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1. Introduction

Actually, load bearing structures are designed either

— by the traditional — classic — method of elastic analysis: or

— by the plastic limit analysis, of increasing popularity.

Application of either method in actual cases depends on the design
specifications in the concerned country. In general, specification of one or
other method is partly defined by the purpose — importance, technological
function of the construction, — and partly by the kind of expected stresses.
In relation to the construction. of course no ultimate design will be allowed
for a nuclear reactor or a dam or another construction where cracks or plastic
deformations may induce destructive processes more hazardous from many
aspects than damaging of the construction itself.

As concerns load and stresses, in case of permanent or frequent loads,
it is righteous to require the structure to be exempt from plastic deformations
or other changes.

This is not the case of loads or effects of low probability to occur during
the planned service life of the construction.

Such an effect is earthquake — except, of course, in seismic zones.

Let us consider now the problems of designing exclusively for seismic
effects as extraordinary load of low probability, with the following assump-
tions:

— The critical — enhanced — load case is seismic effect, namely here seismic
stresses exceed those arising from any other load or effect.

— Seismic effect is considered as an extraordinary load of low probability
throughout the service life of the construction.

— Rather than to house extremely important and hazardous operations,
the tested constructions are average ones where no additional catastrophe
arises from plastic failures — development of plastic hinges and great
plastic deformations — induced by seismic effects.

Design criterion of these buildings may be safety from sudden collapse,
from the risk of burying lives and values. With buildings thus damaged,
it is accepted to renounce of an ulterior reconstruction or strengthening.




2. Practical observations, experience

Ulterior evaluation of a heavy earthquake normally involves the following
damage categories:

— complete collapse;

— heavy structural damage; impossibility of repair;
— heavy but reparable damage;

— light damage;

— mno structural damage.

Problems related to the second category will be considered from the
aspects quoted in the former item.

Investigation of structural damages of buildings in this category
demonstrates and permits to ulteriorly evaluate the failure mechanism of
the struciural system.

Of course, also analysis results of the failure mechanism in subsequent
categories have to be made use of, in particular to learn the internal reserve
— either fully or partly exhausted — of the structure during the development
of the failure mechanism and involved in the resistance of the structure.

These tests define among others the elastic and plastic internal resistance
energy of the structural system against the seismic effect representing an
external energy to be learned ulteriorly.

These values can be expressed by the deformation work of the damaged
structural system.

Ulterior evaluations unambiguously point to the importance of ductility
in terms of the clastic to plastic deformation ratio.

According to Fig. 1, deformation works — inner resistances — of the
structure in elastic and plastic condition — shaded and clear areas. resp. —
differ by orders of magaitude.

This is increasingly true for the case of load or deformation cycles
caused, e.g.. by consecutive shoek waves.
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Fig. 1. Elasto-plastic displacement-resistance diagram
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Fig. 1 contains deformation x(t) as an independent variable and R(x)
as internal resistance of the structure, with the elastic limit R,. This is the
resistance value of the structure in the plastic range.

Since the value of deformation work — potential energy — is expressed
by the area below the curve, the plastic deformability x is at least as important
as the peak vesistance R,

Details of a failure mechanism where great plastic deformations could
develop without structural collapse and decomposition have bheen published
in [4].

In this case the deformation was throughout accompanied by resistance
— potential energy — able to absorb — dissipate — the external energy.
Thus, throughout the motion, the basic equation expressing the equality
of energy maxima was satisfied:

Ekin max Epot max

where E; .. is seizmic motion energy. and E the structural resistance

POt max
energy maxima of external and internal work, respectively.

On the other hand, cases seen in Fig. 2 and [19] are those of disjointing
due to missing ductility. Here deformations involve no resistance any more
and the structure remains undamped until failure.

Rather than by disconnections alone. structures may fully or partly

collapse by stability loss of structural members.
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Integer motion of the entire structure is thus primordial to prevent
deformation especially of axially loaded members likely to induce stability
loss.

Failure by stability loss is seen in Fig. 3.

Fig. 3

The following conclusions can be drawn:

Examination of the failure mechanism shows plastic hinges to develop
in the structural system. If their location is such as not to cause stability
loss of other members. and the plastic hinges still possess some ductility,
the structure. though heavily damaged, does not collapse. Otherwise the
structure collapses either by stability loss or by ductility exhaustion.

These considerations rise two essential problems:

— How to construct a structure so as to develop plastic hinges in places
possibly favourable for the energy absorptiveness of the structure, hence
for an optimum structural resistance. and not to induce stability loss of
other structural members?

— How to design plastic hinges — especially in reinforced concrete strue-
tures — to keep an adequate plastic deformability — ductility — even

after cyclic deformations?
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3. Conditions and possibilities of plastic analysis

3.1 Conditions

The conditions of admitting deformations and other alterations con-
comitant to the plastic range depend on the expected seismic behaviour of
the construction.

In every country, this problem is controlled by relevant chapters of
the seismic design specifications in virtue.

3.2 Possibilities

Possibilities essentially arise from the effect of alternating. abrupt
shock-like, pulse-like loads on the structure.

In an earthquake, a structural system performs two kinds of vibrating
motion:

— forced vibration during the shock pulses:

— free vibration between pulses.

Since pulses follow at quite irregular intervals, and both the time
intervals and the pulse times are infinitesimal, there is little risk of resonance
causing material fatigue.

(In some deep-focus earthquakes. the surface wave motion has a
frequency as low as to approach the circular eigenfrequency of certain frame-
works. Therefore neither the problem of resonance could be omitted, as shown
by the ulterior evaluation of the Bucharest earthquake in March 1977.)

