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Abstract
The paper proposes spherical segment approximations of me-

dieval quadripartite vaults having pointed arches, with the idea
of finding simplified, yet representative geometric models for
them. On the supposition that the bounding curves of every vault
cell can be reckoned as vertical sections of spherical surfaces, it
results in severe, yet expressive models of a wide range of vault
shapes, revealing feasible computer representations of several
vault types appearing in the books of architectural history ei-
ther in textual or non-textual forms.
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1 Basics
Though our subject is completely geometrical, its bearing is

mainly on facilitating the understanding and the computer rep-
resentation of the underlying architectural forms, therefore ar-
chitectural terms will be used parallel with geometrical ones in
quite a number of cases. The diagrammatic figures below show
only the vaulting bays themselves (above the level of the im-
posts), disregarding the vault and rib thicknesses.

1.1 The Evolution of Rib Vaults
In the course of the development of the medieval architec-

tural forms three fundamental steps preceded the appearance of
the Gothic rib vault [1]. The first of these steps was the adoption
of the transverse rib. It not only stiffened the vault by helping
to maintain its shape, but it also served as a cover joint, thus
permitted the vault to be erected one bay at a time. The second
step was the change of the geometry of the diagonal arch of the
cross vault from its traditional Roman semi-elliptical form (re-
sulting from the right-angle intersection of two semi-cylindrical
barrel vaults of equal span) to a more economical semicircular
shape. Initially these diagonal arches were mere groins, causing
complicated geometrical problems during the cutting of stones
at the curves of intersections. Hence, the logical final step was
the implementation of the diagonal rib. Although there are ar-
guments about the structural role of ribs, the diagonal rib surely
had several advantages, similar to those of the transversal rib. As
a cover joint, it simplified the geometry of the cut stones located
at the groin by freeing the stone courses of adjacent cells from
each other. At the same time, it also helped to avoid certain dif-
ficulties during the erection of vault cells, since – along with the
transversal and longitudinal boundary arches – it determined the
shape of the infilling by determining the curve of its boundaries.

Since this way every boundary curve of the cells of the vault
proper can be reckoned as an arc, it seemed reasonable to ap-
proximate these surfaces with spherical segments (disregarding
obviously the possibility of stilted arches).
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Fig. 1. Schematic layout of a quadripartite vaulting bay

1.2 Principles of the Geometrical Construction
First let’s examine the general rules of the geometrical con-

structions of quadripartite pointed vaults.
The shapes of its main arches are characteristic criteria of

a vault shape, so usually – in addition to the bay plan – these
arches serve as a logical basis for the geometrical construction.
Let the base shape of the vault be a rectangle having sides 2a and
2b, and consider that the centres of the transversal, longitudinal
and diagonal arches are given as X’, Y’, and A’ (see Fig. 1).
Even if these points are not known, it is easy to find them from
the spans and rises of the main arches (as piercing points that
the halving perpendicular lines of line sections AH, AK and AZ
produce at base plane ABC).

Let X and Y be the two centre-points of the two spherical seg-
ments, and let x and y be their distances from the two symmetry-
planes, respectively. Naturally, X and Y cannot be chosen inde-
pendently of each other. Given that diagonal arch AZ is the
common circular section of adjacent spherical segments of the
vault, line XY must be perpendicular to diagonal AD – or in
other words: the perpendicular lines erected from X and Y to
diagonal AD must intersect it at the same point, i.e. at centre-
point A’ of the diagonal arch.

Based on similar reasoning (as the boundary arches are also
circular sections of spherical segments) the lines connecting the
centres of the spherical segments with the centres of their re-
spective boundary arches (e.g. X’X, and Y’Y) must also be per-
pendicular to the sides of the base shape.

According to these considerations the geometrical construc-
tion of quadripartite vaults in general requires finding three
lines: after locating X’, Y’ and A’, the spherical segments’
centre-points X and Y can be found as the intersections of the
lines perpendicular to the two sides and to the diagonal.

1.2.1 Equal Apex-heights
To construct a vault having equal rises of boundary arches,

it is enough to set apex points H and K at identical heights
(h = h′), and then taking X’ and Y’ at the points where the
halving perpendicular lines of line sections AH and AK pierce
plane ABC of the springing. In this way the locations of X’X
and Y’Y are set, however, the number of possible solutions is
still infinite, since the location of A’ can be selected arbitrarily
within certain limits. Evidently, the location of A’ on diagonal
AD cannot be closer to A than C is, because in that case diago-
nal arch AZD would be pointing downward. On the other hand,
neither X nor Y can lie beyond diagonal AD because in that case
the corresponding spherical segment could not prop against the
diagonal arch in the usual way, and for this reason A’ cannot be
farther from C than the intersection of lines AD and X’X or AD
and Y’Y, whichever is closer to C. Hence, in the case depicted
in Fig. 1, A’ must reside on line section CX◦.

Let us examine algebraically the premise of having equal rises
of boundary arches. Since the line connecting points A and H is
the chord of transverse arch AH, the line erected perpendicularly
to line section AH from centre-point X’ of arc AH will intersect
it at its midpoint F. This way the height of this point F is exactly
the half of that of point H, i.e. ( h

2 ). As the angles marked with
two arcs (at H, and X’) have perpendicular arms:
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In case of the longitudinal arch (based on the angles marked
with two arcs at K, and at Y’) the reasoning is the same as above:
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Assuming equal rises of the boundary arches:
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It is necessary then to comply with Eq. 3 in order to have equal
rises of longitudinal and transversal arches.

