point. This is, in fact, solution of the hyperstatic
structure problem according to the force method. delivering, for unit value of
each dividing point forece, the corresponding redundant quantities, i. e., sup-
porting forces.

In knowledge of the former, let us determine final moments in the elastic
hinges due to unit forces acting at each dividing point, simply by multiplying
the unit force and the pertaining. already available supporting forces by the
corresponding lever arms, and summing the products. For a moment arising in
elastic hinge i due to unit force acting at the jth dividing point, the arm will be
{i ——j}, and the arm of the kth supporting force {i —-— 'LA,} Let us introduce
for the overall notation of these arms the quadratic matrix R = [— {z — j¥]
size nxn. and the rectangular matrix R, = [— {i — i;}] size nxm (this
latter is obtained from the former by omitting columns relating to unsupported
nodes). Making use of them. and reminding that the needed supporting forces
have been produced in form of matrix product A~'F. the moment block

N=R,A'F—R

may be written. a quadratic matrix size n X n, where an element in the th row
and the jth column indicates moment in elastic hinge 7 due to unit force acting
at dividing point j (obviously, in the case of the examined hyperstatic structure.
rather than of the primary beam).
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Matrix X lends itself to determine moments for any real load. Denoting

the entity of loads ¢, O,. ..., O, at dividing points 1, 2, ..., n by load

vector ¢ = [(1. Q. . ... D, ], and the thereby produced moments My, il,, ...,

M, in elastic hinges 1. 2, ..., n by moment vector m*, they are related as:
m = Ng

1

3. Load capacity of the struciure

Py
—+

Analysis of the load capacity of the structure mav rely on row veectors of

Namely scalar product I

¢ vields the moment for any load system g in the
elastic hinge 7. The load capacity of the strueture is sufficient if for all  (i.e.,
in every elastic hinge) and for every load system g in the structure:

My, > | Niql.

In the actual case, load @, at point j may assume any value between lower
and upper limits Q,; and (., and loads acting at different points may be
considered as independent (i.e., also partial load in the fields is allowed).
Under these conditions, it is sufficient to examine two load vectors, g,; and
g for any elastic hinge 7. These are obtained as:

jth element of q; is Q ,,, and jth element of qy; is Qg, for V; ; > 0;
while

jth element of q.;is Q. and jth element of q; is Q,; for NV; ; < 0,

Utilizing the obtained vectors q,; and qg;, load capacity of the structure
may be stated to be adequate if inequalities

—_ P 5
Mipy = RI qa; and Mi}?u Z I\f G

are met forevery i = 1,2, ..., n.
4. A design possibility
The considered problem is how to assume ultimate moments M,p,, . - .,

M, , and flexibility values h,, ..., k,. Of course, a fundamental requirement is
the sufficient load capacity of the structure.
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It will be seen how easy it is — at least theoretically — to design struc-
tures of adequate load capacity. Assume arbitrary hy. hy, ..., h, values (e.g. be
flexibilities of every elastic hinge of given, equal values). Flexibility values
unambiguously vield veetors N¥ as described above. They will be used to form
maximum and minimum moments Nf qz; and N q,; in every elastic hinge.
Finally, assume M, to equal the absolute value of either the maximum or the
minimum moment depending on which of them has the higher one,

This design method is rather similar to that applied for statically deter-
mined structures: extreme stresses are determined and cross sections of the
needed load capacity are selected accordingly. Another similarity is that in both
cases a fully stressed design is achieved in the sense that every element of the
structure is stressed to its ultimate strength, for at least one possible load
combination. There is, however, a decisive difference: while for statically
determined structures, extreme stresses depend only on the structural arrange-
ment (e.g. hinge locations), rather than on ecross-sectional dimensions, extreme
stresses in hyperstatic structures can only be calculated in knowledge of the
flexibility values, and flexibility, just as ultimate moment, is function of cross-
sectional dimensions.

Let us examine when to apply the design method relying on the antici-
pation of flexibilities, if it has any significance at all. Formulae of flexibility and
of ultimate moment are. respectively:

)

d
h=— and My, =R, W
EJ

where d is an interval assumed in establishing the discrete model (I in the
actual example), by no means a design parameter. E and R, are values depend-
ent on the building material. This latter could theoretically be subject to
design but practically there is no point about varving ultimate strength and/or
modulus of elasticity within the same beam. so in analysing the distribution of
flexibility and of ultimate moment along the beam axis, E and R, have to be
considered as constant, leaving I and J¥ alone to be considered as design vari-
ables.

Both I and W are magnitudes assigned to the plane configuration de-
scribing the beam cross section, strietly interrelated as:

I

W —
ymax

The feasibility of the design method based on the anticipation of flexi-

bilities depends on what is the set of cross sections to be selected from in design.

