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1. Setting the problem 

Recent development of reinforced concrete structures was featured by 
the cxtended application of wall structures. 

Industrialized building systems based on tunnel shutterings and on large 
slabs, load-bearing 'waIls, precast beam-and-column frameworks, increased 
storey number and reduced huilding weights enhanced the importance of 
stiffening walls. 

A field of research on reinforced concrete of increasing actuality is con­
cerned with walls and wall systems, involving ever more researehers. 

Fundamental work hy CHITTY and BECK opened the line of great many 
studies on shear walls. Analysis methods follow either that of ROSl\IA"'N or of 
ALBIGES and GOULET. Stresses in the shear wall are determined hy assuming 
homogeneous, erack-free cross seetions in stress state I rather than to follow 
the stress state of structures in cracked condition. In general, these methods 
examine the horizontal force effects in themselves, assume that the vertical 
loads can also be considered in themselves, and that the comhined effect of 
both leaves the wall crack-free, and the results determined for stress state I 
can he simply superimposed. 

For theoretically preparing experiments in the scope "Load-Bearing 
Walls and Systems", a computation method for the uniform handling of r.c. 
walls in any stress state conform to the education delivered at the Faculty 
of Architecture has heen developed. 

2. Initial assumptions 

A. Assumptions on the wall design: 

High storey numher. 
Walls much stiffer than connecting heams (ko > kg). 
Within a storey, material and cross section of wall sections and con­
necting heams are the same. 
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Cross section, material and height of wall sections may vary for each 
storey and so may stiffness. (Walls v"ith identical storeys throughout 
are termed regular walls.) 
Axes of wall strips are continuous throughout the wall height. 
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B. Assumptions on the loads 

All vertical and horizontal forces acting on the wall each storey are 
transferred by the floors. (Also wall dead loads are assumed to act on 
each storey.) 
Forces acting on the wall each storey are of identical direction and distri­
bution but their values may be different. 

C. Assumptions on stress state and deformations 

Interaction of two wall strips considered as cantilever clamped at the 
bottom is provided by the connecting beams. 
Floors are considered as plates infinitely stiff in their plane, "\vith bending 
stiffnesses much lower in the normal plane. 
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Axes of the two wall strips making up the wall system remain parallel 
after loading deformations, identity of displacements being provided 
by floors considered as infinitely stiff in their plane. 
The law of plane cross sections is valid for individual connecting beams 
and wall strips but cannot be assumed valid for the entire wall. 
The wall undergoes elastic deformations. 
Axial deformations of connecting beams are negligible. 
In general, also the shear deformations of connecting beams and wall 
sections are negligible. This effect can be approximated by the reduction 
of the moment of inertia: 

Ig 
I p = -------"------:-;;ry-

1.1- 2(1 + fl) I~)~ 
,L 

Reinforced concrete units comply "with assumptions and material char­
acteristics of Hungarian Standard Specifications MSZ 15021/71. 

3. Calculation method 

3.1 Determination of stresses in a shear wall by the compatibility method 

a) Fundamentals of the compatibility method 

cutting the structure leads to statically determined primary heams 
affected, beside loads, hy unknown constraints; 

- primary heam deformations due to unknown constraints and loads 
can he determined according to the elementary laws of the strength of mate­
rials (e.g. by the NIohr method); 

- unknown constraints can he determined from deformational equations 
"W'Titten for the points of cutting. 

h) Equations of the compatibility method for a shear wall 

- A shear wall of n storeys can he reduced to a prohlem of hyperstati­
city of n redundancies. To this effect, axial deformation of connecting beams 
will be neglected (hence N g 03 0) and the structure assumed to he cut hy a 
vertical plane passing through the moment zero points of the connecting 
heams. Then a single unknown constraint -will develop at each storey, viz. 
n shear forces Q i acting at the points of cutting. 