Thus, partly because of the omissibility of resonance, and partly of
the likely number of vibration cveles in an earthquake, much below that
inducing fatigue, the fatigue characteristics of the material need not reck-
oning with.

Another advantage is the very high speed of deformations — either
in forced or in free vibrations.

Let us consider now the resulting modifications of strength charac-
teristics, considered to be favourable.

3.21 Variation of the strength characteristics of the material vs. displacement
velocity

Variation of the vibration, displacement velocity due to seismic shocks
is quite important, either in forced or in free vibrations.

Building structures of a silicate material have also viscous properties.
Thus, it is advisable to take possibilities of stress increase either concomitant
to the variation of displacement velocity or peculiar to viscous materials

into consideration.




Yield point increase of steel under variable loading velocities is seen
in Fig. 4 after [17].

The yield point increase assuming linear and nonlinear variation is
seen in Fig. 5.
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Fig. 4. Effect of strain rate & on stress-strain curve for structural steel [17]

Linear variation is expressed bv [11]:

oit) = 0 1+ 2] 1)
7o
and nonlinear variation:
, L
gl ) = gp| {1+ — "] (2)
g ! .

where g5, is yield point for the static condition § = 0; ¢/(t) variation of the
dynamic yield point; §, § and n are test values. In case of steel, e.g., ¥ = 100
to 300 sec™: &, = 40 sec~t; m = 3.

B i(t)

Fig. 5. Yield point vs. strain rate [11]
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Concrete as a typiecally viscous material is rather sensitive to the yield
stress increase upon high-speed load effects.

According to [17], by increasing the load rate, ultimate concrete
strength may exceed by 809, the ultimate strength under a static load.

Under dynamic effects, also the moduli of elasticity and shear (E, G)
may be expected to increase. Design codes specify an increase by about 309
related to the static condition.

Concrete fatigue — to be determined by tests — is, however, a drawback
even in case of low-cyele loads, especially in the range of failure.

Load rate to concrete compressive strength relationship is seen in

Fig. 6 [17].
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Fig. 6. Compressive strength vs. strain rate [17]

The relationship between strain rate and stress variation is also de-
scribed by the classic Prandil formula [10]:

a - A C,

gi_—:o‘o—;—*m——.hl — (3)
An i
. dey  dg .
where C; and C, are two different rate values, PR L and ¢, being the
t 1

relevant stresses, a is a constant, and 4 the tested cross section area. Provided
A = A,, along the section of uniform strain:
Cy

(4)

0, =0+ aln

¢,

Putting lg instead of Inin (4), for steel @ = 450.00; for copper a = 120.00
and for a light alloy a = 100.00 kp/em?.

In the free vibration phase between consecutive shocks, also damping
is of importance. Evidently, variation of the damping coefficient also depends
on the concrete stress state. Relevant tests are being made in the Building
Laboratory of the Technical University, Budapest.




1

Referring to results by JacossenN, [17] quotes a damping coefficient
o v q P =]

p, = 0.3 upon abrupt dynamic effect. This is a rather advantageous maximum
compared to p, = 0.05—0.25 generally recommended for viscous materials,

3.22 Specific energy at failure

Although in the following the internal — inherent — work of the
structure will be given in terms of the real power-displacement R—x rather
than of the specific ¢—e. it seems advisable to interpret and write the specific
energy at failure in the reference system g—e [10].

Specific energy is understood as internal work for unit volume of

material:
- Fdl
W :J il ()
¥,
L,

where F is force and v, the volume.
Simplified:
L &
] Fdl
W':J d mfc-da. (6)
Vo
Ls 0

Let us write the specific work at failure interpreted according to a
tensile test along three characteristic sections of the ¢—e diagram, Fig. 7.

k
Fj —T N
'vi

e Ep £p 4

a) Elastic range, assuming Hooke’s law to be valid:

! 7o : -
WezEpote:JG-ds:JEdo‘z‘:é:. (1)
0 0

b) Plastic range : assuming as an approximation a constant o; value
to belong to the deformation between points A—B:

W, = Epy,=o0;" | de. (8)
€e
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c) Contraction work : assuming the effective stress vs. specific contraction
to be about linear in this section,

o = 6;1 - Gm(w - wm) (9)
1 — Ym

[10] where p and y,, are specific and maximum contraction, resp.; and

A= ln————l——— . (10)
1 Ym
Contraction work: [10]

2 A
We=Epote = [0’ di = [ Qo + 0 - en ™) A = QRojp(2 — 2 - )] ] =
- Am

= 200(3 — J) — Gl — PR, (11)

Substituting 7 according to (10):

- 1 —_— ) —
W, = Eyot = 2op ln—”ﬁh - G;nw . (12)
1 —w 1—w

Total strain work in tension or potential energy:
W=1Ww,+ Wp—i— W, .

The mechanism of rupture or failure confirms that the value of internal
work in the plastic and contraction ranges of materials with plastic properties
is higher by an order than the work in the elastic range.

Utilization of this phenomenon in actual structures still awaits to be
solved.

Again from the aspect of earthquakes, obviously an important plastic
deformation is expected but such a test would be at most informative beyond
the contraction limit.

The degree how to take the work done in the plastic range into consid-
eration in real conditions on effective structures depends — among others —
on:

— Whether the structural material has an adequate ductility. The ductility
coefficient of steel is known to be about 74, = femex 68 but

xe max

for reinforced concrete is is as low as 3 to 4.

— Whether such important plastic deformations may be permitted at all
in a real structure without risking the overall loss of stability. Namely
this risk makes the important deformability useless.
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Thus, in ultimate analysis, knowledge of the ductility of structural
materials is of importance, just as of the plastic deformations likely to raise
stability problems.

