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Engineering structures are normally acted upon by loads needing
several parameters to be described. There are dead loads and live loads, these
latter include different kinds of applied working loads, those of meteorological
origin ete. All these loads may assume different values in different parts
of the structure. and the structure itself is exposed to a great variety of load
redistributions during its service life. Specification of safety. simultaneity
ete. factors for the basic design values of different loads in codes is intended
essentially to outline the multiplicity, ““spectrum’ of load distributions to
be considered.

Engineering practice is required to, and is attempting to, take the
multiplicity of load distributions into consideralion. Therefore design or
checking of structures involves the analysis of several ““critical load positions™,
in typical, mostly “corner” points of the domain of load disiributions to
be reckoned with. Often. however. critical load positions assumed numerically
in design (e.g. of multistorey building frameworks) is often selected on the
basis of practical experience. engineering sense. while exacter analyses fail
to hint to a correct assumption. The actual knowledge is still less adequate
to answer questions of what load types the structure can bear. how the change
of the rigidity and load bearing conditions of the structure affects the load
capacities for different tvpes of loading, how to design rigidity and load
bearing conditions of the structure from the aspect of probable load distri-
butious, ete. In general, our kpowledge of the relations between structures
and multiparameter load systems can be stated to still need decpening. In
what follows, a comprehensive approximation will be suggested, likely of
help in understanding relations between structures and multiparameter load
systems. It will be illustrated on a simple problem and a structural model

rather clearly exhibiting its essential features.
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1. Relation between siress and load capacity of a statically determinate
struciure

Assume first a statically determinate cantilever beam with arbitrarily
varying cross-sectional dimensions subject to an arbitrary load system normal
to the bar axis. This elementary problem will be further simplified by substi-
tuting a discrete model of elastic hinges connected by perfectly stiff bars.
Loads on the discrete model act only at elastic hinges (Fig. 1). Assumption
of discrete models is an extended analysis method for structures, acceptable
also to the ‘“‘engineering sense”. In this paper, the problem of the relation
hetween discrete models and continuous structures will not be dealt with
any more, and exclusively the discrete model will be examined.

All characteristics of the discrete model, intervening in the struetural
analysis, may be written by as many parameter values (say n) as the number
of assumed elastic hinges, sets of n scalar values considered as vectors of
n-dimensional Euclidean spaces for the sake of illustrativeness. Thus, de-
seription of a given load acting on the structure requires indication of loads
P, P, .... P, acting at each elastic hinge (or beam end), i.e. a vector p of
the n-dimensional load space.

From among load-induced moments of the structure, only those in the
hinges are of importance for the model, thus the moment diagram can be
described by a veetor m¥ = [M,, M,, ... M, ]. In case of small deformations,
the vectors of the load and the moment spaces there is a mutually one to
one linear correspondence, forallloads P, P,. ... P, moments M,, M, ..., M,
in the elastic hinges can be determined by simple structural means, and
vice versa:

Ap=om, A7 m=n1p.

In case of this model, load capacity of the beam is restricted by ultimate
moments of the elastic hinges. For moment bearing capacities M, ;. M,,,

s M

. of the respective elastic hinges, effective moments have to meet
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conditions
M < M,, IM,| << Myy,..., and [M,] < M,

determining a rectangular hyper-parallelepipedon in the n-dimensional space
of moments with (one-dimensional) edges parallel to co-ordinate axes M,
M,, ..., M, and centered at the origin. By other words, the given structure
can bear moment systems with a moment vector of the form:

m* = [e; M. coMoy . ooy, M 4] (1)
where:
1<l <1, 1<, <., =1 <e¢, <1,
that is, parameters ¢, ¢y, . . ., ¢, are co-ordinates between —1 and --1.

