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Engineering structures are normally acted upon by loads needing 
seyeral parameters to lw descrihed. There are dead loads andliye loads, these 
latter include different kinds of applied working loa(h, those of meteorological 
origin etc. All these loads may assume different values in differf'nt parts 

of the structure, and the structure itself is exposed to a great yariety of load 
redistrihutions during its scrvice life. Specification of safety, simultaneity 
etc. faetors for the basic design values of different loads in cod{~s is intf'nded 
essentially to outline the multiplicity, "spectrum" of load distrihutions to 
be considered. 

Engineering praetiee is required to, and is attempting to, take the 
multiplicity of load distributions into consid('raLillll. Thn·pfore design or 
checking of structures inyoh-es tbe analysis of several "cri iical load positions", 
in typicaL mostly "corner" points of the domain of load distributions to 
be reckoned with. OfL!'n, however, critieal load po"itioIlS assumednumerieally 
in design (e.g. of multi~lorey buiJding frameworks) is often selected on the 
hasis of practieal experienee, engineering sense, while exacter analyses fail 
to hint to a C01"1"('et assumption. The actual knowledge is still lpss adequate 
to answer questions of what load types the strllcture ean bear, how the change 
of the rigidity and load hearing conditions of the structure affpcts the load 
capacities for different types of loading, ho"\',- to de:';igll rigidity and load 
hearing conditions of the strueture from the aspect of prohable load distTi­
hutiol1s, etc. In general, our knowledge of the relations Iwtwelm structures 

and IDuitiparameter load systenlS ean be stated to still nPI,d dp('pening. In 
what follows, a compreheusive approximation will be suggested, likely of 
help in understanding relations hetween struetures and multiparametcr load 
systems. It 'will he illustrated on a simple prohlem and a struetural model 
rather clearly exhibiting its e,~sential features. 

J < 
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1. Relation between stress and load capacity of a static ally determinate 
structure 

Assume first a static ally determinate cantilever beam with arbitrarily 

varying cross-sectional dimensions subject to an arbitrary load system normal 
to the bar axis. This elemcntary problem will be further simplified by substi­
tuting a discretc model of elastic hinges connected by perfectly stiff bars. 
Loads on the discrete model act only at elastic hinges (Fig. 1). Assumption 
of discrete models is an extended analysis method for structures, acceptable 
also to the "engineering sense". In this paper, the problem of the relation 
hetween discrete models and continuous structures will not be dealt with 
any more, and exclusively the discretc model will be examined. 
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Fig. 

All characteristics of the discrete model, intervening in the structural 
analysis, may be written by as many parameter values (say n) as the number 
of assumed elastic hinges, sets of n scalar values considered at:' vectors of 
n-dimensional Euclidean spaces for the sake of illustrativeness. Thus, de­
scription of a given load acting on the structure requires indication of loads 
Pi' P2, ••• , P n acting at each elastic hinge (or beam end), i.e. a vector p of 
the n-dimensional load space. 

From among load-induced moments of the structure, only those in the 
hinges are of importance for the model, thus the moment diagram can be 
described by a vector m* [JJ1, JJ2, ••• Jfn]' In case of small dcformations, 
the vectors of the load and the moment spaces there is a mutually one to 
one linear correspondence, for all loads P1, P 2, ••• Pr!' m J:ll'Ollts J'11 , J;12 ••• , lvIn 
in the elastic hinges can he determined by simple structural means. and 

vice versa: 
Ap=m, A-l ill = p. 

In case of this model, load capacity of the heam is restricted hy ultimate 
moments of the elastic hinges. For moment bearing capacities lvl1w NI2w 
... , NInH of the respective elastic hinges, effective moments have to meet 
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conditions 

determining a rectangular hyper-parallelepipedon in the n-dimensional space 
of moments with (one-dimensional) edges parallel to co-ordinate axes 1k[1' 
1\12 , ••• , XII" and centered at the origin. By other words, the given structure 
can bear moment sy:;;tems with a moment vector of the form: 

where: 

that is. parameters Cl' Cz, .•. , Cn are co-ordinates between -1 and + 1. 