Remind perhaps that in a structural system the plastic hinges can be
located according to principles such that partly to about optimize the inner
deformational work of the structure, and partly to have a plastic vield
mechanism at no stability loss upon the encountered important deformations.

4. Analysis of a single-mass system of one degree of freedom

4.1 Elasto-plastic range

The single-mass model of one degree of freedom in Fig. 8 simulates

a real structural system provided identity between dvnamic characteristics

is granted.

The model — as a substituting system — is assumed

— to be of an elasto-plastic material:

— plastic deformation much exceeds the elastic one, hence

— in the elastic range. resistance of the system R(x) = k - x is the function
of displacement where k is the spring stiffness, x the elastic displacement
value;

— in the plastic range. resistance R, is independent of the displacement
value;

— the system is assumed to be acted upon in the plane of restraint by an
initial displacement x, of acceleration d, simulating a single shock, causing
the centroid m to perform an effective displacement x(t) and the structure
a relative one x,, = x — x,.

— Analysis of the elastic range assumes x < x, . and of the plastic

range X, g xp max*

a) D)
Xret =Xg™%X _
T) R =kx Xpmas
% _ s
- & Nduct = <
t emox
|
- Rg b - .
/
: "
R(x;1) | [
k 1
x= 1 [
e =a— Qo
o, ¥ emax Xgmex x (1}

Fig. 8. a) One-degree-of-freedom model: b) Displacement-resistance diagram
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Differential equation of motion:

m(x — X)) + kx=20. (13)
Conditions:
X, is an assumed value; x,; = % max

m-xXx-+-k-x=m-x, (14)

m - x being an assumed or known value, Eq. (14) is mathematically similar

to mx—kx = P(t) where again P(7) is an external load of known value. There-
fore in the following — for the sake of simplicity — an external load P(i)
will be applied. and assuming the known mass, acceleration a will be deter-
mined according to the principle of D’Alembert and the relevant seismicity
according to the MSK scale.
According to Fig. 9 the system is acted upon by an external momentum

P(t) = Py (1),

Load P(z) involves the following assumptions:
— Momentum time i, is very short: #, <€ T,. T, being the eigenfrequency

of the system. Thereby a pure momentum load can be spoken of.
— Load function f(t) is perfectly arbitrary and may even change the sign.

— Analysis will refer to the general and special momentum load types a),
b). ¢) and d) in Fig. 10.

P X< Xemex

i Xemax< X< ¥ pmex

= v

=
Xpmax x{t)

Fig. 9. a) Load-function-momentum diagram: b) Structural model; ¢) Deformation-resistance
diagram
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= Py, d) Exponential momentum-load diagram I, = P, ‘ (}.~ t—t-) e 1, = 0.368 P,
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4.11 Effect of general momentum
Differential equation of motion:
mx 4+ kx = P(t). (15)

The condition t, — 0 involves that resistance k - x cannot develop in
such a short time; term k - x may be omitted:

mi = P(t) . (16)

Integrating both sides yields the velocity function:

. I
mi(t) = { P(t) dt; v(t) = J f(t) ae T(I‘? (17)
Kinetic energy:
v(t)> I I(#)}2
Ekin = e -z(t) 2 [ 7(7:) } Fl\m max — [.?(—m)]‘ . (18)

Potential energy is the internal work of the system, represented by
the area under the curve of displacement-resistance function x(t)— R(x.z).

Assuming an elasto-plastic condition according to [19]. it can be ex-
pressed in the elastic range as:

E

R X ma\
SeTamex (19)

potmax —

and in the plastic range as:

{ 1 X, . P
Epct max =7 R()x‘p max |1 — _7“—23\—} . (20)

= Xpmax
According to the principle of energy conservation:

E =E

kin max -“pot max *

tq
Making use of it and substituting I(1) = P, { f(t)d¢ the peak load
b

value P, is in the elastic range:

m 1/2

Py = T_"R'xemax (21)
Sf(t) dt
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and in the elasto-plastic range:

2m

Py = |——
[6f J(e) de}?

o e
Roy mas (1——&“&*—) . 22)

9
< ¥pmax

%e max . . %Xp max
- n (22) as reciprocal of 7,4, = —— and
*p max *p max

knowing the values of momentum I(t) and of R, the rate of the maximum

Considering the quotient

displacement x_,, may be determined.

Again, writing the équality of both energies:

— I(z)? [ 1
Eiinmax = £inot max ¢ 9( ) = R, ¥ pmax {1 o —7——} (23)

2m 2y

hence:
I(ty?
Xpmax — ) 1 : (24)
9R,m (1 _ m——)
2 7o

For 5y =1, ie. x,= x,, there is no plastic strain. from (24) substituting

=1, x

P
max — 1. %, is recovered. With increasing ductility coefficient, also
will go increasing.

This case essentially approximates that of the pure plastic range, x,
x

xpmax

being rather small compared to =x,. Substituting -nD:;’{ — oo yields
€
1
— 0 hence:
9.
=Tp

P -
Xmax = ¥pmax =™ T (25)

2 Rym

corresponding, according to the principle of equality of energies. to the
perfectly plastic range;

R, — LOF (26)

2m

Xpmax
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4.12 Linear load function (Figs 11 and 12)

P I(n? P
o . T n
Fig, 11. I, = i Eyin = =
2 Am 8m
L Rig=(Frs X< xemes L R0 P X< Xemes
L R0 Xemax<X < Xpmax ; (o Xemex < ¥ <Xgmax
Ro[ : £ |
L4 I
/
/
;
Xemax Xomax X{Y)

o 9 e . I - . o -
F’é" 12. Frax = Yo max Jduct == 1: Tmax -~ Yemax Tauct > 1

Perfectiv elastic range: By = Eq Elasto-plastic range

P

0 i} . —

Ekin = Epm =
8m

[ 4m 1 Sm [ { 1 x,
PO = |, RU Y Ve max T (2‘> Pr) == [_':_,_ {R() Y, 1— 7_:_"('
5 l iy = X,
2
. — 0 N
Amax — ; 15
2Ry m |1 — }
=M |
5 -
) R 5 1
max y
) 1 /
2R, m {1 — J — 4 —
=My

- f _ PG gy

hence X, = Xy verified in the item ahove.