Let us see now, what kind of loads P;, P,, ..., P, can be borne by our
structure? Let us determine first the load vectors inducing unit moments
in a single elastic hinge (in the first one, second one, n-th one, etc., in this
order). These load vectors will be termed characteristic load vectors and
denoted by q,. . . . ., q,,. corresponding to the numeral of elastic hinge where
they induce the unit moment. Let the unit moment act in the i-th hinge
(Fig. 2). Now. two bar sections, the i-th and the (z - 1)-th. are loaded. To
maintain their equilibrium, the hinge moments have to be balanced by bar
end forces. Now, to produce a unit moment in the i-th node, forces P, P;.,
and P;., have to act with values —1/d, -2/d and —1/d, respectively, other
nodal forces being zero. Accordingly (and taking d for 1) characteristic load

vectors are:

qf B [“17 2: —17 07 M O’ 0’ 0] *
q; :[ 07 —-1, 2, _]-, L 0'/ OT O] °

G-o=[0 0 0 0 ...,—1 2 -1],
gi-,=1[ 0. 0 0, 0 ..., 0 —1 2],
@t =[ 0 0, 0 0 ... 0 0 —1F.
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In the structure, moments may arise of max. absolute values of M,,,
M,y .., M, rather than unity. Hence, all load systems p which are

admitted. can he written in the form:
p* = Mg, + e, Mapg, — o0 0, Mo, - (3)

where parameters ¢, ¢,. .. ., ¢, assume values between —1 and +1. [Eq. (3)
resulis directly from combining (1) and (2).]

Let us have a closer look at the geometrical body, or better, at the
n-dimensional “hyper-body” defined by Eq. (3) in the load space, taking
the linear independence of vectors gy ... .. q, and limiting conditions of
parameters ¢, ¢,. ..., ¢, into consideration. This body will be confined by
(n—1)-dimensional “hyper-planes”™. One “hyper-plane” is given by Eq. (3)
by giving one of the parameter values one of the possible extreme values
(-+1 or —1)., and letting the other n—1 parameters range throughout the entire
value set. Thus, there are 2.1 hyper-planes, pairs (belonging to -1 and
—1 walues of the same parameter) being parvallel. One-dimensional edges
of the permissible load body can be deduced from Eq. (3) by fixing all param-
eters hut one as -1 or —1. Hence 277" edges belong to each parameter,
all being parallel to the characteristic load veetor corresponding to the given
parameter, and there are n2"""" edges in all. corres ponding to the n param-
eters. The body of permissible loads is a “hyper-rhomboid”™ or “hyper-
parallelepiped™ centred at the origin. and in view of its edges being parallel
to characteristic load vectors, this “hyper-paratlelepiped”™ is in general a
skew-angled one with respective edge lengths:

My, 2Mupy .o 2M
It is interesting to note the body representing the permissible loads
to be inambiguously defined by n vectors M, aq,. M,5q,. . ... M, ,q,. products
of characteristic load vectors by limit moments of elastic hinges. Direction
of these vectors — hence of the hyper-parallelepiped edges — is independent
of the load capacity characteristics of the beam (limit moments M Mg
.o M, ) and it only depends on the overall geometry of the heam axis
(rectilinearity. elastic hinge spacing). Limit moments M, M. ..., M.,
affect the size, more exactly. the edge length of the load-capacity body.
The load-capacity parallelepiped includes all load types supported by
the structure. It is. however, difficult to decide whether a given load p is
inside or outside the load-capacity parallelepiped. To this aim, the given
vector p is produced as a linear combination of characteristic load vectors
q;: qs- - - -» ;. hence its co-ordinates in the oblique co-ordinate system of a

basis q. €. . . ., G,

®

Pr=hkq kg R,
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to see if allits parameters ¢; = ki/M;y, ¢, = /M,y ... and ¢, = k,[M,
are between —1 and +1. This procedure differs only by its wording from that
usual in engineering practice. consisting in the static determination of moments
in each elastic hinge due to load p. and consecutive confrontation with the
corresponding limit moments.