For cross section families where members can be described by one parameter

(e.g. square section by edge size, circular section by radius, rectangular section

with invariable width by depth), the assumption of flexibilities unambiguously
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defines the value of this singular free cross-sectional parameter, counteracting
adequate assumption of 3,,. Thus, the outlined design method is out of
question for the case of single-parameter cross section families. The same holds
for constant vmay (with any number of parameters of the cross section family),
namely then assumption of flexibility I unambiguously determines ultimate
moment I,

The design method based on anticipating the flexibilities emerges only for
cross section families of at least two parameters, where I and W can be inde-
pendently assumed. This is the case of e.g. rectangular sections where both b,
and h; may be freely selected in design. Assuming flexibility I and ultimate
moment ¥, formula

g
k2
vields depth kg, in its knowledge known formulae of either I or I vield section
widths b, hence to each flexibility and ultimate moment value a rectangular
section can be assigned. Practical value of the obtained rectangular cross
sections is a different problem. Sections of identical flexibilities and of load
capacities interrelated as 1/2:1:2 are seen in Fig. 3. Rather curious, practically
almost irrealizable configurations are seen to result, beams with sections so
much varying by depth and width dimensions along the axis are unlike to be
practical. Thus, the design method anticipating flexibility values would be
theoretically feasible for an adequate choice of sections, in general (that is,
assuming flexibilities without preliminary considerations) it cannot lead to
direct practical results.

5. Theoretical conclusions

Although the design method of anticipating flexibilities does not lead to
direct practical conclusions, it may be of help in the theoretical consideration
of problems concerning hyperstatic structural design.

BE3
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To elucidate theoretical conclusions, let us first survey and refine the
involved fundamental concepts.

The entity of cross sections available for design are called a family of cross
sections, said to be complete if assuming I and M, with any value not oppo-
site to their phyvsical meaning. there is at least one member of the family of
eross sections with the assumed flexibility and ultimate mement values. A
family of cross sections may have one or several paramei“rsg depending on
whether a given cross section can be selected from the family by indicating
one, two or more scalars, A complete family of eross sections has two or more

parame ters.

2

Designing the structure means to assign a eross seetion of the family to

(

each examined element of the structure (in the discretized
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possible load combinations. S

value at a beam section u Bd"‘l inv estigai’ion vields the extreme siress at the
given point. The designed structure is adequate if the absolute value of exireme

stresses nowhere exceeds the uhlmate strength, The structure is fully siressed
if the extreme stress equals the ultimate strength at any point tested. In other
words, for any section of a fully sirvessed structure there is a stress equal in
absolute value to the ultimate strength. Obviously, a fully stressed structure
is always adequate.

In designing a structure, there are alwavs design conditions to be con-
sidered. Maybe, simply an adequate structure has to be designed, a design
problem with several solutions. Practical design conditions are, however, more
restricted than that. The structure may be required to be fully stressed, a
design condition subject to the following statements:

If eross sections can be selected out of a complete family of cross sections,

a fully stressed design can always be achieved.

— For a complete family of cross sections, a fully stressed structure may be
designed for any set of arbitrarily assumed flexibility values, that is, the
design problem of a fully stressed structure has several solutions.

The condition of design may be to design an optimum structure, in the
sense as follows. A characteristic value ¢ is assigned to every cross section in
the given family of cross sections. If value ¢ of the cross section with the highest
load capacity from among those of identical flexibility but different load capac-
ities is always the greatest, characteristic values ¢ are said to be well arranged.
Characteristic values ¢ express some important aspect of structural design, e.g
specific material consumption, costs, or their combinations. Obviously, the
concept of well arranged characteristic values ¢ involves that from among
sections of identical flexibilities, those of higher load capacity cost more, and
consume more of material as a rule. In designing a structure, a section is chosen
for all nodes examined. Summing up values ¢ of cross sections chosen for nodes
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(It may be called a function because its value depends on the cross sections
chosen in design.) The adequate structure having the least value of the objec-
tive function C is the optimum one.
Concepts of optimum and of fully stressed structures are somehow related,
uamely:
~— In the case of a complete family of cross sections with well arranged chaz-
acteristic values ¢, from among structures with a given set of specified

flexibilities, the fully stressed is the optimum one.

A

iy

— For a complete family of cross sections and well arranged characteristic

L

values ¢, the optimum struecture i
i

is a fully stressed one.
ET‘ ]

These statements directly follow from concept definitions and from obser-
vations made with the design method relying on the anticipation of flexibilities,
making special justifications superfluous. The last statement, however, may be
completed by remarking that the optimum structure may be found by taking
all possible different sets of flexibility values, determining the optimum strue-
ture in case of each given set of flexibilities and searching out the structure
with the least objective function value among these sub-optima. Since under
the corditions considered, the optimum design in case of a given set of flexibil-
ity wvalues is alwavs a fully stressed design (last but one statement), the overall
optimum is a fully stressed design, too (in accordance with the last statement),

Summary

Some aspects of structural design of continuous beams and similar hyperstatic struec-
tures are dealt with. The influence of moment bearing capacity and flexibility of the individual
members (cross sections) on the overall load capacity of the whole structure is investigated.
Criteria are established for the feasibility of fully stressed design and some relationships are
presented between fully stressed and optimum designs.
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