}t=~:::: 
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Fig. 2 

(1) 

Let us see now, what kind of loads PI' Pz, •.. , Pn can be borne by our 
structure? Let us determine first the load vectors inducing unit moments 
in a single elastic hinge (in the first one, second one, n-th one, etc., in this 
order). These load Yectors will be termed characteristic load vectors and 
denoted by (h, <I2' ... , <Ill' corresponding to the numeral of elastic hinge where 
they induce the unit moment. Let the unit moment act in the i-th hinge 
(Fig. 2). ~ow. two har sections, the i-th and the (i I)-th. are loaded. To 
maintain their equilibrium, the hinge moments hayc to be balanced by bar 
end forces. Now, to produce a unit moment in the i-th node, forces Pi' P i +l 

and P i +2 have to act with yalues -lld, +2/d and -lld, respectively, other 
nodal forces being zero. Accordingly (and taking d for 1) characteristic load 
vectors are: 

qi - [-1, 2, -L 0, ... ~ 0, 0, 0] , 

q~ [ 0, -1, 2, -J. 0, 0. 0] , 

(2) 

q~- 2 - 0, 0, 0, 0, .. "' 1, 2, -1] , 

q~-l - 0, 0, 0, 0, 0, -L 2] , 

q~ 0, 0. 0, 0, 0. 0. -1] 
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In the structure. moments may arise of max. absolute values of j{lH' 

Jf2H , •.. , "lfnH rather than unity. Hence, all load systems p which are 
admitted. can be written in the form: 

p* 

wherc parameters Cl' C2, ••• , Cn aSSlllne yalues between 
results directly from combining (1) and (2).] 

(3) 

1 and +1. [Eq. (3) 

Let us havc a closer look at the gcometrical body, or better. at the 
n-dimpnsional "hyper-hody" defined hy Eq. (3) in the load spacc, taking 
the linear indq)Cudence of nectors (11' (12' ... , (In and limiting conditions of 

parameters Cl' r2 •.•• , Cr: iuto comideration. This body will he confined by 
(n-l )-dimemional "hyper-planes". One "hyper-plane" is giyen by Eq. (3) 
hy giying oue of the parameter valups (Jne of the possible extreme values 

1 or -1), and letting the other n·~ 1 paranwters range throughout the entire 
yalue set. Thus_ thne are 2· n hyper-planes. pairs (belonging to -'-1 and 

1 values of the same parametn) lwing parallel. On<,-dimen;;:ional edges 

of the permissible load body can he dednced from Eq. (3) by fixing all param­
eters hut one as 1 or 1. Hence 1) edges belong to each parameter, 
all being paralld to the characteristic load vector corresponding to the given 
paramet~er, and there are 712("-

1
) edges in alL corresponding to~ the i1 pa~am­

eters. The body of permissible loads is a "hyper-rhomboid" or "hyper­

parallelepiped" centred at the origin. and in view of its edges being parallel 
to characteristic load veetor:3. this "hyper-p<1Tallelepiped" IS El general a 
skew-angled on!' with respectiyc edge length:,,: 

It is interesting to note the body representing the permi8sible loads 

to be inambiguously defined by n vectors i1JHlh- J!I2Hq2' ... , JlnHqn' products 
of characteristic load vectors by limit moment8 of elastic hinges. Direction 
of these vectors hence of the hyper-parallelepiped edges - is independent 
of the load capacity characteristics of the beam (limit moments JI1w.vlzw 
... , iVlnH ) and it only depends on tht' overall geometry of the beam axis 

(rectilinearity, elastic hinge spacing). Limit moments !.lflH' J12H,···, J1nH 
affect the size, more exactly, the edge length of the load-capacity body. 