The' n unkno"'\\-ns will he determined hy n deformational equations of the 
compatihility method: compatihility equations for the cutting places at any 
storey. 
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The applied method starts from the assumption that the deformed wall 
strip cross sections remain normal to the parallel curved axes of the wall 
strips. This results in the relative shifting of the two wall strip cross sections, 
originally in the same horizontal plane, and so, of the hah-es of the two pri­
mary beams at the fictitious cutting place a~. 

No rupture is possible in the real structure. The unknown constraints, 
the connecting heam forces are responsible for the continuity, the interaction 
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of the structure. Thus, the opposite deformation af due to unknown connecting 
beam forces must equal the calculated relative displacement of primary beams: 

af* = a? 
This deformation equation written for all storeys yields a set of n equations 
for determining the unknown forces acting on the n-storey hyperstatic wall 
of n redundancies. 

c) Stresses in a coupled shear wall 

Once the set of equations has heen solved, stresses in the coupled shear 
wall can be determined for the statically determinate cantilevered beam, sub­
j ect to loads and the already known connecting heam forces according to the 
laws of elementary statics. 

Wall strip stresses are: 

jl1'; = iVI~ 

N;=N~ 

T;= T~. 

1\19 
- I 
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Bending moments in the two wall strips are distributed according to 
stiffness ratios: 

where 

(31 = k -L k 
1 I 2 

Connecting beam stresses: 

L 
1~/1" _ MO 'Q. g 

lY./. ig - - ig'- i --
2 

3.2 Load vector An 

Deformations of statically determinate primary beams inv:olved in the 
set of equations are advisably determined by the Mohr methog. 

Practically, separate calculation of the two primary beams, hence distri­
bution of the effects (e.g. horizontal forces, eccentric moments) between the 
two primary beams may be saved. 

A so-called "substitution beam" is produced by summing up the two 
primary beams. Its deformations vvill directly yield the relative displacement 
values sought for. (Of course, normal force effects need reckoning with sepa­
rately for both wall strips or primary beams.) 

Numerical values will be obtained for relative displacements due to 
loads and effects, to he considered load factors as usual in the compatibility 
method. 

Relative deformations of each storey constitute a column vector: 

afi 
! 

a~ 
L a~ .J. 

3.3 Deformations due to unknown connecting beam forces 

Connected beam forces cause partly wall strip deformations hence rela­
tive displacements opposite to the loads, and partly beam displacements: 

ap* = ap + ap. 

4 Periodic. Polytechnica Architectura 19/3-4 
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3.31 Relative displacements v"ill be determined by summing up relative dis­
placements at each storey i due to shear forces Qk acting at the k-th storey: 

/(=n 

aR = ~ a9< 
l ~ 1 

/(=1 

Relative displacement at any storey due to a shear force acting on a given 
storey is determined by means of unit factors as usual in the compatibility 
method: 

Unit factor Eik means the relative displacement at the i-th storey due to a unit 
shear force Qk acting on the k-th storey, the so-called stiffness coefficient of the 
wall strips. 

Summing up the displacement changes at j-th storeys below the tested 
i-th storey (the wall strip rigidity coefficients) results in the unit factor. A unit 
force acting on the k-th storey affects the relative displacement of lower 
storeys alone but leaves them constant above. 

Thus, for a storey below the point of application of the force: 
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and above the same: 
y=k 

Eik = ::E ej • 

"1=1 

Remark: In conformity with the lVIaxwell-Betti theorem of exchangeability 
for unit factors: deformation at the i-th storey due to a unit force acting 
on the k-th storey equals that at the k-th storey due to a force acting 
on the i-th storey. 
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Wall strip rigidity coefficient e j involved in the calculation means the 
change of relative displacement on an arbitrary j-th storey due to unit force 
Qk = 1: 

c 

Wall strip stiffness matrix Enn' All storeys of an n-storey wall al'e subject to 
shear forces causing relative deformations on each storey. Deformations due 
to unit forces, i.e. the unit factors can be 'written in a square matrix of n order, 

4* 
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symmetrical about the principal diagonal in conformity 'with the theorem of 
exchangeability. 

