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In engineering practice, there is hardly anything to go on for the ex­
pedient selection of cross-sectional dimensions of hyperstatic structures. a 
problem little concerned with ill engineering education. either. In 'what fol­
lows, some simple principles and applications will be presented in the scope 
of selecting cross-sectional dimensions of hyperstatic beam structures, ideas 
intended by the Author to underlie preparation of introducing a more com­
prehensive study of this subject in graduate and post-graduate structural 
engineering courses. 

1. Stating the prohlem 

Let us consider the sketched continuous beam of ideal elastic material, 
clamped at the left end, subject to dead and live loads. Cross-sectional dimen­
sions of this beam have to he selected under different stipulations. 

To ease theoretical survey and computer treatment. the problem will he 
hanelled by the method of discretization. The original continuous structure 
(Fig. la) will be substituted by a discrete model of elastic hinges and perfectly 
rigid connecting bars (Fig. lh). The discrete model is acted upon hy loads in 
discretized form, i. e., by concentrated forces at har ends (elastic hinges or 
cantilever ends). The supports may be placed similarly. 

~~r----------~------------------~----4 Q) 

Fig. 1 

The beam analysis will only concern fIexural stresses and deformations. 
Perfectly rigid bars being assumed to support ilIimited stresses without defor­
mation. only moments 

Jf 2' J13, ... , Jf,. 

in the (11-1) elastic hinges haye to be considered. 
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Load capacity of the structure is considered to be adequate if absolute 
yalues of moments in each elastic hinge do not exceed the ultimate moment for 
that hinge: 

- Ji 2RlI 

For this hypcrstatic structure, moments arising in each hinge can only be 
determined by taking deformations into consideration. In the discrete model 

structure only elastic hinges are able to elastic defol'mation, to angular rotation 
proportional to deyeloping bending moments. Deformabilities of elastic hinges 
will he descrihed hy their flexihilities: 

After these preliminaries, the problem of determining cross-sectional 
dimensions of this hyperstatic structure can be closer formulated: beam behay­
iour being affected by bar cross sections through two parameters, the ultimate 
moment and the flexibility, the design problem consists in selecting ultimate 
moments and flexibilities 

... , 

so as to meet certain conditions still to be considered. 

As concerns stating the problem, let us notice that deductions will not be 
restricted to the beam oyer three supports in Fig. 1 but affect a continuous 
beam clamped at the left end, discretized by inserting n elastic hinges, and sup­
ported at m elastic hinges (sce Fig. 2). Since hinged support at the left cnd can 
he simulated hy selecting Itn yery high and NlnRll very low, while applying a 
support both at I and 2, right-end clamping is simulated, the instructions to 
he drawn can he stated to refer to continuous heams in general (or even, to 
E'lastic structures described hy scalar quantities for each cross section from both 
stress and deformation aspects). 

(! I j ~ FF 
n -il(m-1l _ iAl 2 1 

~li'--,----+l_+L _~'~+_+-L L J L L I 

, d=l ' 1 ' 1 ' , , 1 '1 ' 1 ' 

Fig. :2 
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2. Basic relationships 

To 'Hite basic relationships, dividing points or elastic hinges of the 
discretized model structure will be numhered from right to left, beginning with 
1. The right-side cantileyer cnd will be numhered L here is no elastic hinge but a 
force may act (Fig. 2). To make formulae clearer, consecutiye elastic hinges will 
he assumed to he equidistant, at unit spacings. (This is of course a stipulation on 
spacing proportions to be dissolved by multiplying the diyisions.) The beam has 
m :mpports (heside clamping), their place is, however, fixed by numbering tht· 
dastic hinges supported by them against yertical displacenH'nt. Thus, the right-
5ide cnd support is at elastic hinge i ~\l' the next one at i,,~. at last that closest 
to clamping at iA .,. 

This hyperstatie problem will he O"olved hy the force method. Let canti­
Ieyered beam "\\'ith left-end clamping he the primary beam. :0Jow, according to 
the force method, the1'(, willlw 77l unknowns, namely supporting forces A l , --1 2 , 

.... An;, to he determined from m linear equations ex pre"sing zero yertical 

displacements of nodes i"~l' i A2 · ... , i A '7;' 

Since the design problem involyes a multiparameter load system, let us 
produce stresses for unit loads. Let us first consider the primary heam. Let 
hinge j be acted upon hy unit downward force. Hence, moment at hinge i: 

(i j) 
o 

for i > j, 
for i j. 