> Epot: R, Xy max ‘1 -
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4.13 Constant load funciion (Fig. 13)

207}

Py -

I P

kin 7 Im
Perfectly elastic range: E., = FE, FElasto-plastic range:
J - & kin not fo
2, 0 5 . ’ 2 2
E . 3] f” . E — Ly . : s PU tu .
kin™ T fipoy = om0 Lgin =
2m 2 ; 2m

2 2
R, x.-m}
Py = == =) (31)
i
2, 2 >
i . P(, [ 2 . . o <0 .
Fmax Ko == mmmemmmmeee e Nmpx = Xp = = L B
; / 1
QR(,-rrzfil*—} 2R, m il — ——
: .
! 4 =D

P2 P2
—_ 0 tl, . (32) — 0O lU 1 i (34)
Ry-m 2R, -m (1 R ——

\ 2)7D/

o

4.14 Exponential load funciion (Fig. 14)

I3 0.1354 Pi-g3

Fig. 14. I, = 0.1354 P3-18: Ey =

2m 2m
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Perfectly elastic range: Eyin = Epy Elasto-plastic range:
0.1354 - P? - % 0.1354 - P? - 13
Eyn = 5 L Eyn = 5 2
2m 2m
R, x 1 =«
Epot == 0:) £ Epot = Ro’xp [1 Y ’ :E_’
= =
o 1 om [ : 1
.= (ﬁﬁ__i“ﬁ_..@}" (35) P, = .____}LT[RO.% 1 L)
0.1354 - 2 0.1354 - ¢} | 2 x,
I3 I 37
¥max $ 1 (36)  Fmax= — 17 = ( )
°R, - m (1_. 2R, m (1-—__
‘ 29p \ 21p
0.1354 - P? - ¢}
= : (38)
2R, m 1 — —1—
27p

4.15 Numerical example

Let us examine the model in Fig. 15 for three kinds of momentum
loads (linearly variable, constant, exponentially variable). Assuming perfectly
elastic and elasto-plastic ranges, for the given values let us determine the
peak load P, and the caused displacement x

max’

a) Linearly variable load function

Perfectly elastic range: Elasto-plastic range:

8m

o , .
Pozl Ro-x,_,)§= [Py = [Ro-xp (1—-}—&—J§:
t% ] ‘ t(z) 2 xp,

(4 . 1
_[4 100 - 1000 - 1»—3169791@ | = 8-100 1000 - 10f1 — L. L]k =
0.20? 2 10

13784.0487 kp

P 3162.75 - 0.202 P, - 12

Xmax ™= R = P 0 = max - =
4‘ O‘m . 1000 '1 O 8R0'n7, 1__

= 0.9998 ~ 1.00 em 29p |
B 13784.04872 - 0.202 B
8-1000-100( L }
, 2.10

= 0.99 ~ 10.00 cm
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a)

b)
AR(X)

Ro

! o
I —

Xemax Xpmax X1

Fig. 15. a) The substitution model; b) Elasto-plastic displacement-resistance diagram:
m = 100.00 sec—2 em—?; Ry = 1000.00 kp: x, = 1.00 2, = 10.00 74, = 10.00;
ty= 0.20 sec; Py= I xpax = I,

Remark: Reducing the x,,,, values yields the assumed coefficient

x
Np = xp ::—9—‘—929—81— =< 10.00
x,  0.9998

while the plastic reserve can be computed from the direction of peak load
P, for the plastic and elastic ultimate conditions:

137840487

. = 4.3589.
3162.75

Reducing the coefficient of ductility from 10 to 5 yields 7, = 5. Omitting
calculations, the ratio of peak load P, in the plastic ultimate condition:

9486.8329 . 9486.0688
T = {.6882 and the plastic reserve: k, = ——_———— = 2.9993.
13784.0487 P 3162.75

b) Constant load funciion

Perfectly elastic range: Elasto-plastic range:
' 1 2 X, 1
POZ(E:“'RO'-’%]E: P, = _ﬂ[Ro.xP(l_l,M”gz
t5 i3l _ 2 %,

/ i : 9. 1
:[ 100 -1000-1)5: 1581.00 kp | =121 1000-10 (1-1--1- }:
0.20° T 0.202 T 2 10/ ]

= 6892.0243 kp
P'.; . t2 P'Z . t?-
Tmax = : 0 i = Xmax = g0 1 =
2Ry -m{1 — 2R0-m[1-~———
21p \ 21p
158100 - 0.200 _6892.0243 - 0200
- 1
2-1000-100(1—~1 2 - 1000 - 100(1_ )
| 2 2-10
= 0.99 ~ 1.00 cm == 9.99 ~ 10.00 cm
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¢} Exponential load function

1 ] 1 2 . x 1
P, =( Ry jr= Py=| "™ [Ryxf1—1 %)
1 0.1354 - 22 0.1354- 12 2 x,) ||
1 2.1
2% 1000 12— _ [ 2100 Tyg00. 10
0.1354- 0.20? | 0.1354-0202
= 4296.95 k ( 1 1373
1296.95 kp. w1 716”} — 18729.98 kp
0.1354-0.22-4296.95" _ 0.1354 - 18729.98 - 0.20°
N A Ymax = R
2-1000-100[1_.—;) 21000 - 100‘1-.;—1—0-]
= AQK.?9g100 cm = 9.99 o~ 10.00 cm

Comments on the results. For any three momentum functions, the peak
load value P, essentially depends on the peak resistance R and the coefficient

x.’] . . . . T - .
Mp =" Resistance R, is indispensable not only from the aspect of seismic

effects but also for wind loads and other lateral effects, hence it is provided
in most well designed constructions as lateral stiffoness. It is rather costly
to inecrease, bhesides of being rather inconvenient against seismic effects.
The stiffer the structure. the higher the dynamic factor.