3.32 Connecting beam deflections. Calculation starts from the displacement 
belonging to unit shear force - the connecting beam unit factors: 

Relative displacement of the ends qf the two elementary cantilevers obtained 
by cutting the structure at the zero point of connecting beam moment is cal­
culated as the second moment of area of the imaginary diagram llEI of the 
connecting beam, 'written for the axis passing through the point of inflection. 
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In conformity 'vith published test results, the zero point of moments 
can be assumed at the halving point for all connecting beams. 

Accordingly, unit factor of the crack-free connecting beams of constant 
cross-section is: 

L~ d i = ---"---
12E i ·Igi 

Shear deformation of connecting beams can be approximated by modifying 
their moment of inertia. 

3.33 Wall stiffness matrix K. Relative displacements at the cutting place due 
to wall strip and connecting beam deflections imposed by a unit shear force, 
the so-called unit factors can he comprised in a single matrix: 

En E 1z ... 

En dz + EZ2 

3.4 Equation system of the connecting beam forces 

Ell' .. 
E zi " . 

Using notations as hefore, compatihility of the coupled shear wall can 
be written in the matrix equation: 

This concise equation system written in matrix form has the following 
features: 

a) Right-hand side of any equation is the non-zero numerical value of 
the relative displacements of the two primary heams, due to loads. 

h) Left-hand side of all equations includes all unknown shear forces. 
c) Coefficients of the unknown shear forces constitute a matrix sym­

metrical about the main diagonal. 
d) Coefficients involved in the set of equations of the preliminary cal­

culation, and constant values of relative displacements due to loads can be 
determined by elementary statical methods. In conformity with the initial 
assumptions of calculation, the method can be applied for cross sections and 
material characteristics var}ing each storey. 

e) The suggested method permits to take characteristics of cracked 
structural members according to stress state II into consideration. 
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f) In ,case of "regular" walls where wall strips are assumed to be 
crack·free - calculation work is reduced, and factoring out the wall strip 
stiffness coefficient e identical for all storey, the wall stiffness matrix K simpli. 
fies into: 

K"n=e d1 , I I I I -. 
I d2 +2 2 2 

I 2 .. . d;+i i 

L I 2 L dn n J. 

g) "Manual" detcrmination of constants and solution 'Of the equations is 
rather tedious imposing computer methods. This method appears practi. 
cally prone to computerization, determination of coefficients and solution of 
the equation system 'with several unknowns easy to handle, and so is the prep­
aration of computation and the use of outputs. CDmputation of an average 
wall of 10 to 20 storeys takes a running time of about I to 3 min on the com­
puter OD RA 1204 of the Technical University, Budapest, together 'with the 
detailed printing of 8tarting data and outputs. 

4. Iterative application 'Of the compatibility method 

4.1 Effect of initial cracking 

Stiffness of units is affected by cracking, entrallllllg the yariation of 
deformations under load as well as of the relevant terms of the stiffness matrix 
of the structure. 

The previously described method had been applied for the iterative anal­
ysis of load cases heyond the cracking load. 

4.2 Iterative analysis of a coupled r.c. shear wall in stress state 11 by the com­
patibility method 

Analysis of r.c. structures consists in yerifying a given structure of given 
material, dimensions and reinforcement. 

Step 1. Computation of the ultimate stress 

In conformity with specifications in force, ultimate stresses in connecting 
beams and wall strips at cracking and at failure are determined. These ,,,ill be 
the boundary conditions. It is advisable to determine eccentricity limits of 
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forces and of normal force eccentricities for parapets and for wall sections, 
respectively: 

Qcracf.:. ; e1H crack; 

Rather than strains, however, practically stresses are often directly compared, 
like in the folIo·wing. 