The load-capacity parallelepiped includes all load types supported by 
the structure. It is, however, difficult to decide 'whether a given load p is 
inside or outside the load-capacity parallelepiped. To this aim, the given 
vector p is produced as a linear combination of characteristic load vectors 

ql' q2' ... , qn' hence its co-ordinates in the oblique co-ordinate system of a 

basis q1' Q2' ... , qn: 
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to see if all its parameters Cl = k1!JvI1W C2 = k2/JI,I2W • " and CIl = kll/]vInH 

are het,,-een 1 and --L 1. This procedure differs only by its wording from that 
usual in engineering practice, consisting in the static determination of moments 
in each elastic hinge due to load p, and consecutive confrontation with the 

corresponding limit moments. 
Co-ordinates of the given load vector in the system of characteristic 

load ,-ectOTs being exactly the moments in each ela;;tie hinge, 

they will he computed by exactly the same ::-teps. 

Denoting by A -1 the matrix of characteristic load vectors Q1' Q2 ..• , qll 
as column vectors, its inver;;e A can he u;;ed to determine the co-ordinates 

of load vector p according to the hases ql' qz' ... , qn: 

Ap k 

(whcre k is the column vector of the k i . k z . ... , kll yalues). Sincc k = 111. it 

is legitimatc to denote the matrix of characteristic load vectors q!, qz •... , <In 
hy A -1 and to consider it the inverse of the "equilibrium matrix" A deter­
mining the moment for given loads. (Thi::- follows also from the construction 

mcthod of chaTacteristic load Ycctor (h' (I, .... 'In') 
The 11 row vectors of matrix A dpscrihillg the moments for a given load 

are normal to the n hyper-planes of the load-capacity paralldepiped. ='i amely 
a hyper-plane is descrihed by the (11 -1) column vectors of matrix A -1, and 
a corrcsponding row vector of matrix A is normal to all of them (the unit 
matrix beiug the product of inyertecl matric(,8 A hy A -1). In thi::- meaning. 
row Yectorf' of matrix A - with elements being arms iuyolved in moment 
calculations in the original meaning - are load space vectors (henc(' to he 

designed ql' qz .... , q,,). Vector directiom: were prcviously seen to he strictly 
related to load-capacity hyper-parallelepipeds. being normal to their sides. 
Their size can be related to the load-capacity parallelepiped by successiyely 
determining interE'ection points hetween radii described hy these vectors 
and the correE'poncling hyper-planes. Since at the side the corresponding, 
say i-th, elastic hinge will develop exactly the limit momcnt J!IiH' the inter­
section point will be determined by considering qi alternati"Hly a row Yector 
or a column vector and computing the scalar product as a matter of fact, 
the moment in the i-th hinge due to load qi. and Teducing qi in pToportion 
of JliH . 

The ahove can he recapitulated by stating that the load-capacity hyper­
parallelepiped can be described hy either of n,-o diffeTent vector sets. Either 

the modified characteristic load Yectors 
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computed from column vectors q[ of matrix A-I can be used or the modified 
normal vectors of the hyper-planes 

. I . 
k' = --q' (i=1, 2, ... , n) 

ivliH 

produced from row vectors of matrix A. System k; may be used as a basis 
(oblique co-ordinate system); the structure is ahle to support a load defined 
by vector p if none of the eo-ordinates of p in the system k[ exceeds I in 
absolute value. The system k i defines the characteristic width values of the 

load-capacity parallelepiped. the system lends itself for bearing a load defined 
by vector p if none of its scalar products with vectors of the system k i exceeds 
I in ahsolute value. 

2. Restrictions of deformations 

:No·w, let us consider the elastic deformations of the structure. Rotations 
and moments of the elastic hinges are proportional to each other. thus, 
ivIlH • JIzw ... , -VInH values above may limit either moments or angular 
rotations. Anyho·w. proportionality factor between angular rotations and 
moments may differ bct'ween elastic hinges. Hence effective deformations 

are advisahly discussed by indicating, in addition to moment limit values 
J.l;11w JI2H • •• • ,JInw also the respective angular rotation limits (rlW q:zw ... , 
fPnH for each elastic hinge. 