Its seems better to increase the coefficient of duectility as a measure
against seismic effects.

These examples involved 7, == 10. rather difficult to achieve for r.c.

P,
. . . . 1% .
structures. In this case the plastic reserve. i.e. quotient k, = — is ahout

4.389. Po,

Reducing the value of coefficient 1, from 10 to 5 and maintaining
R, yields the following conclusions. omitting calculations:

— Obviously, peak load P, belonging to the elastic limit condition is in-
variable.

— The P()p value belonging to the plastic limit will be 0.6882 times that
caleulated from 5, = 10.

— The plastic reserve decreases from 4.389 to 3.00.

These results support the possibility to conveniently and efficiently
increase the ultimate plastic resistance to seismic effects of constructions
duly designed for wind loads and other lateral effects and possessing an
adequate horizontal stiffness, by increasing the ductility. without further
increasing the actual stiffness.
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The previous results refer to an external shock load. As mentioned
in item 4.1, to simplify calculations, seismic force S, due to acceleration
d, and initial displacement x, are substituted by an external force P,f(t)
permitted by the mathematical similarity of Eq. (14).

Below. the seismic acceleration for peak load P, will be determined
in the MSK scale.

Equality between external load P, and seismic force S, (P, = S,) is
started from.

If mass m and mass force S, are known. according to the D’Alembert

principle:
m-d,—S=70. (39)
Hence:
S
ay = ;12 : (40)

Mean accelerations according to the MSK scale are recapitulated in
Table 1, permitting to determine the seismic force grade for P, = §,.

Table 1
MSK. scale

Average surface accelera-

Grade tion 4, [em sec™?
VI. | 5.00—10.00
VII. [ 10.00—25.00
VIIL [ 25.00—50.00
IX. ’ 50.00—100.00

Let us consider, e.g. the seismie forces for the elastic and plastic P,
belonging to the linear load function:

S 2.75 .
P, = 3162.75 kp: d, = —% = 3’-%63 — 31.6275 cm sec-2 — VIIT MSK
m

Py, = 13784.0487 kp: a,= ~S—° = Eﬁfag—@i =137.84 cmsec—2 — > IX MSK.
m

Accordingly. the structure with the indicated characteristics could
support an earthquake MSK grade g, IX to the expense of large plastic
deformations. This is still inadequate to predict whether the structure will
collapse or not. Namely also the stability questions for very large deformations
have to be solved. belonging to the scope of real structures.
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4.2 Analysis of the pure plastic condition

Utilizing [11], cases of negligible elastic deformation compared to the
plastic one will be considered.

Again, a single-mass system with one degree of freedom will be examined
under the previously considered three momentum loads (Fig. 16).

b) 2 A %(t) < 0; Rx)= 0
R{x)=Ry

aj
APW=PT0)
x(1) <€ C;R(x)= Ry

Ll v arr s etrant T T =
=0t AN Xez0 xp x()

Fig, 16. a) Momentum load diagram: b) Plastic model; ¢) Plastic displacement-resistance
diagram

Starting assumptions are:

— peak resistance R, is independent of the displacement:
R(x) = R,

— there is no displacement for P, < Ry:

— arbitrary displacement is possible for Py = Rg;

— the system is unfit for supporting a force Py, > R, .

Let us determine the motion time ¢, and the displacement x,_ . due
to an external shock load.

Formerly, the theorem of equality of energies has been applied for
determining the unknowns. The actual expressions are, however, much easier
to handle by directly integrating the differential equations, taking the
definable initial conditions into consideration.

The differential equation of motion:

m x(t) = P() — R, . (41)

According to the initial condition: t =0 — x(t) = 0

v(t) = &(t) = —l—j P(t) d&t — Ryt . (42)

Substituting the equally true conditions ¢ =1t__,.: — v(t) = 0

tlﬂ{LS
0= '}"[ P(r) d R, tmax] (43)
m |/

0
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yielding for maximum time of displacement 1, :

tmax

P(r) dt e
J _égfﬂﬂ&. (44)

L N
0

Further integrating Eq. (42) and substituting the initial conditions
vields the maximum displacement value:

LJUpUd%— ]m. (45)

m
0

Substituting the pair of values =1, x = %, vields for the
maximum displacement of the system:

fmlif; tnh”.}:
Fmax = l—J [POJ f) de — Rotmaxi‘ dt . (40)
m
0 0

To the analogy of the model with elasto-plastic properties in the
previous item. values belonging to the discussed three types of shock loads
will be determined.

- Linear load function:

— Constant load function:

e = 0 j ar — [f—‘t : ro], (49)
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— Exponential load function:

P
tmax = Tp In—2% (51)
0
R
K= 2210 [1 — o (1 +n -P—O) ERE I ﬂ} , (52)
m PDA 0 9 Ro
Provided x,, = x, can be considered as known, peak load P, is not

difficult to determine either.
It is, however, somewhat more complicated in case of a perfectly plastic
model.

4.3 Examination of a bar-like. single-mass system with one degree of freedom

Let us consider bar in Fig. 17 of constant cross section and height H,
acted upon at the top by a shock load P(z).