Since similar function::; will be frequent in these analyses, the moment 
ahoye will he simply denoted as: 

remarking th at term {I} "zero parenthescs I" has a yalne of 1 if 1 is positive, and 
zero if l is zero or negatiye. 

Analysis by the force method necds primary beam deflections at nodes 
supported for the original beam, easy to write according to the notation abm-e. 
Vertical displacement!:.} of the primary beam due to unit force atj, at support 

k sited at i~.!{ is giyen by: 

II 

f .. = ~ ({i - j}{i i_\!J h;). 
;=1 

These fr:. i yaIues inelude displacements at supports due to unit forces 
acting at the supported nodes, hence to supporting forces of unit value. These 
heing preferential in anah-ses by thc force method, displacement at support 
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iAIr due to unit yalue of upward supporting force at i.n will he differentiated hy 

denoting el, k: 
n 

el.!: = - ~({i 
i=! 

To ease survey of formulation, lE't us introducE' matrices 

A = [euJ (I 1, 2, .... m; k = 1, 2, ... , m) 
and 

F [f, j] (k = L 2, ... , m: j = 1, 2, ... , n). 

A heing a quadratic matrix (non-singular in compliance with its physical 
meaning in practically important problems), its inverted A-I may he formed. 
Elemcnts of this inverted matrix are supporting forc(~s belonging to unit 
vertical displacements of each supporting point as kinematic loads. Multiplying 
this inverted hy matrix F of support displacemcnts in the primary heam from 
the right, i.e., forming matrix product 

yields a rectangular matrix of m rows corresponding to the number of supports, 

and ofn columns eorresponding to the numher of divisions. Every column con­
tains supporting force values arising at 111 different supports due to unit force 
acting at a gi-wn dividing point. This is, in fact, solution of the hyperstatic 
structure prohlem according to the force method, delivering, for unit yalue of 
each dividing point force, the corre8ponding redundant (p.Iantities, i. e., sup­

porting forces. 
In knowledge of the former, let us determine final moments in the elastic 

hinges due to unit forces acting at each dividing point, simply hy multiplying 
the unit force and the pertaining, already available supporting forces hy the 
corresponding lever arms, and 8umming the products. For a moment arising in 
elastic hinge i due to unit force acting at the jth dividing point, the arm ·will be 
{i - j}, and the arm of the kth supporting force {i - i.4!J. Let us introduce 
for the overall notation of these arms the quadratic matrix R = {i j}] 
8ize 11 X 11, and the rectangular matrix R.\ = [- {i - (.,dJ sizp n X III (this 
latter is obtained from the former by omitting columns relating to unsupported 
nodes). lIaking use of them, and reminding that the needed O'upporting forces 
have heen produced in form of matrix product A -IF. the moment block 

N = R 4 A-IF -:- R 

lllay he written, a qua(hatic matrix size n X n, where an element in the ith row 

and the jth column indicates moment in elastic hinge i due to unit force acting 
at diyiding point j (ohyiously, in thp case of the examined hyperstatic structurp. 
rather than of tllP primary beam). 
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Matrix N lends itself to determine moments for any real load. Denoting 
the entity of loads Q1, Q2' ... , Q" at dividing points 1, 2, ... , n by load 
vector q = [Q1' Q2' ... , QrJ, and the thcreby produced moments 1\1[1, M'2' ... , 
1\IIn in elastic hinges 1, 2, ... , n by moment vector m*, they are related as: 

m= 

3. Load capacii:v or the strncture 

Analysis of the load capacity of the structure may rely on ro'w vectors of 
matrix N: 

r J1 I 
Namely Ecalar product yielch the moment for any load system €I in the 
elastic hinge i. The load capacity of the structure is sufficient if for all i (i.e., 
in every elastic hinge) and for every load system q in the structure: 

~I '- I 7\T"' I 
it iRrz ,::: I hTq j. 