L('t us now consider elastic hinge displac('ments normal to th(' beam 

axis. D('noting by 11' I~, ... , In the displacements of free b('am edges i.e. of 
elastic nodes. all these displacements may he represented by a vector 

f* = [fl,I2' ... , In] in the n-dimensional space of displacements. In case of 
mutually independent limits for elastic hinge displacements normal to the 
beam axis, that is: 

their ('ntity defines a rectangular hyper-solid or box in the space of displaee­
ments. To transform this solid into the space of rotations CPl' Ch, ... , ern of 
elastic hinges it is conyenient to construct the rotations belonging to the 
unit displacement of the i-th elastic hinge, i.e. to the beam shape 

j" = I for k = i 

j;, = 0 for le -;-" i (k = 1,2, ... , n) 
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as characteristic rotation vectors, as follows from Fig. 3: 

si: = 1, 0, 0, 0, ... ,0, 0, OJ , 

S~ = [-2, I, 0, 0, ... ,0, 0, 0J , 

S* -3- [ 1, -2, I, 0, ... ,0. 0, 0], 

S'i = 0, I, -2, I, ... ,0, 0, 0J , 

0, 0, 0, 0, ... , I, -2, I], 

Fi.!!. 3 

Characteristic rotation Yectors Si and characteristic load Yectors qi 

discussed earlier are of rather similar structure. It is easy to understand 
that displacement limitations represented hy a rectangular hyper-solid in 
the space of displacements haye - as counterpart in the space of rotations -
a hyper-parallelepiped with edges parallel to characteristic rotation vectors 

81,82 •... , sn of lengths flQH -+- f lfwf2aH -+- f2jH' ... , fnaH + f.Jjw It is rather simple 
to pass from the space of rotations to that of moments hy changing the scale 
(diminishing or increasing) corresponding to proportions T1 JJ1H !rr If!" 

T2 Jf2H/f(2!-{:"" Tn = JfnH(([nH in each co-ordinate direction. Thus, 
if limitations hoth for moments and rotations, and for displacements of a 
structure are indicated, then the former can he indicated hy a rectangular 

hyper-solid and tllf'. latter by a skew angled hyper-parallelepiped in the space 
of moments. and moment vectors meeting hoth condition systems will he 
in the part common to hoth. 

This common part is again a "hyper-solid", i.e., a "hyper-polyhedron" 
of max. 4n "sides". Proyided in the moment space the "hyper-solid" of 
Yectors meeting the system of requirements is availahle, the load space can 

he passed to. to construct the load-capacity hyper-solid including load 
yectors permissihle for the requirement system. Moment space co-ordinate 
unit vectors haye characteristic load vectors as counterparts in the load 
space, thereby the passage (linear mapping) is inamhiguously settled. 
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3. H),llerstatic structures 

Among displacement limitations, the case "where certain displacements 
are specified as zero merits attention. Namely thereby the constraint by 

supports may be expressed, and the hyperstatic structures can be described 
hy the special system of deformation limitations for statically determinate 
structures. In conformity 'with this train of thought, hyperstatic structures 
arc involved in statements of the previous item as special cases of deformation 
limitations. Bec:ause of their practical importance and peculiarities. they 
merit to he looked at closer. 

Assume a structure- "with the former moment (angular rotation) con­

ditions 

Jl; (r, 
" 

(r iJ .. j (i L 2 .... , n) 

III n elastic hinges, while m hinges (-with subscripts jL j2, ... , jm) are sup­
ported, zeroing displacements normal to the heam axis: 

o. 

leading to a structure with m redundancie;;. 
These deformation limitations are descrihed by an (71- m )-dimensional 

suhspaee in the space of angular deformations. This linear suhspace is obtained 
hy omitting angular rotation vectors with subscripts jL j2, ... , jm corre­
sponding to the specified supports from among characteristic rotation vectors 
Si' S~, ... , sr! and letting the remaining (n-m) characteristic rotation vectors 
span the given linear suhspace, termed subspace of permissible deformations. 

The structure is simultaneously subject to deformation and moment 
(rotation) limitations. In the space of rotations, the limitations of moments 

(rotations) were seen to be descrihed by a rectangular solid. Our hypcrstatic 
structure admits rotation systems with vectors inside (or marginal to) the 
(n- m )-dimtnsional solid cut out by the rectangular hyper-solicl from the 
linear suhspace of permissible deformations. 