P{L) 4
= P/ m—
3 | /’ : —/
= i/ . - v
- ; F et e dSZ g
= 2 ¢ (1) Go '\“i_:"' SEHYYCY
: h
h |7 o;n b
=z i 7
s - . vk
~— 4
My My
Fig. 17

Initial assumptions:
— The bar has a constant cross section and uniform mass distribution.
Specific mass distribution g = constant.
— It joins the solid medium at point A4 by a plastic hinge M,.
— Rotation is only at point A. Other parts of the bar are perfectly rigid
during moetion, hence exempt of deformation.
Equilibrium equations:

. H®
IMy=0: Pl) - H—of ——— M, =10 (53)
3
(ogb—g— — P(t) H — M, . (54)

Introducing notations and relationships:

M, P P-H P P H
P="": p=——=-"—— and == =0 == 2077 for <1, x(#) = 0.
Tl v Po=7 Po << 1. x(r)

3
H L
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M, = ultimate moment at 4 (plastic hinge);
P, = ultimate load for 3,
P = an external load value:

P, = external peak load.
Using these notations, Eq. (54) becomes:

. H3
o —=p—1. (55)

M,

Initial conditions:
t=0-—¢g=20
. H? : .
g ::dei—tzf(t)—i. (56)
3:‘[[
0

After a time 7, . displacement is off and the bar is at dead point again:

I = lmay = (/ =0

tnlf‘.x 11’!3-’\:{
0= S P At — fpaxt tpax = \ P dt = I(tyzy). (57)
0 0

For a shock momentum of constant load distribution:

P,

I(tmax) = P()'to = '}T Cly
P
hence: tmax = Htmax) = }1%- (58)

i

Utilizing initial condition t = 0 — ¢(t) = 0. Eq. (56) yields:

H3
3M

g

t? _
= f 1) ar — - (59)

and for t = ¢, and ¢ = ¢,

imax

” Fax
- J I(e) de — =55 (60)

<

H3
3M,

H o Pmax

0




In case of a shock momentum of constant load distribution as simplest
case, making use of (58) and of x_,, = ¢ .. - H:

‘ 3 Py |
XTmax = —

4 u-H

_11:_;;1 — 1] : (61)

5. Analysis of real bar siructures and structural members

Problems emerged in this study raise two important questions:

a) In a real structure — in particular. in a bar structure — where
should plastic hinges develop, partly to keep the system its stable configu-
ration, and partly to have the possible maximum of the inner deformation
work — potential energy -~ of the structure at its ultimate condition?

b) How to design plastic hinges of load capacity [ 3M,|= -+ M, —
primarily in r.c. structures — likely to cope with the repetitive and alter-
nating flexural stresses due to seismic effects besides of having an important
ductility coefficient — higher than the actual one?

The first question will be approached in this chapter. and the second
in the next one.

This overall problem is, however, too complicate to be solved within
the scope of this paper where neither the analysis according to the second-
order theory, nor the multistorey frameworks will be considered.

5.1 Bars
5.11 Bars of continuous mass distribution

Bars of constant cross section and mass distribution, joining the soil
by a plastic hinge of load capacity M, according to Fig. 17 have been consid-
ered in item 4.3. An external shock load P(t) has been assumed and the

produced displacement and displacement time values x_,, and ¢, sought for.

max
Now. the same bar will be considered as exposed to a seismic shock
of initial acceleration — displacement momentum - 4, .
Initial assumptions:

— The bar is considered as a perfectly rigid body, suffering only a rotation
¢ at point 4. ¢ is supposed to be slight and can be discussed by methods
valid for small displacements.

— Plastic hinge A, provides a perfectly plastic connection between bar
end and soil [M,| = L+ M, (Fig. 18).

Analysis by the Ist-order theory:
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e o e e g e “M. = M
Fig. 18

¢ is assumed to be slight, hence: H(1—cos ¢) o~ H accessible to the
analysis according to the Ist-order theory. It has to be pointed out, however,
that — especially in the analysis of plastic stability, — no treatment according
to the TInd-order theory can be dispensed with, since its neglection is to the
detriment, rather than on the side of, safety. This is evidenced by Fig. 19 [11].

To the analogy of the former, let us equalize deformation works:

w, = w; . (62)
External work is the resultant of mass forces:
. H?2 . H®
w,=p" ¢ -——g - H=ug —aq. (63)
2 3 3
Internal deformation work:
w; = —"‘It Pmax (64)
H3 . 3M.
— g . » — M. ,‘,::—-L— 6?
we =i o0 G -0 = Mg: Fra o (65)
e
Fig. 19. .... elastic Ist-order; — - — . — elastic IInd-order; — ¢ — o ——rigid-plastie Ist-order;

—~——-rigid-plastic IInd order:

elasto-plastic IInd-order
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This is the greatest circumferential acceleration value possible for a
given M, _
After integrating twice, angular rotation becomes:

7t = U‘f/a(r) a2 = Jl °_“23. ar = _}__V_ e (66)

Maximum displacement:

Tppan = A (67)
Initial conditions:
f=0-qg=20
f== 1y = ipaxt Xpmay = —3}1 1. (68)

2 - H?

Maximum mass force value S, will Le determined from the equilibrium
equation M , = 0:

9 3V
SvL—o: s, 2 spg, 2 3 (69)

3 ‘ 2H

As before, ultimate intensity m, is obtained from the relationship

Sy =m, - G:
S -
my = (70)
G

Ultimate intensity m; is the ratio of mass force S, — D" dlembert’s force —
to the total dead weight G in case of a plastic hinge M,.

5.12 Mass concentrated at the bar end (Fig. 20)

—__:H(l—cosg:)

H cosyg~H

TR

; .. M;
Fig. 20. my = Lo 025 w-H: Sy=my - ¢oH = —E—
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According to the laws of dynamics, the substituting mass at the bar

tOp:

mg —

o -
— - 0.25p - H :
g

g being the gravity acceleration.