In the actual case, load Qj at point j may assume any value between lower 
and upper limits Q Aj and Q F j' and loads acting at different points may be 
considered as independent (i.e., also partial load in the fields is allowed). 
Under these conditions, it is sufficient to examine two load vectors, qAi and 
qFi' for any elastic hinge i. These are obtained as: 

jth element of qAi is QAj' and jth element of <{Fi is QPj for Ni, j > 0; 
while 

jth element of q"".i is QF!' andjth element of qn is QAj for Ni,j < 0, 

Utilizing the obtained vectors qAi and <{Fi' load capacity of the structure 
may be stated to be adequate if inequalities 

- 1\1[iRll < Nf qAi and MiRll > Nf <{Fi 

are met for every i = 1,2, ... , n. 

4. A design possihility 

The considered problem is how to assume ultimate moments .M 2Ru' ••• , 

lY[nRll and flexibility values h 2, ••• , hr,. Of course, a fundamental requirement is 
the sufficient load capacity of the structure. 

2 
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It will be seen how easy it is - at least theoretically - to design struc­
tures of adequate load capacity. Assume arbitrary hI, hz' ... , h12 values (e.g. be 
flexibilities of every elastic hinge of given, equal values). Flexibility values 
unambiguously yield vectors K7" as descrihed ahove. They will he used to form 
maximum and minimum moments N?, qFi and NI" qAi in every elastic hinge. 
Finally, assume iW"iRl1 to equal the absolute value of either the maximum or the 
minimum moment depending on which of them has the higher one. 

This design method is rather similar to that applied for statically deter­
mined structures: extreme stresses are determined and cross sections of the 
needed load capacity are selected accordingly. Another similarity is that in both 
cases a fully stressed design is achieved in the sense that every element of the 
structure is stressed to its ultimate strength, for at least one possible load 
combination. There however, a decisive difference: while for staticaUy 
determined structures, extreme stresses depend only on the structural arrange­
ment (e.g. hinge locations), rather than on cross-sectional dimensions, extreme 
stresses in hyperstatic structures can only be calculated in knowledge of the 
flexihility values, and flexibility, just as ultimate moment, is function of cross­
sectional dimensions. 

Let us examine when to apply the design method relying on the antici­
pation offlexibilities, ifit has any significance at all. Formulae offlexibility and 
of ultimate moment are, respectively: 

h = ~ and 
EJ 

where d is an interval assumed in estahlishing the discrete model (1 in the 
actual example), by no means a design parameter. E and R" are values depend­
ent on the building material. This latter could theoretically be subject to 
design but practically there is no point about varying ultimate strength and/or 
modulus of elasticity ·within the same heam, so in analysing the distribution of 
flexihility and of ultimate moment along the beam axis, E and Ru have to be 
considered as constant, leaving I and TV alone to he considered as design vari­
ables. 

Both I and W- are magnitudes assigned to the plane configuration de­
scribing the beam cross section, strictly interrelated as: 

I 

Ymax 

The feasibility of the design method hased on the anticipation of flexi­
bilities depends on ·what is the set of cross sections to he selected from in design. 
For cross section families -where members can be described by one parameter 
(e.g. square section by edge size, circular section by radius, rectangular section 
v,ith invariable ,ddth hy deptb), the assumption offlexibilities unambiguously 
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Fig . .3 
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defines the value of this singular free cross-sectional parameter, counteracting 
adequate assumption of Jf Ril' Thus, the outlined design method is out of 
question for the case of single-parameter cross section families. The same holds 
for constant Ymax (with any number of parameters of the cross section family), 
namely then assumption of flexibility I unambiguously determines ultimate 
moment TV'. 

The design method based on anticipating the flexibilities emerges only for 
cross section families of at least two parameters, ·where I and W can be inde­
pendently assumed. This is the case of e.g. rectangular sections where both bs 
and hs may be freely selected in design. Assuming flexibility I and ultimate 
moment W, formula 

w 

yields dppth hs' in its knowledge known formula" of either I or W yield section 
widths bs' hence to each flexihility and ultimate moment value a rectangular 
section can be assigned. Practical yalue of the obtained rectangular cross 
sections is a different problem. Sectiom of identical flexibilities and of load 
capacities interrelated as 1/2:1:2 are seen in Fig. 3. Rather curious, practically 
almost irrealizable configurations are seen to result, beams with sections so 
much varying by depth and width dimensions along the axis are unlike to be 
practical. Thus, the design method anticipating flexibility values would be 
theoretically feasible for an adequate choice of sections, in general (that is, 
assuming flexibilities -without preliminary conf'iderations) it cannot lead to 
direct practical results. 