Let us have a clooser look at the form of the (n m)-dimensional solid 

representing the permissible angular deformation systems. To this aim, to 
simplify writing, characteristic rotation vectors will he rearranged with 
changed subscripts of an order that the first (n-m) vectors span the linear 
subspace of permissible deformations so that an arbitrary ,-ector of this 

subspace can he written as: 

where fl' f2' ... , fen-m) are arbitrary parameters. Position of the suhspace 
of permissible deformations in the n-dimensional space of rotations is seen 
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to be perfectly independent of the strength characteristics of the structure 
(i.e. of limit angular rotations), of any but the most general geometry and 
support conditions of the structure, expressed by vectors SI' S2' ... sn_m' 

Enforcing angular rotation limit conditions: 

-([nl-[ 

These inequalities cut out of the (n-m)-dimensional subspace of per­
missible deformations a solid confincd by (n-m l)-dimemional hyperplane 
side pairs corresponding to each pair of inequalities. 

This solid ii3 i3eCll to haye at most n such side pairs, i.e. 2n sides, corre­
sponding to the n pairs of inequalitici3. Not all n side pairs are, howevel', 

absolutely existing. Let us consider, e.g. the first n-771 pairs of inequalities. 
defining - becausc of the linear indcpendence of characteristic rotation 
vectors - a range of pal'ameteTs f: 

-flfl 
-fm 

-( ~!' 
./(:1-111)[-[ .::~ ./(n-l11) 

For all the 111 remaining angular rotations, the greatest and the least 
angular rotations (ri and -(ri, respectiycly. producihle with parameter values 
within the given range, can be calculated. For q; (fj J-I the specified limit 

of the rotation of the j-th elastic hinge on the hyperstatic structure of 
limited deflections - is no real restriction any more (a condition always 
met because of the redundancy of the structure and of the limited rotations 
of other hinges). Sides corresponding to these hinges are missing. Thus, the 
solid cut out of the subspace of permissible deformations by the angular 
rotation limits has at most n side pairs, but not all of them will take part 
in the real confinement of the solid of permissible rotations, some of them 
may be missing. On the other hand, existence of (n-771) side pairs is certain, 
it being the number of inequalities absolutely needed to define the range of 
parameters t l , t2, ••• , t n _ rn • 

Let us see now ho-w to describe one side pair of the body of permissible 
angular rotations - say that for the first pair of limiting inequalities - in 
terms of characteristic angular rotation vectors. Begin with vectors 
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where k = 1, 2, ... (i-I), (i+I), ... (n-m), and Si an is arbitrary vector 

with Si,l "' O. For all the resulting vectors dIe' D",l = O. 
Be el the co-ordinate unit vector corresponding to the angular rotations 

of the examined elastic hinges. The vector written as 

will obviously meet the conditions limiting the rotations of the tested clastic 
hinge until 

--r{ IH r{lH . 

Thus. a side confining the hody of permissible angular rotations will 
be descrihed by the end points of veetors in the form 

mean'while parameters Ill"'" lii-l' .... Itn_m (n-m-I in number) pass 
through their entire set of values. In the formula of vector t the generalized 

"direetion" of the (n-m-I)-dimensional side is defined hy terms in hrackets 
or the vectors die (h = 1, ... , i- L i+ L ... , n-m) therein. The 5ide is always 
parallel to the (n- m -1 )-dimen5ional sub5pace spanned hy vectors die' 

irrespective of the rotation limits 'Pm. Considering that vectors die have been 
constructed from characteristic rotation vectors hy using purely the properties 
of these vectors, and that the set of characteristic rotation veeton: depends 

purely on the general geometry and support conditions of the beam, it can 
he stated that "direction5" of permissible rotation solid sides are independent 

of any 5tructural data (r.rH or -l,[H)' Rotation limits ({iH of Plastic hinges 
define the size of the permi5sihle rotation solid, the distance of its 5ides from 
the origin, and the numher of sides effectively confining the solid (and des­
ignate the real side among the possihle ones if not all sides of any possihle 

direction take part in the confinement). 
In knowledge of the permissible rotation solid, definition of the load­

capacity polyhedron in the presented manner may follow. Let us first pass 
from the space of rotations to that of moments by co-ordinate scale changes 

corresponding to factors r I = j:J l;'vr.'(hH' r 2 = !.112H ,:(P 2W ... , r n = jJnH,'rrnH' 

then assigning characteristic load vectors to moment co-ordinate unit 'vectors, 
the body of permissihle moments is transformed to the load space to produce 
the load-capacity polyhedron. 