Again, equalizing external and internal work:

w, = w; ,

o

w, = S, & = m,. ¢ H ¢ = Hm,¢H%
1w = M, Prex

Mg, f/ . Hg(]? = :\j;"(l"’max .

Maximum angular acceleration:

M,
Frmax = o
mg - H?
Funection of angular velocity:
: L Bt
o) = ¢ty = | ¢lt) dt = —F—1.
. m - H?
0
Circumferential veloeity:
o(t) = H -+ oft) = —
mJH
T'unction of angular rotation:
() ‘ P(t) di M £2
plt) = | ¢ Gl == U
N 2m, H?
0
The displacement for x{t) = ¢(t) - H:
Maximum displacement:
M, ,

Xmax ™

t, being the displacement time.
Ultimate intensity:

(14)

,\
)
l

=
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5.2 Anelysis of a single-storey framework

Be the single-storey framework in Fig. 21 acted upon by a known force
V at mid-span for the sake of simplicity. As before, maximum value of the
{ max> 1-6. that failure mechanism is sought for
where the plastic deformation work of the structure is maximum.

ultimate intensity m;, = m

Initial assumptions:

- Plastic hinges can only develop at nodes and under concentrated loads
(points 1 to 5 in Fig. 21). Angular rotations and displacements can only
develop in plastic hinges. During motion, other structural parts — bars —
behave as perfectly rigid bodies.

— In the analysis of a bar unit, only the flexural moment is taken into
consideration.

— The plastic hinge has a moment capacity M, of identical positive and
negative value. Thus, the plasticity condition may be formulated as:

f= M, — |M|>0.

1/2 172

_755_“_ S S S

Fig. 21. Sy = mygay = V

— The ultimate moment of plastic hinges is uniform in any cross section
of the structure: M, = constant.

— Vertical load value ¥ is assumed to be constant — value of the dead load
of the building and other constant loads to be reckoned with in examining
the seismic effect.

— The maximum value of the unknown force H in the ultimate plastic
condition of the structure, i.e. the ultimate intensity of force H is sought
for. Between I and H there is a one-parameter relation m,.

The considered structure is a hyperstatic one, with n = 3 redundancies.

It is known from the theory of strength of materials that a hyperstatic

structure with n redundancies is made to a statically determinate, unstable

configuration by incorporating n + 1 hinges. In our case n L= 1, at least
four plastic hinges have to develop to cause instability.

Failure mechanisms are seen in Fig. 22.
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Displacement and rotation values in the figure are only
mitting to determine the ultimate intensity value. Also here, the analysis
is based on

ratios, per-

w, = W;
w, =XV - v,
w; = EJI[ .
Table I
Sym_bol
Oéii]é‘;fe Wy | g @y owy | Mo oy ¥ Vo Day Ultimate intensity my
nism :
1] ;1 I L
L=l 5 = 8 - Vo m=0
1 1 1 [ ¥ V 6M, 1
S a g 35 o meg T me g e
) 4,
3 1 1 1 1 4JIt i — i TII['I -l m;= I/-l
1 11, 1 I V.l V.l 6M; , 1
gt — T M\ e T s Ty
I | i

mM; .. of interest for us, is obtained from mechanism 2. Namely’
mechanism 4 could only be produced by a vertical load V if it were due to
a wind load — V.
Remark that in plastic ultimate analysis, in general, the m; n, value
is wanted, the failure mechanism where after development of plastic
hinges in course of the natural process, the load capacity of the structure
is minimum.
On the contrary, our problem consists in finding the failure mechanism
concomitant to the maximum ultimate load intensity, and the plastic
hinges are designed prealably into the forming mechanism, to ensure
development of a possibly propitious failure mechanism. Plastic hinges
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of load capacity M, are designed at spots where their action provides
for the optimum ultimate deformation of the structure.
Complex cases, such as multistorey frameworks are outside the scope

of this paper.

6. Tests and test results

Question b) in Chapter 5 concerned simple plastic hinge units of moment
bearing capacity --3,. possessing increased ductility and energy absorption
under alternating seismic loads. The following three tests were rather prom-
ising from this aspect.

Common features of the tests:

— All the three test specimens were exposed to periodic forces inciting

displacement: x(1) = x, sin-wi .

— The maximum displacements were different but the period ¢,

was identical in each test.

6.1 Steel structure model

No doubt. relevant proper‘cies of steel struetures or structural units
are much superior to those of reinforced conecrete.

Thus, the first test was made on a pure steel structural member.
assuming that it could also be incorporated in reinforeed conerete structures.

The test model of Figs 23. 24, 25. 26 is essentially an elasto-plastic
spring unit. where the spring effect is due to the rigidity to displacement
of stout steel columns with fixed ends.

Bevond the elastic limit, the columns get in a perfectly plastic state
in the clamping plane, hence plastic hinges develop at both ends.

Seismic effects were simulated by applving alternating displacement
shocks on the spring units, recording resistances R(x) to the displacement.
In the elastic range: R(x) = k - x where k = spring stiffness. and x = elastic
displacement.

Beyond the elastic limit — in the plastic range — R(x) = R,, . the plastic
resistance for the plastic hinge A, .

The test aimed at determining the pumber of repetitions of such
important plastic deformations the spring unit can endure to still possess
any resistance. In other words: the cnergv-absorptivity of the structure after
great plastic deformations.

A similar test method is the accelerated fatigue test (Pror; LocaTs
method [10]) known as low-cvele load method.

The method we applied differed by applying identical but very great
plastic displacement amplitudes throughout the load test. at a much lower
number of cycles.