5. Theoretical conclusions 

Although the design method of anticipating flexibilities does not lead to 
direct practical conclusions, it may be of help in the theoretical consideration 
of problems concerning hyperstatic structural df)sign. 

2* 
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To elucidate theoretical conclusions. let us first survey and refine the 
involved fundamental concepts. 

The entity of crOES sections available for design ariC called a family of cross 

seetions, said to he complete if assuming 11 and Jr RI! ,':ith any value not oppo­
site to their physical meaning, there is at least one memher of the family of 
cross sections ·with the assumed flexihility and ultimate mOHH.'nt valnes. A 
family of cross sections may have one or several pm"ameters, depending on 
·whether a given eross section can be selected from the family by indicating 
onc, t,.,-o or more scalars. A complete family of cross sections has two or more 
parameters. 

Designing the strllcture Ineans to assign a cross section of the famil");" to 

each examined element of the structure (in the discl'etizcd pl'ohlem to each 
hinge or Stl'esses in a stru.ctul'C rnay he calculated fOT all 
possible load combinations. Selecting among them that of the highest absolute 
value at a beam section under inyeEtigation yields the extreme stress at the 
giyen point. The designed EtructuTe iE adequate if the ahsolute yalue of extreme 
stresses nO\I--here exceeds tbe ultimate strength. The structure is fully stressed 
if the extreme stress equals the ultimate strength at any point tested. In other 
words, for any section of a fully stressed stnwTm'(, there is a stress equal in 
absolute yalue to the ultimate strength. Obviously, a fully stressed structure 
is always adequate. 

In designing a structure, there are always desig!l conditions to he con­
sidered. :i\Iaybe, simply an adequate strnctul'P has to be designed, a design 
problem with seyeral solutions. Practical design conditions are, howeyer, more 

restricted than that. The structure lllay be required to he fully stressed, a 
design condition subject to the following statements: 

If cross sections can be selected out of a complete family of cross sections, 
a fully stresEed design can always he achieved. 
For a complete family of cross sections, a fully stressed structure may be 

designed for any set of arbitrarily assumed flexibility values, that is, the 
design problem of a fully stressed structure has seyeral solutions. 
The condition of design may be to design an optimum structure, in the 

sense as follows. A characteristic value c is assigned to every cross section in 
the given family of cross sections. If value c of the cross section with the highest 

load capacity from among those of identical flexibility hut different load capac­
ities is always the greatest, characteristic values c are said to he well arranged. 
Characteristic values c expresE some important aspect of structural design, e.g. 
specific material consumption, costs, or their combinations. Obviously, the 
concept of well arranged characteristic values c involyes that from among 
sections of identical flexibilitieE, those of higher load capacity cost more, and 
consume more of material as a rule. In designing a structure, a section is chosen 
for all nodes examined. Summing up values c of cross sections chosen for nodes 
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i = 1,2, ... , n yields the so-called objective function of the structure: 

n 

C =;Z cl' 
i=! 

(It may he called a function because its value depends on the cross sections 
chosen in design.) The adequate structure having the least value of the objec­
tive function C is the optimum one. 

Concepts of optimum and of fully stresscd structures are somehow related, 

namely: 
In the case of a complete family of cross sections ,,-ith well arranged char­
acteristic values c, from among structures ,yith a given set of specified 
flexibilities, the fully stressed is the optimum one. 
For a of cross sections and ,vell aITallged characteristic 
values c, the optimum structure is a fully stressed one. 
These statements directly follo-w from concept definitions and from ohser­

yations made with the design method relying on the anticipation offlexibiIities, 
making special justifications superfluous. The last statement, however, may be 
completed by remarking that the optimum structure may be found by taking 
an possible different sets of flexiIJuity values, determining the optimum struc­

ture in case of each given set of fIexihilities and searching out the structure 
with the least objective function value among these suh-optima. Since under 
the conditions considered, the optimum design in ease of a giyen set of flexihil­
ity values is always a fully stressed design (last but one statement), the overall 
optimum is a fully streEsecl design, too (in accordance with the last statement). 

Sllmlnary 

Some aspects of structural desig:n of continuous beams and similar hyperstatic struc­
tures are dealt with. The influence of moment bearing capacity and flexibility of the individual 
members (cross sections) on the overall load capacity of thc whole structure is investigated. 
Criteria are established for the feasibility of fully stressed design and some relationships are 
presented between fully stressed and optimum designs. 
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