The load capacity polyhedron of the structure under inyestigation of 
n elastic hinges with m redundancies is situated in an (11- m)-dimensional 
linear suhspaee of the n-dimensional load space. (This linear subspace is the 

transformed of the suhspace of permissible deformations.) As a matter of 
fact, it is no "real" hody in the n-dimensional load space. Omitting from the 
load space all co-ordinate directions corresponding to restrained, i.e. supported 
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beam axis points IS equivalent to omit supporting forces and to consider 
only the subspace of active loads, a (n-m)-dimensional linear co-ordinate 
subspace. Projecting the load capacity polyhedron on this subspace (zeroing 
supporting force co-ordinates), the projected load-capacity polyhedron in 
the (n-m)-dimensional subspace of active loads confined by (n-m-1)­
dimensional sides is already a real body. As a matter of fact, this projected 
load"capacity polyhedron has to be considered the effective load capacity 
range defining the active load combinations supported hy our structure. 
The original load-capacity polyhedron differs only hy assigning the correE-pond­
ing supporting force values to the permissihle comhinations of active loads. 

The outlined procedure of constructing the active load capacity poly­
hedron points out how structural characteristics affect the load"capacity. 
The characteristic rotation vectors and the characteristic load vectors are 
the most general and most invariant structural characteristics, depending 
exclusively on the rectilinearity of the structure axis and the uniform spacing 

of elastic hinges. Supports define ·what are the characteristic rotation vectors 
spanning the suhspace of permissihle deformations. Limit rotations ({iH define 
the numher and the relative position of side pairs confining the load capacity 
range. Finally, limiting moments JfiJ-[ define the scale of each co-ordinate 
axis of the oblique co-ordinate system determined on the basis of charac­
teristic load vectors, setting the scale of the effective dimensions of the load 

capacity range. All these are felt to offer a means of a visualized survey 
of the correlation hctween the structure, the strength characteristics, the 
load and the load capacity, to assist hoth analysis and construction. This 
is proposed to he expounded in a subsequent paper, while now, an illustrative 
example -will help recapitulating thc statements above, and understanding 
application possihilities, as a conclmion. 

4. Illustrative example 

Let us consider the model structure ·with three clastic hinges in Fig. 4. 
Characteristic load vectors are: 

column vectors of the inverse of equilihrium matrix 0\.. 

A-' ~ [ -1 0 0 ]. 2 -1 0 
--1 2 -1 



74 PEREDY 

P3 P2 

~1 
I I 
! ~ 

~ ;; 12 

Fig. 4 

This matrix defines the load system p helonging to the given moment system 
m* = [",J1• Jf~. :11:;] of the elastic hinges: 

p = A-I ill. 
that is, 

Moment hearing limits 

JflH , !1112! < :112[_[ ancI IJ13 i 

of elastic hinges define a rectangular solid in the three-dimensional moment 
space, transferred by transformation p = A -lm to the - equally three­
dimensional load space to hecome there an ohlique parallelepiped. Charac­
teristic load vectors ql' q2 and qa are pres(,lltecl in the load space hy Fig. 5, 
while Fig. 6 shows the load-capacity parallelepiped corresponding to the 

case of J11H = Jf 2 I-! = :1f 3 I-! = 1 in continuous line. The load-capacity 
parallelepiped in dashed line results by increasing .i1;I3H from 1 to 2. 