Step 2. Calculation of strains in stress state 1 

Assuming exemptness of cracks, stresses will he determined by simnita­
neously considering all effects 

Qil
); NfP; NW; ll1\P; l'vlW; o'bV max • 

For viI) max VilH, ultimate cracking stress values are never exceeded, deter­
mined stresses correspond to the real state of stresses in the structure and 
can thus be considered as final results of calculation. 
For v}l) > VilH, strains in stress state I in one or more structural members 
exceed the ultimate cracking stress value - the structure is considered 
as cracked, and the calculation has to be repeated, taking the stiffness 
variation of the cracked members into consideration. 

Step 3. Calculation of strains in stress state 11 

Stiffness of structural members found to be cracked according to the cal­
culation assuming stress state I has to be determined again ,vith the assump­
tion of stress state Il. 
Analysis by the compatibility method will be repeated, taking the change 
of the stiffness matrix of the wall strip into consideration by repJacing the 
stiffness values of the cracked members. In case of stress state III A (cracked 
connecting beams), only terms in the main diagonal of thc matrix will 
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change, while in stress state IIle, also terms outside the main diagonal 
vary. 
Repeated calculation results show wall strip strain to be redistributed: 

Q(2). N(2). N\2). u(2). MI~). 0'(2) 
I ., - II , - 12, If.1 z1'' - zl.' I • 

Since stiffness of, hence stresses in cracked members decrease compared 
to the crack-free state, strains in members assumed to be still crack-free 

are growing. 
For 0')2) max O'hH, strains from a repeated calculation taking cracking of 
members into consideration do not exceed the ultimate cracking stress, 
the analysis is considered as complete, this step of computation outputs 
the structure stresses. 
For 0)2) > O'hH, strain redistribution results in stresses in other members 
to exceed the ultimate cracking stress. The calculation has to be repeated 
by taking the stiffness change of members considered in previous calcula­
tions as cracked into consideration. 

Step 4. Repeated strain calwlation in stress state II 

Stiffness of structural members (connecting bcams or wall strips) considered 
as cracked in the previous calculation is determined assuming stress 
state 1I. 
The calculation is repeated by altering the stiffness matrix of the wall, 
changing the stiffness of all members already found to be cracked. 
Provided other members appear to be cracked, the calculation has to be 
repeated until all member stiffnesses have been considered according to the 
state of stresses involved in the analysis. 
Before ending the calculation, the structure has to be examined for not 
to have exceeded the elastic range. 
For Vi max O'bH; O'a max O'aH, plastification has started in no cross section 
of the structure, our assumption was correct, and stress values determined 
by assuming stress state II can be considered as real. 

For Vi max > O'bH or O'a max > vaN, stresses determined assuming stress 
state II induced steel yield or concrete plastification in certain members. 

5. Redistribution of internal forces in stress state II 

5.1 Stress state JIjA 

According both to our investigation results and to examination of 
existing walls, connecting beams are the most likely to crack. This stress 
state IliA is featured by 
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a) Cracking of connecting beams ~xpected in particular beside wall strips. 
Cracks are vertical or nearly. Beam developing the maximum shear force is 
cracked first, then other connecting beams follow, depending on the stress 
redistribution. 

b) Loss of stiffness of cracked connecting beams. Stiffness of cracked con­
necting beams is determined according to Hungarian Standard MSZ 15022/1-
71; in some cases the calculated stiffness values (e.g. of T-sections, under­
reinforced slabs, etc.) may drop to one-fifth to one-seventh of that in crack­
free state. 

c) Loss of shear forces in cracked connecting beams. Since for a given defor­
mation, shear forces are directly proportional to the connecting beam stiff­
ness, they decrease in cracked and less stiff connecting beams. Shear forces 
in beams adjacent to the connecting beam(s) that cracked the first are growing 
and so the cracking stress is exceeded in these connecting beams crack-free 
under stresses determined in the elastic range. 