:A X{t)= X gy SN Wt

Fig. 24. Deformation of the elasto-plastic bar Mp = o7+ Kp:
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Tests and evaluation:

Models made of high-strength (B.60.40) reinforcing steel have heen
exposed to the repetitive, alternating effect of 11.50 times the elastic limit
of displacement.

After 25 cyeles, rigidity to displacement R(x) dropped to a negligible
value.

Hence the energy-absorptivity, expressed by the area below the curve
x(t) — R(x3t) is rather favourable,

Steels of lower strength but of still higher plastic deformability are
likely to behave still better.

Similar steel springs incorporated in real r.c. structures are seen in
Fig. 27. together with some application possibilities.

al b} Neoprene ;1 Steel springs

[

X} .y

JHil

L

%\ - De(‘cil 1

T

R

Fost tensioned members

FE3SIO 115 4143 i 10110V D 111433 MO 3131

g Hg

Fig. 27. Practical applications: a) Damping of rigid buildings: b) Solitary foundations;
¢) Damping of towers; d) Shear wall joints; ¢) Shear connections of precast wall units;
{)Bridges; g) Damping of turbine foundations
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In the outlined cases. the steel spring sets act as connections in shear.
They are designed to act elastically under constant static loads (e.g. wind,
dead load, ete.).

Under seismic effects. large plastic deformabilities may be relied on.
maintained even under several repetitions.

Being incorporated into the reinforced concrete so as to work even
after this latter cracked and failed, steel springs provide it a much higher
ductility and energy-absorptivity. Another field of application is to attenuate
propagation of seismic waves to prevent motions from being transferred
to the construction.

6.2 Reinforced concrete beams

Comparative test results on a normal r.c. beam and a special one,
similar to the former but divided at mid-depth by the described set of steel
springs throughout its length will be presented in Figs 28 and 29.

In other words, the latter beam has stirrups absorbing ultimate shear
forces but these stand free and are not embedded in concrete.

In great deformations, after the outlined plastic hinges developed,
the set of springs unites both r.c. zones and even after important eracking,
it is able to resist displacements.

Test results:

6.21 Normal r.c. beam (Fig. 28)

It is a beam of a cross section of 10/25 cm, symmetric reinforcement
and @ 6/9 cm stirrups, of a span [, == 90 c¢m. First, a static deformation
had been imposed (Fig. 28a). The elastic limit deformation x, .= 0.42 cm.

After the static test, a series of dynamic alternating plastic deformations
X, max = 2.00 em have been applied on the beam by means of a pulsating
device.

After five cycles, resistance R(x) practically vanished (Fig. 28b).

The value of relative energy absorption is expressed by the area below
the curve «(t) — R(x;t) amounting to 3724.00 area units (Fig. 28c¢).

6.22 Special r.c. beam (Fig. 29)

Its cross section differs from that of the normal beam by @ 6 mm steel
dowels 5 ¢m long uniting the two r.c. zones 10/10 cm. The dowels join two
steel plates — rather than the concrete — to provide for the rigid clamping
of dowels — stout columns — throughout the displacements.

The ultimate moment of this beam was the same as that of the normal
r.c. beam.

4%
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2 R(x;t), Mp « - 1
R{x:t) 700+ 2 max 7 ;
» (x; » 7.00 042 m
1
686/,
igigl ™ 06/9
Rl 7
20 5 /
400}
i Static displacement- —7~
e ;;’;(g”‘jj,‘, resistance diagram

Duynamic displacement - —
resistance diagram

Rxe) max=510 Mp

:()"_10 Mp

R(«)f,,)mcv.

a) b)

Fig. 28. Model test on a normal r.c. beam. Concrete grade B 400: steel B 60.40, B 50.36.
Relative energy absorption: 40.5 Mp c¢m: 3724.00 in area units

The elastic limit deformation %, ,, = 0.75. The coefficient of ductility
was assumed with about the same value (Fig. 29a).

The imposed maximum plastic deformation %) max = 3.125 was endured

by the beam ¢ times consecutively, to have its resistance R(x) dropped to
a negligible value (Fig. 29b).
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The coefficient of energy absorption has been calculated from the nine
area units, totalling 7700.00 area units.

Confronted to the normal r.c. beam: 5, =- == 2.10 hence the

3724.00
special r.c. beam of the same ultimate strength and about the same duetility
had about twice the energy absorption capacity.

7700.00
2

2
R(x;t) 2208
2502 v g ]
s B e
2:$10/5 2
553 53 =]
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Fig. 29. Model test on a special r.c. beam. Concrete grade B 400; steel B 60.40. B 50.36;
Relative energyv absorption: 85.0 Mp cm: 7700.00 in area units; Absorption efficiency:
_ 700
A= 3798 = =
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Summary

This study is meant as an introduction to the research of the complex problem of
antiseismic protection.

First of all, comprehensive analysis of the ultimate condition may help in protecting
massive constructions of not outstanding importance, hence improper to desigu for the elastic
limit against seismic effects of low probability and of an expected intensity.

Assumption of the ultimate condition may raise debates. It seems, however, still
more reasonable than to challenge the fate of great many buildings in an earthquake.

It seems to be better and more economical to anticipate the failure mechanism than
to leave it to chance.

Ulterior analysis of failure mechanisms after devastating earthquakes supports the
likelihood of averting or diminishing serious fatalities by designing a failure mechanism likely
to offset instability and to prevent disjointing.

No adequate number of relevant tests have been made to now to support assumptions
bat available test results do not contradict them. Even an unambiguous proof is given of
the simple and economical possibility to increase ductility.

The subsequent tests on failure mechanisms are expected to support the relevant
assumptions.
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