Co-ordinates of the given load vector in the system of characteristic
load vectors being exactly the moments in each elastic hinge.

k= My ky=M,.... k=M,

they will be computed by exactly the same steps.

Denoting by A~7 the mairix of characteristic load vectors q;. 4, . . .. q,

as column vectors, its inverse A can be used to determine the co-ordinates

of load vector p according to the bases ¢. ¢y . . ., g
Ap=Lk
(where k is the column vector of the k. k,. .. .. &, values). Since k = m. it

is legitimate to denote the matrix of characteristic lead vectors q,. qs. . . .. q,,
by A-! and to consider it the inverse of the “equilibrium matrix™ A deter-
mining the moment for given loads. (This follows also from the construction
method of characteristic load vector q. q... .. q,.)

The n row vectors of matrix A describing the moments for a given load
are normal to the n hvper-planes of the load-capacity parallelepiped. Namely
a hyper-plane is described by the (n—1) column vectors of matrix A-*, and
a corresponding row veetor of matrix A is normal to all of them (the unit
matrix being the product of inverted matrices A by A-%). In this meaning,
row vectors of matrix A — with elements being arms invelved in moment
caleulations in the original meaning — are load space vectors (hence to be
designed q,. qs. . . .. q,,). Vector directions were previously seen to he strietly
related to load-capacity hyper-parallelepipeds. being normal to their sides.
Their size can be related to the load-capacity parallelepiped by successively
determining intersection points between radii described by these vectors
and the corresponding hyper-planes. Since at the side the corresponding.
say i-th, elastic hinge will develop exactly the limit moment 3. the inter-
section point will be determined by considering q' alternatively a row vector
or a column vector and computing the scalar product as a matter of fact,
the moment in the i-th hinge due to load ¢'. and reducing ¢’ in proportion
of M.

The above can be recapitulated by stating that the load-capacity hyper-
parallelepiped can be described by either of two different vector sets, Either
the modified characteristic load vectors

ki = J'L’H q; ('l = 1-, 25 R n)
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computed from column vectors q; of matrix A1 can be used or the modified
normal vectors of the hyper-planes

My,

produced from row vectors of matrix A. System k; may be used as a basis
(oblique co-ordinate system): the structure is able to support a load defined
by vector p if none of the co-ordinates of p in the system k; exceeds 1 in
absolute value. The system k' defines the characteristic width values of the
load-capacity parallelepiped. the system lends itself for bearing a load defined
by vector p if none of its scalar products with vectors of the svstem k! exceeds
1 in absolute wvalue.

2. Restrictions of deformations

Now, let us consider the elastic deformations of the structure. Rotations
and moments of the elastic hinges are proportional to each other, thus,
My Moy o ... M,y values above may limit either moments or angular
rotations. Anvhow, proportionality factor between angular rotations and
moments may differ between elastic hinges. Hence effective deformations
are advisably discussed by indicating, in addition to moment limit values
M,y M,y .. ., M,,;,. also the respective angular rotation limits ¢ 4. Fopys - .« -,
@,n for each elastic hinge.

Let us now consider elastic hinge displacements normal to the beam
axis. Denoting by fi. fa. .. .. f, the displacements of free beam edges i.e. of
elastic nodes, all these displacements may be represented by a vector
% = [fi. fs- . . .. f»] in the n-dimensional space of displacements. In case of
mutually independent limits for elastic hinge displacements normal to the
beam axis. that is:

flaH ..<f1 gfl/’H'« f‘_’aH ‘_\/_fz ngin Crre f:'mH gfﬂ gfan‘/

their entity defines a rectangular hyper-solid or box in the space of displace-
ments. To transform this solid into the space of rotations ¢y, ¥y, . . ., @, of
elastic hinges it is convenient to construct the rotations belonging to the
unit displacement of the i-th elastic hinge, i.e. to the beam shape

fi=1for k=1
fi=0for k=1 (k=12 ...n)
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as characteristic rotation vectors, as follows from Fig. 3:

sz[ 17 O: O: Ov -'-905 Gv 0]:
s¢=[=2 1 0,0,...,0, 0, 0],
s#=[ 1, —2, 1,0, ...,0, 0,0],
sf=[ 0, 1, —2.1,....0, 0, 0],

sf=1[ 0, 0, 0.0, ...,1, —2 1],

Characteristic rotation vectors s; and characteristic load vectors g
discussed earlier are of rather similar structure. It is easy to understand
that displacement limitations represented by a rectangular hyper-solid in
the space of displacements have - as counterpart in the space of rotations —
a hyper-parallelepiped with edges parallel to characteristic rotation vectors
S1-89. + o 8, of lengths fi, = fi 4 fooy = forme « - o+ fran =+ fuyp- [tis rather simple
to pass from the space of rotations to that of moments by changing the scale
(diminishing or increasing) corresponding to proportions r; = I /g
vy = Myplgap, o . o 1, = M, /g,y in each co-ordinate direction. Thus,
if limitations both for moments and rotations. and for displacements of a
structure are indicated. then the former can be indicated by a rectangular
hyper-solid and the latter by a skew angled hyper-parallelepiped in the space
of moments, and moment vectors meeting both condition systems will be
in the part common to both.

This common part is again a ““hyper-solid™, i.e.. a “hyper-polyhedron”
of max. 4n “sides”. Provided in the moment space the “hyper-solid” of
vectors meeting the system of requirements is available, the load space can
be passed to. to comstruct the load-capacity hyper-solid including load
vectors permissible for the requirement system. Moment space co-ordinate
unit vectors have characteristic load vectors as counterparts in the load
space. thereby the passage (linear mapping) is inambiguously settled.




70 PEREDY

3. Hyperstatic structures

Among displacement limitations, the case where certain displacements
are specified as zero merits attention. Namely thereby the constraint by
supports may he expressed. and the hyperstatic structures can be described
by the special system of deformation limitations for statically determinate
structures. In conformity with this train of thought, hyperstatic structures
are involved in statements of the previous item as special cases of deformation
limitations. Because of their practical importance and peculiarities. they
merit to be looked at closer.

Assume a structurc with the former moment (angular rotation) con-
ditions

— My <L M < My, or —guu <@ <y U=12...n)

in n elastic hinges, while m hinges (with subseripts j1. ;2. ..., jm) are sup-
ported. zeroing displacements normal to the beam axis:

fi'l - 0: f:ig = O. - 'T.fjm =

leading to a structure with m redundancies.

These deformation limitations are described by an (n—m)-dimensional
subspace in the space of angular deformations. This linear subspace is obtained
by omitting angular rotation vectors with subsecripts jl.j2....,jm corre-
sponding to the specified supports from among characteristic rotation veetors
81 Sa. . . .» 8, and letting the remaining (n—m) characteristic rotation vectors
span the given linear subspace, termed subspace of permissible deformations.

The structure is simultaneously subject to deformation and moment
(rotation) limitations. In the space of rotations. the limitations of moments
(rotations) were seen to be described by a rectangular solid. Our hyperstatic
structure admite rotation systems with vectors inside (or marginal to) the
(n—m)-dimensional solid cut out by the rectangular hyper-solid from the
linear subspace of permissible deformations.

Let us have a clooser look at the form of the (n-m)-dimensional solid
representing the permissible angular deformation systems. To this aim. to
simplify writing, characteristic rotation vectors will be rearranged with
changed subseripts of an order that the first (n—m) vectors span the linear
subspace of permissible deformations so that an arbitrary vector of this
subspace can be written as:

= flsl -1- f‘zs-z + .+ f(n—m)s(n——m)

where fi.f,. ..., fo_m are arbitrary parameters. Position of the subspace
of permissible deformations in the n-dimensional space of rotations is seen
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to be perfectly independent of the strength characteristics of the structure
(i.e. of limit angular rotations), of any but the most general geometry and
support conditions of the structure, expressed by vectors s;.s, ...s,
Enforcing angular rotation limit conditions:

m*

—Tip < fi Sl,l + fa S'l,l + o +f<n—m) S(n—m),l < Tim
= Fopy = f] 81,2 + f-z Sz;z S ﬁ:n—m) S(n—m)fi < Fon

—Gan gf] Sl,n ; ./4': D, n '; e “'i_f(r:—m) S(n—m)*n = Frp-

= Y

These inequalities cut out of the (n—m)-dimensional subspace of per-
missible deformations a solid confined by (n—m—1)-dimensional hyperplane

S.

side pairs corresponding to each pair of inequaliti

This solid is seen to have at most n such side pairs, i.e. 2n sides, corre-
sponding to the n pairs of inequalities. Not all n side pairs are. however,
absolutely existing. Let us consider, e.g. the {irst n—m pairs of inequalities,
defining — because of the linear independence of characteristic rotation
vectors — a range of parameters f:

—fIH S.fl i;f‘lh‘"r

_f'lH § f‘l _‘/5 ng-

_.ﬁ'v—-m)h’ éﬂrz—m) _/_/ f:j.-:—-m)H .

For all the m remaining angular rotaticns. the greatest and the least
angular rotations ¢; and —¢q/. respectively. producible with parameter values
within the given range. can be calculated. For ¢; = gy the specified limit
of the rotation of the j-th elastic hinge — on the hyperstatic structure of
limited deflections — is no real vestriction any more (a condition always
met because of the redundancy of the structure and of the limited rotations
of other hinges). Sides corresponding to these hinges are missing. Thus, the
solid cut out of the subspace of permissible deformations by the angular
rotation limits has at most n side pairs, but not all of them will take part
in the real confinement of the solid of permissible rotations, some of them
may be missing. On the other hand, existence of (n1—m) side pairs is certain,
it being the number of inequalities absolutely needed to define the range of
parameters f. &, . ... ¢, ..

Let us see now how to describe one side pair of the body of permissible
angular rotations — say that for the {irst pair of limiting inequalities — in
terms of characteristic angular rotation vectors. Begin with vectors

dy = s, — Sk,l/si,lsi
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-1
(3]

where k=1, 2,...(i—1). (i-+1)....(n—m), and s; an is arbitrary vector
with S;; == 0. For all the resulting vectors d,. D, , = 0.

Be e, the co-ordinate unit vector corresponding to the angular rotations
of the examined elastic hinges. The vector written as

t=uge; +~ (ud; + wody + oo upo by b oupegdiny S Fu,nd o)

will obviously meet the conditions limiting the rotations of the tested elastic
hinge until
— i = U < Gy -

Thus. a side confining the body of permissible angular rotations will
be described by the end points of vectors in the form

£ = Fip € "’_ (u]dl '— e ’l' u'i—]di~] “" u’z’~11di+1 _ co T Urz—mdn——m)

meanwhile pavameters uqy. ..., g, .. .. u,_, (n—m—1 in number) pass
through their entire set of values. In the formula of vector t the generalized
“direction’ of the (n—m—1)-dimensional side is defined by terms in brackets
or the vectors d, (k= 1,...,i—1,i-+1,. ... n—m) therein. The side is always
parallel to the (n—m—1)-dimensional subspace spanned by vectors d,.
irrespective of the rotation limits p,,. Considering that vectors d, have been
constructed from characteristic rotation vectors by using purely the properties
of these vectors. and that the set of characteristic rotation vectors depends
purely on the general geometry and support conditions of the heam. it can
be stated that “directions’ of permissible rotation solid sides are independent
of any structural data (¢, or M,). Rotation limits ¢, of elastic hinges
define the size of the permissible rotation solid. the distance of its sides from
the origin, and the number of sides effectively confining the solid (and des-
ignate the real side among the possible ones if not all sides of any possible
direction take part in the confinement).