Stress redistribution in stress state IliA is seen in Fig. 7 for the special 
case where the 'wall is acted upon exactly by the load causing a cracking shear 
force only in the connecting beam under the maximum stress, in conformity 
with the elastic analysis (diagram 1). 

Determining, however, the stiffness of the beam on storey 4 acted upon 
by the maximum shear force according to stress state Il, then shear forces 
follow diagram 2, cracking stress is exceeded also at storey 5 and its considera­
tion involves further stress redistribution (diagram 3). 
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d) Loss of maximum shear force in connecting beams {n stress state IliA. 
After the calculation following the cracking process has been completed, shear 
force values corresponding to our assumptions ,v-ill be obtained. Stresses in 
originally less loaded connecting beams are seen to grow because of the redistri­
bution of internal forces, compared to values for the elastic range, connecting 
beams havc a more uniform contribution to the state of stresses. This process 
involves the reduction and the relocation of the shear force maximum. Cracking 
is followed by the relocation of the maximum shear force to a JOWf"l' storey, 
because of lesser stiffl1essts to hc accounted for. 

e) Drop of interaction brtlreen two parts of the coupled shear leaf!. Related 
to stresses determincd iIi crack-free condition. shear forces take UD a lesser 

" 
part of moments due to loads and effects in stress state IliA: 

The share of bending moments developed in wall strips being ~Y1i = ~Y1? - lY1P, 
wall strips have an increased share of moments in stress state IliA: 

Thus, wall strip stresses lie bet"ween values calculated for a solid wall acld those 
for two independent wall cantilevers. 

f) From the above it is clear that in case of a coupled shcar wall in stress 
state IliA, assumption of a crack-fTee condition involves an error on the safe 
side for the connecting beam, and on the unsafe side for the wall strips. 

5.2 Stress state IlIB 

Cracking of wall strips is detTimental to stiffness; deformation and shear 
forces are increased; stresses transferred to the cracked wall strips decrease, 
although (especially for load bearing "walls) to a lesser degree. 

5.3 Stress state lI;C 

In case of multistorey structures, a calculation taking the critical load 
arrangement into consideration may yield cracking of both wall strips and 
connecting beams. In conformity with the above, this entrains of course 
redistribution of internal forces. No generally valid relationships characterizing 
the procedure could be found to now, since cracking of the two elements: wall 
strip and connecting beam, affects oppositely the redistribution of internal 
forces. 

Notations 

H total wall heizht 
n storey number 
h storey h~ight 
ko wall section stiffness 
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stiffness of connecting beams 
stiffness ratio -
second-order moment of area of connecting beams about the x-axis 
ID reduced by the effect of shear deformation 
beam depth 
span between coupled walls 
Poisson's ratio 
shear force in connecting beam~ 
axial forcc in coupled walls 
bending moment in walls 
relativ; deformation 
load vector, column vector of relatin' deformations 
unit factor of wall strip 
stiffness matrix of wall strips 
unit factor of connecting beam 
second moment of area ;f the imaginary liEl diagram of the connecting beams 
wall stiffness matrix 
wall section stiffness factor 
concrete stress 
ultimate tensile stress in lhe concrete 

SUlllmary 
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Theoretical preparation of an experiment series on r.c. structures planncd at the Depart­
ment of Strength of 1!aterials and Structures, Technical University, Budapest. is described. 
To this aim, a calculation method has been developed for the uniform handling of the r.c. 
wall in its different stress states. 

The compatibility method is suggested for the analysis of stresses in a coupled shear 
r.C. wall applied on a discrete model. The method lends itself for the analysis of irregular 
walls (of variable height, cross section, material quality or loads). Hence, variations in the 
stiffness of structural members cracked or plasticized can be reckoned with by the iterative 
application of the compatibility method. Finally. on the basis of solutions obtained by the 
suggested method, redistribution of internal forces in stress state II is considered. 
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