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According to Hungarian design standards [2, 3], masonry and concrete
structures can be considered as made of ideally elasto-plastic material of
no tensile strength. The design value of eccentricity including random
eccentricity and that due to the load are specified as a function of slenderness.
A practically applicable method will be presented for determining load-
induced displacements better approximating the ultimate real load capacity
than the standard one.

1. Initial assumptions

The examined bar is made of a material of limited compressibility,
ideally elasto-plastic and with no tensile strength. The deformation coefficient
involving the creep is:

Ei=p oy

the compression due to ultimate stress:

oy 1

r = PR

E; B
the ultimate value of strain at failure being e¢,. f,. o0y, and &, values for
different building materials are specified in design codes.

The bar is of rectangular cross section, both ends hinged (Fig. 1). Before
buckling, the force is of constant eccentricity. Deflection occurs in the bending

* Abridged text of the Doctor Techn. Thesis by the Author.
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plane, and during deformation, cross sections remain plane. Maximum dis-
placement is determined by assuming the defiected bar to be sinusoidal and
using the stress diagram of the mid-section.

The deflected bar is of the form:
y == Aesin —;— x.

with a curvature:

"
Y

L
o (L ype

With the usual approximation (1 -+ y'?)%% = 1, the mid-bar curvature is:

The central cross section may he in elastic or in plastic stress state
depending on the bar slenderness.

Either the entire cross section or only a part of it is active, depending
on the position of the load. Thus the possible stress diagrams are:

a) Elastic deflection. the entire cross section is active (Fig. 2),

b) Elastic deflection. part of the cross section is active (Fig. 3),

¢) Plastic deflection, the entire cross section is active (Fig. 4),

d) Plastic deflection. part of the cross section is active (Fig. 5).

Expressing the curvature in terms of the angular strain at mid-section:

1
0

Introducing the notation 2 = ¢,/¢

o |-

(1)
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2. The force-displacement relationship

The force-displacement relationship is obtained by taking Eq. (1) and
the equilibrium conditions of external and internal forces into consideration.

a) Elastic buckling, the entire cross section is active (Fig. 2)

From the force equilibrium

(2a)
")(& . 5)
c~—Ae=£o’ = . (3a)
3 28—1
Utilizing (1) and arranging:
(4a)
Similarly as hefore:
7 £
N (2b)
bhoy; 20
¢ —de = th (3h)
3
Ez_ﬁg_c_g,%__gﬁ. -Z_J_:O_ (4b)
h x| h
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¢) Plasiic buckling, the entire cross section is active (Fig. 4)

From the force equilihrium:

N —(1 — 228228 -1
N _ ( 2) . (2¢)
bho, 2o

The resultant of intermal forces and the external force have a common
influence line:

c— de=—"

(3¢)

B (1 — x)8 88 138 1
2L

Substituting the Je value and arranging:

<1—a)354-3—3<1—a>253;[6%_3+ 3¢, (i)‘a - oc)‘l]sz—

’ 72z 1 h

1. 3
h} T

d) Plastic buckling. part of the cross section is active (Fi

%J =0. ()

g 5)

From equilibrium equations:

N =s(1——°‘—}, (2d)
bhoy 2
—?'—-——x—{—l
ce—de=nh 3 & (3d)
2 — o




BARS WITH NO TENSILE STRENGTH 121

Substituting and arranging:

o2
.___a_l_l
3 ' c e (1)?
g gL T |—] =0.
B %k (4d)

3—a

Eqs (4) yield § values belonging to different « values, then (2) and

(1) yield specific IV and e values. Calculations have been made for prisms
of different slendernesses, relative eccentricities and materials by means of

a digital computer. Some force-displacement diagrams will be presented.
Figure 6 shows force-displacement diagrams of brick masonries of a

slenderness [/h = 30 for different initial eccentricities; Fig. 7 refers to brick

c/h =040

;
u I/n=10

NIbhay
2

03 Q4
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08— Uh=20
c/h= 0.40

Nibho,

Stone (B: = 2500)

/Concre\e(B. = 1300)

07
Fig. 8

masonries of different slendernesses, with intersection points at identical
distances c¢/h: Fig. 8 represents diagrams for columns of identical slender-
ness and eccentricity, made of different materials.

Deformation characteristics have been assumed according to the standard
{3]. Although only the rising branches of the diagrams are of importance,
curves have been plotted to the z, values where compression in the extreme
fibre is at its ultimate value ¢, The diagram for cross sections in the elastic
stress state has been plotted in continuous line. while dash-and-dot lines
refer to the plastic range. In case of £ = 1.0 the neutral axis contacts the
cross section., The circles refer to diagram peaks.

Load capacity of the prism is at the curve maximum as a rule. Specific
N values for #y mav be on the rising branch of the curve for prisms of very
low slenderness, to be considered as the load capacity. since the extreme fibre
compression cannot exceed the ultimate value.

Displacement of the elastically buckled central cross section is so great
that the neutral axis belonging to the maximum intersects the cross section
even for the least initial eccentricity. In case of plastic buckling — hence
when the maximum is in the plastic range — either the entire cross section
or only a part of it is active. depending on the initial eccentricity value.