Deformation analysis of our structure starts from characteristic dis­
placement vectors 

i P2 
.ob 

It-/~ / / I 
r= 2 I 
I q1 1 I 
I I 
I I 1 I 

-- -1 

-3 -2 

-2 

'P1 1-3 

Fig. 5 
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\ 
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\ 

\ 
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shown by Fig. 7 in the space of angular rotations rI' rh, r3' Typically, the 
matrix composed of column Yectors SI' S2' S3 is the transposed of the inverse 
of the equilibrium matrix A: 

A'fl 

(~111~" 
I : 1 I 
I }- -- -1 
I / 

/ 

Fig. 7 

-2 

A -1* 

-'f'3 

~] /, 

1 1.0 

(3 (2 r 
~ ~ ~ 

j' 
1.0 ~ 1.0 

'i )L 

Fig. S 

Let us change now the original. static ally determinate model structure 

to a hyperstatic one hy inserting a support to prevent the vertical displacement 
of the application point of force PI (Fig. 8). Thereby, from among the 
characteristic displacement Yectors. SI 'will haye zero as coefficient, and 
vanish from permissible deformation Yectors. Hence, angular rotations pro­
ducihle as linear combinations of the "residual" characteristic displacement 
vectors are possible: 

where parameters 12 and 13 are yertical displacements of points not prevented 
from displacement (application points of forces P 2 and P 3 ). 

Restrictions of elastic hinge moments enforce restrictions of relative 

rotations rh, rh, rr 3: 

These restrictions define a rectangular solid in the space of angular 

rotations. A cube corresponding to the case rrlH = r2H = CP3H = 1 is seen 
in dashed line, and a prism corresponding to values rlH = CP2H = 1, r3H = 

= 0.75 in continuous line in Fig. 9, showing at the same time the plane 
passing through the origin and defined by characteristic displacement vectors 
S2 and S3' For the actual hyperstatic structure, this plane is the subspace 
of permissible deformations. Its position in the space of angular rotations 
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is defined exclusiyely by the basic layout of the structure, the posItIOn of 
elastic hinges. Strength characteristics, in particular the limit rotations (F lW 

rpzw (P3H are irrelevant to the position of the plane of permissible deformations. 
At the same time it is perceived that for different limit rotations, the rec­
tangular solid of restrictions cuts out e,-er different configurations from the 
plane of permissible deformations. (In fact, the plane of permissihle defor­
mations has been represented by means of these configurations.) ((PH-l = rrZH= 

= rr3H = 1 produces a rhomboid, while reducing (hH to 0.75 results in a 
hexagon with parallel opposite edge pairs.) 

Now, the load space ,,,ill he considered to see 'what loads are supported 
by our structure. All strength data of the structure are needed. Be then 

IJIH = Cf2H = 1 and 1J3 0.75 (continuous line in Fig. 9) andl\'llH = ivI2H = 1 
and }I3H = 2 ((lashed line in Fig. 6). Sinee limit moments and limit rota­
tions descrihe one and the same condition of the structure (from two 
different aspects), the rectangular solid in continuous line of Fig. 9 corresponds 

to the oblique parallelepiped in dashed line of Fig. 6. Tracing in this latter 
the hexagon cut out of the plane of permissible deformations to the scale 
of Fig. 9 results in the load-capacity polyhedron, now a plane figure (Fig. 10). 
By other 'words, assigning unit vectors f{l. f{z, and q;3 from the space 

of angular rotations to vectors (JllH,cflH)ql = ql' (lvI21-l!f{zH)qz = qz. and 
(JI3H!rp3H)q3 = 2.6q3' respectively, means to pass to the space of loads 
PI' P z, P 3 hy linear transformation. 

Fig. 9 Fig. 10 

The plane figure in Fig. 10 as load-capacity range expresses the require­
ment that only one, strictly defined load PI can belong to any values P 2 

and P 3' obviously since the force PI is not an active load but a supporting 
force. If, rather than to have a closer look at the supporting forces, one is 

interested in the load capacity of our structure for effective (active) loads, 
it is the best to project the effective load capacity range onto the subspace 
of active loads, in our case in the plane P zP 3. The hexagonal load capacity 
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range for active loads is seen in dashed line in Fig. 11, where the load capacity 
range is seen, for the sake of comparison, also for the case where the elastic 
hinge I is replaced by a real hinge (allmving illimited angular rotation, bearing 
no moment, corresponding to a cantilever containing two elastic hinges). 