In knowledge of the permissible rotation solid, definition of the load-
capacity polyhedron in the presented manner may follow. Let us first pass
from the space of rotations to that of moments by co-ordinate scale changes
corresponding to factors ry = My, /o1y, To= Moy/@op. .. .1, = M, 5T
then assigning characteristic load vectors to moment co-ordinate unit vectors,
the body of permissible moments is transformed to the load space to produce
the load-capacity polyhedron.

The load capacity polyhedron of the structure under investigation of
n elastic hinges with m redundancies is situated in an (n—m)-dimensional
linear subspace of the n-dimensional load space. (This linear subspace is the
transformed of the subspace of permissible deformations.) As a matter of
fact, it is no “‘real” body in the n-dimensional load space. Omitting from the

load space all co-ordinate directions corresponding to restrained, i.e. supported
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beam axis points is equivalent to omit supporting forces and to consider
only the subspace of active loads, a (n—m)-dimensional linear co-ordinate
subspace. Projecting the load capacity polyhedron on this subspace (zeroing
supporting force co-ordinates). the projected load-capacity polvhedron in
the (n—m)-dimensional subspace of active loads confined by (n—m—1)-
dimensional sides is already a real body. As a matter of fact, this projected
load-capacity pelyhedron has to be considered the effective load capacity
range defining the active load combinations supported by our structure.
The original load-capacity polyhedron differs only by assigning the correspond-
ing supporting force values to the permissible combinations of active loads.

The outlined procedure of constructing the active load capacity poly-
hedron points out how structural characteristics affect the load-capacity.
The characteristic rotation vectors and the characteristic load vectors are
the most general and most invariant structural characteristics, depending
exclusively on the rectilinearity of the structure axis and the uniform spacing
of elastie hinges. Supports define what are the characteristic rotation vectors
spanning the subspace of permissible deformations. Limit rotations ¢;,; define
the number and the relative position of side pairs confining the load capacity
range. Finally, limiting moments M, define the scale of each co-ordinate
axis of the oblique co-ordinate system determined on the basis of charac-
teristic load vectors. setting the scale of the effestive dimensions of the load
capacity range. All these are felt to offer a means of a visualized survey
of the correlation between the structure. the strength characteristics, the
load and the load capaeity, to assist both analysis and construction. This
is proposed to be expounded in a subsequent paper, while now, an illustrative
example will help recapitulating the statements above, and understanding
application possibilities, as a conclusion.

4. Illustrative example

Let us consider the model structure with three elastic hinges in Fig. 4.
Characteristic load vectors are:

a=| —1 |, = 0 : q;= 0
2 —1 0
—1 2 —1

column vectors of the inverse of equilibrium matrix A:

A-l=1{ -1 0 0
2 -1 0 1:-
-1 2 -1
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.
o 1 k| ,
‘ ; 2
1.0 i 1.0 [¢] V
Fig. 4

This matrix defines the load system p belonging to the given moment system
m* = [, M, M.] of the elastic hinges:

p=A"lm.
that is,
p=Mq + Myq, + M;qy.

Moment bearing limits

M| < My, My < Moy and My < M,

of elastic hinges define a rectangular solid in the three-dimensional moment
space, transferred by transformation p = A~'m to the — equally three-
dimensional — load space to hecome there an oblique parallelepiped. Charac-
teristic load vectors q,. q, and q; are presented in the load space by Fig. 3,
while Fig. 6 shows the load-capacity parallelepiped corresponding to the
case of M, = M,, = M,, =1 in continuous line. The load-capacity
parallelepiped in dashed line results by increasing M,,, from 1 to 2.
Deformation analysis of our structure starts from characteristic dis-

placement vectors
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~1
&1}

shown by Fig. 7 in the space of angular rotations ¢, ¢, ¢;. Typically, the
matrix composed of column vectors s,, s,, s, is the transposed of the inverse
of the equilibrium matrix A:

A-1¥ — [51; 85, 53:} ’

3 Py
Py ! R
> I | |
7 ¥ y [
3 2 1
L 1.0 L 1.0 L 10
* r. + -
Fig. 7 Flg 8

Let us change now the original. statically determinate model structure
to a hyperstatic one by inserting a support to prevent the vertical displacement
of the application point of force P, (Tig. 8). Thereby, from among the
characteristic displacement vectors, s; will have zero as coefficient, and
vanish from permissible deformation vectors. Hence, angular rotations pro-
ducible as linear combinations of the “‘residual” characteristic displacement
vectors are possible:

t==fos,+ fys,

where parameters f, and f; are vertical displacements of points not prevented
from displacement (application points of forces P, and P,).

Restrictions of elastic hinge moments enforce restrictions of relative
Totations ¢,. ¢, ¢4:

1 X G s To <0 @opl - 3 < gan! -

These restrictions define a rectangular solid in the space of angular
rotations. A cube corresponding to the case ¢y = ¢oy = @5y = 1 is seen
in dashed line. and a prism corresponding to values ¢, = @, = 1, @y =
= 0.75 in continuous line in Fig. 9. showing at the same time the plane
passing through the origin and defined by characteristic displacement vectors
s, and s;. For the actual hyperstatic structure, this plane is the subspace
of permissible deformations. Its position in the space of angular rotations
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is defined exclusively by the basic layout of the structure, the position of
elastic hinges. Strength characteristics, in particular the limit rotations ¢,
Papy- Fay are irrelevant to the position of the plane of permissible deformations.
At the same time it is perceived that for different limit rotations, the rec-
tangular solid of restrictions cuts out ever different configurations from the
plane of permissible deformations. (In fact, the plane of permissible defor-
mations has been represented by means of these configurations.) (¢, = @ay=
= @3y = 1 produces a rhomboid, while reducing ¢z, to 0.75 results in a
hexagon with parallel opposite edge pairs.)

Now., the load space will be considered to see what loads are supported
by our structure. All strength data of the structure are needed. Be then
1y = oy = 1 and ¢, = 0.75 (continuous line in Fig. 9) and M, = M,, =1
and M, = 2 (dashed line in Fig. 6). Since limit moments and limit rota-
tions describe onme and the same condition of the structure (from two
different aspects). the rectangular solid in continuous line of Fig. 9 corresponds
to the oblique parallelepiped in dashed line of Fig. 6. Tracing in this latter
the hexagon cut out of the plane of permissible deformations to the scale
of Fig. 9 results in the load-capacity polyhedron, now a plane figure (Fig. 10).
By other words, assigning unit vectors ¢;. @, and ¢, from the space
of angular rotations to vectors (M, ¢, )0y = @ (May/@on)qs = q,. and
(M31/035)q; = 2.6q5, respectively, means to pass to the space of loads
P,, P,. P, by linear transformation.

A
- /
. 1
P /‘ !
7 |
z ) :
€ ke !
2 RN
! :
—_— -t -
X of ! L @,
1 \ !
' 1
) It C23
f : 7
s
! s
/I/ / J//
//'
s
Fig. 9 Fig. 10

The plane figure in Fig. 10 as load-capacity range expresses the require-
ment that only one, strictly defined load P, can belong to any values P,
and P, obviously since the force P, is not an active load but a supporting
force. If, rather than to have a closer look at the supporting forces, one is
interested in the load capacity of our structure for effective (active) loads,
it is the best to project the effective load capacity range onto the subspace
of active loads, in our case in the plane P,P;. The hexagonal load capacity
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range for active loads is seen in dashed line in Fig. 11, where the load capacity
range is seen, for the sake of comparison, also for the case where the elastic
hinge 1 is replaced by a real hinge (allowing illimited angular rotation, bearing
no moment, corresponding to a cantilever containing two elastic hinges).