3. Force-displacement function maxima

In case of elastic buckling. combined use of Eqs (1). (2b) and (3b)
vields the function N— _le. with a maximum at Jde = ¢'3 of a value:

: 3 2
N 2boy
“¥Ymax = *

3¢, I2
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This value being independent of the dimension h of the cross section,
it is expedientlv related to the product of the cross section area centric about
the intersection point by the ultimate stress:

+ 9
-7\’ max %4

y = = - - (5)
2bCG’H 128r L

The relationship is valid until « > 1, that is:

1 2
. 2 T
2¢ 68,

In plastic buckling — when the neutral axis is in the cross section —
function NV — _le is obtained by combining Eqs (1). (2d) and (3d). The specific
value of N, is given by:

. 97 (1 \*F
PR N 6
(11— 4[7(?J (6)

value and place of the maximum are related as:

e
pe=1--3 =
2¢
Maxima of the different force-displacement diagrams — provided the
neutral axis is in the cross section — are on straight lines in Fig. 9.

In case of small slenderness and initial eccentricity, the entire cross
section may be active (Fig. 4). Now. the force-displacement funetion maximum
is advisably obtained by approximation.

_ Elastic
buckling
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4. Ultimate load bhearing

In addition to initial eccentricity ey == M/N and stress induced eccen-
tricity increments, the determination of the ultimate compression of prisms
has to take the standard deviation /ey [2. 3] into account:

I 32
deg = 0.03h + 0.1 |—— h. 7
o L [10h) (7)

Before deformation, the distance between the section edge and the
application point is given by:
h

2

P

¢ =

— (e + eg) -

Ultimate load of the prism without tensile strength:
Ny=1v- Fp oy (8)

where F,, == 2bc. v values in the formula are given by (3) or (6). Fig. 10
shows diagrams v for masonries of different materials. Load capacity for
slendernesses below that for oy, have been determined by taking the ultimate
strain value into consideration, these cases are. however. of little practical

Stone

Concrete
08k /Briu(
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Aerated concrete
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importance. In the little frequent case where the entire cross section is active,
the ultimate load given by Eq. (8) is an approximation. Determining maxima
of force-displacement functions on a computer showed them to exceed those
from Eq. (8). an error on the safe side. The errors are for stone masonries

»- for brick masonries 1.7%; and for aerated concrete masonries helow 37,

Let us compare the load capacity given by Eq. (8) — taking the
eccentricity standard deviation according to Eq. (7) into consideration —
to test results obtained at the Structural ulcn' Products Institute [4]. Ultimate
forces of prisms with initial eccentricities ey = h.6 and h/3 referred to bhe,
are shown in Fig. 11 vs. the slenderness ratio Lh. ¢, means the ultimate
compressi\' strength of the hrick masonry, determined at SCPI by testing
to failure short prisms of the same material. Test results for eccentricities ea=N/0
and £i/3 have heen affected by marks + and . respectively. Load capacities
calculated with a deformation coefficient F; == 1000 o, , taking also creep
effect into consideration, and with a coefficient of elasticity E,, = 2500 ¢,
have been plotted in a continuous. and a dashed line, respectively, in
Fig. 11.

The dashed-line load capacity diagrams ignoring the creep cffect are
seen in Fig. 11 to fairly approximate test results for prisms of low or medium
slenderness. The usual excess of test results over calculated values is due to
the faect that the presented method ignores the tensile stremgth of brick
masonry, aud that in laboratory tests the random eccentricity increment
is less than that obtained from standard Eq. (7). The effective load capacity
of very slender columns is the multiple of calculated values. namely at a
low ultimate load capamtv the effect of tensile stremgth — left out of
consideration — is of importance,

Ny /bhg

(w3
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Legend
cross section width:
distance between the influence line of the compressive load and
the compressive face of the member at the support;

ey initial eccentricity:

deg random increment of eccentricity;

e eccentricity increment due to stresses:

E; deformation coefficient taking creep effect into consideration:
E; modulus of elasticity:

F. = 2bc part of the cross section centric about the influence line:
b cross sectional dimension in the bending plane:

l prism buckling length:

external force axial to the bhar:

ultimate force:

; force at failure:

v = ¢g,/¢ coefficient of the cross section rotation abilitv:

ay=¢, ¢y ultimate value of rotation ability;

B; == E; oy ratio of the deformation coefficient to the ultimate compression
under permanent load:

& compressive strain in the extreme fibre:

e ultimate strain at failure:

¢, == gy E; ultimate value of the elastic strain;

£ relative distance of the neutral axis:

y ratio of ultimate load to the force. product of the surface part
under central compression by the ultimate stress:
Lo prism axis curvature:
Gy ultimate compression:
G, ultimate strength.
Summary

A method has been suggested for determining the compressive load capacity of prisms
hinged both ends. of constant eccentricity. of rectangular eross section. made of an ideally
elasto-plastic material, taking the eccentricity increment due to stresses into consideration.
The deformed prism has been considered as of sinusoidal shape. the eccentricity increment
due to stresses has been determined from the stress diagram of the central cross section.
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