-4 ,-3 -2 -1 0 , 4 

" ) , 
,,-11 I 
~-__ I 

---=-t- \ --- I 
----_ I 

-3.. ---..J 
Fig. 11 

The previous statements lead to certain conclusions on how certain 
strength characteristics (for the tested model structure, the limit angular 
rotations rrlH' rr2W (hH and limit moments JI1w J!Jzw J!J3H) affect the load 
capacity of the structure. Statically determinate stTuctures are primaTily 
affected by limit moments lYI1H , If!zw NI3w "Direction" of the sides of the 
load capacity Tange is defined, change of some limit moment shifts the cone­
sponding side parallel to itself (see Fig. 6). These considerations involve the 
well-known fact that cross sectional dimensions of statically determinate 
structures are easy to design by simply projecting the range of design loads 
on the normal of each side, and equalizing the limit moments to these projec­
tions, the limit moments, i.e. the cross sections can be designed. 

The load capacity of hyperstatic structures is necessarily affected by 

both limit angular rotations rrlH' rr2H' rr3H and limit moments JJ1W J!JZH' 
M3R' Statements on the load capacity range make it obvious that simul­
taneously changing the ultimate angular rotation and the ultimate moment 
of an elastic hinge, keeping their ratio (Ti = NliHlrriH) constant, shifts the 
corresponding confining side of the load capacity range parallel to itself, 
keeping the other sides inaffected, just as in the statically determinate case. 
Thus, also hyperstatic structures are accessible to a similarly simple design 
method as the static ally determinate ones, provided limit rotations and moment 
bearings of the cross sections will be changed simultaneously and propor­
tionately. 

2 
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The situation is different if the limit moment and the limit rotation 
are changed disproportionally. Let us consider the case where the limit 
rotation is kept constant and only the limit moment varies. (Any other case 

can be Teduced to this case and to the proportionate variation discussed in 
the previous paragraph.) The presented train of thought is of illustrative 
help in following the modification of the load capacity range. Variation of 
the load capacity range upon halving the limit moment of elastic hinge 1 
has been examined in Fig. 12. Variation of an ultimate moment means in 
fact to apply a different multiplier to the characteristic load Yector helonging 
to that elastic hinge. Thus. all Yectol'S connecting the corners of the original 
(dashed) and the modified (continuous) load capacity ranges in Fig. 12 are 
parallel and correspond to the projection of characteristic load vector {h 
on the plane PlP: l • The size of __ ectol'S connecting the corner" depend:" on 
the rotation __ alue caused hy the load corresponding to the given corner in 
the elastic hinge 1. Since rrl = (r]J-f all along the side corresponding to the 
restriction in elastic hinge 1, this side is shifted parallel to itself during a 
change from JIlJ-{ = 1 to J1]f-f 0.5. The other sides of the load capacity 
range vary hy hoth direction and distance from the origin. hut typically. 
points of intersection bct'wecn related "old" and "new" sides arc on a straight 
line passing through the origin and parallel to the confining side corresponding 
to the elastic hinge 1. As a comparison, Fig. 12 shows in dotted line the case 

where ((lH decreases in proportion to the reduction of J111-1' Now, only the 
confining side corresponding to elastic hinge 1 is shifted to'wards the origin, 
somewhat more than if (r IN were inaffectcd. 

----, , , , , 
." 

-- I --- -_ I 
-3: --J 

Fig. 12 
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Thus, dependence of the ;;hape of the load capacity range on various 
strength parameters is felt to be comprehensible, followable, and likely of 
help for the practical engineering construction -work. A more general, detailed 
exposure would be outside the scope of this paper, only intended to raise 

certain thoughts. 

Summary 

Some problems of frame,,·orb under multiparametric loading conditions are inyes­
tigated. hased on a discrete-type model structure consisting of perfectly stiff hars and elastic 
hinges. tnking use of the concepts of n-dimensional El1clidean spaces. Some basic properties 
of hyper-parallelepipeds and hyper-polyhedra describing the load capacities of statically 
determined and redundant structures are established. In an illustrative problem some ideas 
are presented on how to use the ohtained results in the study of the influence of the cross 
sectional properties on the load capacity of the whole structure and in the practical engineering 
con~tructioEal work. 
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