~
|
\
o«
[
*
§
1
\
N \
\
\\ -1 ;
S— i
S~ i
_ﬂ"\\\ 1
——— [
-
_34 ~~d
Fig. 11

The previous statements lead to certain conclusions on how certain
strength characteristics (for the tested model structure, the limit angular
rotations ¢y, ¢oy. ¢ay and limit moments M,,, M,,. M,,) affect the load
capacity of the structure. Statically determinate structures are primarily
affected by limit moments M., M,,;. M,;. “Direction” of the sides of the
load capacity range is defined. change of some limit moment shifts the corre-
sponding side parallel to itself (see Fig. 6). These considerations involve the
well-known fact that cross sectional dimensions of statically determinate
structures are easy to design by simply projecting the range of design loads
on the normal of each side, and equalizing the limit moments to these projec-
tions, the limit moments, i.e. the cross sections can be designed.

The load capacity of hyperstatic structures is necessarily affected by
both limit angular rotations ¢y. ¢opy. @qy and limit moments M, My,
M,,,. Statements on the load capacity range make it obvious that simul-
taneously changing the ultimate angular rotation and the ultimate moment
of an elastic hinge, keeping their ratio (r; = M;,/¢;y) constant, shifts the
corresponding confining side of the load capacity range parallel to itself.
keeping the other sides inaffected. just as in the statically determinate case.
Thus, also hyperstatic structures are accessible to a similarly simple design
method as the statically determinate ones, provided limit rotations and moment
bearings of the cross sections will be changed simultaneously and propor-
tionately.
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The situation is different if the limit moment and the limit rotation
are changed disproportionally. Let us consider the case where the limit
rotation is kept constant and only the limit moment varies. (Any other case
can be reduced to this case and to the proportionate variation discussed in
the previous paragraph.} The presented train of thought is of illustrative
help in following the modification of the load capacity range. Variation of
the load capacity range upon halving the limit moment of elastic hinge 1
has been examined in Fig. 12. Variation of an ultimate moment means in
fact to apply a different multiplier to the characteristic load vector belonging
to that elastic hinge. Thus. all vectors connecting the corners of the original
(dashed) and the modified (continuous) load capacity ranges in Fig. 12 are
parallel and correspond to the projection of characteristic load vector g
on the plane P,P,. The size of vectors connecting the corners depends on
the rotation value caused by the load corresponding to the given corner in
the elastic hinge 1. Since ¢, = ¢y, all along the side corresponding to the
resiviction in elastic hinge 1. this side is shifted parallel to itself during a
change from M, = 1 to M, = 0.5. The other sides of the load capacity
range vary by both direction and distance from the origin. but typically.
points of intersection between related “old” and “new’ sides are on a straight
line passing through the origin and parallel to the confining side corresponding
to the elastic hinge 1. As a comparison. Fig. 12 shows in dotted line the case
where ¢, decreases in proportion to the reduction of M. Now, only the
confining side corresponding to elastic hinge 1 is shifted towards the origin,
somewhat more than if ¢,,;, were inaffected.
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Thus, dependence of the shape of the load capacity range on various
strength parameters is felt to he comprehensible, followable, and likely of
help for the practical engineering construction work. A more general, detailed
exposure would be outside the scope of this paper. only intended to raise
certain thoughts.

Summary

Some problems of frameworks under multiparametric loading conditions are inves-
tigated, bazed on a discrete-type meodel structure consisting of perfectly stiff bars and elastic
hinges. tsking use of the concepts of n-dimensional FEuclidean spaces. Some basic properties
of hyper-parallelepipeds and hyper-polyhedra describing the load capacities of statically
determined and redundant structures are established. In an illustrative problem some ideas
are presented on how to use the cbtained results in the study of the influence of the cross
sectional properties on the load capacity of the whole structure and in the practical engineering
constructional work.

Assaciate Prof. Dr. Jézsef PereEpy. H-1521 Budapest