2 Variations
Though the aesthetic and structural benefits (e.g. reduced lat-

eral pressure) in themselves would have been enough to justify
the development and wide use of pointed arches, the exact cause
of their spreading is not known. Correspondingly, there are sev-
eral theories trying to explain the basic construction principles
of quadripartite vaults having pointed arches. As starting points,
we quote statements from the textbooks used by the students of
our Faculty.1

a. “The pointed boundary arches, which can rise to the same
heights even over different spans, enabled the construction of
cross-vaults in rectangular bays.” [2], page 131.

b. “Pointed arches became higher and more steeply pointed over
time. Initially, the centres of the arches were at the tierce-
point of the span, then at the quarter-point, finally at the
springing, or even outside of it” [2], page 134.

c. “The introduction of pointed arches had the benefit of con-
structing various arches with the same general appearance for
various spans even if the identical springing line and crown
height were being maintained, because the pointed arch is
movable as a hinge at the crown” [3] page 442. This state-
ment is contradictory (from an exact geometric point of view)
in more than one respect. There is, however, an implicit state-
ment in it, what can be relied upon in our investigations:

c. The introduction of pointed arches allowed using identical
radii for the main arches of the vault.

d. Yet another mode of geometrical construction included in
the mentioned literature, although not in textual form. Both
sources [2] (page 8) [3] page 444 show a kind of axonomet-
ric drawing as an illustration of pointed quadripartite vaults
where the crowns of the vault meet each other with horizon-
tal tangents, without breaking above the centre of the ground
plan.

Let us investigate the constructional and geometrical conse-
quences of the principles listed in points a to d for assigning
the main arches to each other. The general relationships de-
scribed in point 1.2 will stand, so in each case we will discuss
only the considerations and specifications of the given construc-
tional variation.

1Note however, that we might be wrong when we tacitly assume that some
kind of rules (knowingly or not) did exist for the setting out of the pointed vaults
– it might as well be that there were no such rules, and the arches were set up
independently from each other.

2.1 Isomorphic Main Arches
Perhaps the simplest way to form a pointed vault is to “get rid

of” the central part of the semi-circular vault section (as it hap-
pens when we transmute barrel vault to pointed barrel vault). For
example, if we omit one eighth of the central part of a spheri-
cal sail vault on both sides of the longitudinal and transverse
axes of its bay, and attach the obtained truncated three eighths
of the vault together, we can produce a pointed vault, the length
and width of which are six eighths of the original. This way
the centre-points of all main arches will be at two thirds of their
span, hence the boundary arches will be isomorphic, i.e. the
procedure will give a result corresponding to condition b.

As a result of the above truncation, the centre-points of the
four spherical segments are shifted along the diagonals of the
bay to the vertices of a rectangle having the same proportions as
the bay itself (to point A’ in case of spherical segment AHZK).
This solution gives the possible maximum distance of sphere
centre X from boundary arch AHB. If X would be shifted be-
yond diagonal AD, then a surface similar to a cloister vault
would be produced, since the vault surface would break upward,
not downward at diagonal arch AZD. Fig. 2 depicts the diago-
nal arch as a dashed line, because in this special case the surface
does not break there.

2.1.1 Equal Apex-heights
According to the present construction method point A’ will al-

ways be on diagonal AD, therefore the angles marked with three
arcs (at A and at C) have the same alignment, and the following
relationship can be found:

a
b

=
x
y

H⇒ ay = bx (4)

Substituting Eqs. 1 and 2 and assuming equal (h = h′) rises of
boundary arches:

a ·
h2

− b2

2b
= b ·

h2
− a2

2a
H⇒ 2a2h2

= 2b2h2
H⇒

a
b

= 1
(5)

Consequently, this construction method can lead to identical
apex heights of boundary arches only if the floor plan of the
vault is a square (a = b), and the centres of the boundary arches
are at equal distances from the bay axes (x = y).

2.2 Horizontal Central Tangents
To get crown-curves having horizontal tangents at point Z,

over the centre of the bay (satisfying condition d), the centres
of the spherical segments should obviously be on the axes of
the bay. Because of this symmetrical placement, every two cells
share the same centre-point, located in a corner of a diamond in
plan (see Fig. 3).

Note that this type of construction is incompatible with semi-
circular diagonal arches, just like the one described in 2.1. This
limitation was obvious in the previous case, since that variation
was derived from cutting out the middle parts of a surface hav-
ing semicircular diagonal arches. Perhaps it’s not so obvious in
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Fig. 2. Vault shape with isomorphic main arches

Fig. 3. Vault shape with horizontal central tangents

this case, but, having semicircular diagonal arches, this second
type of construction gives the same result. Centre-points X and
Y can be found as the intersections of the line erected from point
A’ perpendicularly to diagonal AD with the bay axes. Hence, as
A’ approaches C, the distance between X and Y becomes shorter
and shorter, and when finally A’ reaches C, X and Y will get
there also – resulting a sail vault shape.

2.2.1 Equal Apex-heights
As the angles marked with three arcs (at A and at Y) have

perpendicular arms, the following relationship can be found:

a
b

=
y
x

H⇒ ax = by (6)

Substituting Eqs. 1 and 2 and assuming equal (h = h′) rises of
boundary arches:

a ·
h2

− a2

2a
= b ·

h2
− b2

2b
H⇒ h2

− a2
= h2

− b2
H⇒

a
b

= 1
(7)

Consequently, this mode of geometrical construction can
again lead to identical apex heights of boundary arches only if
the floor plan of the vault is a square (a = b), and the centres of
the boundary arches are at equal distances from the vault axes
(x = y).

2.3 Main Arches Having Equal Rises
If all transversal and diagonal arches of the nave have equal

apex-heights, its general appearance will resemble that of the
pointed barrel vault – in other words, this construction method

Per. Pol. Arch.30 László Strommer



Fig. 4. Vault shape with main arches having equal rises

results in the minimum vertical undulation of the longitudinal
crown of the vault.

According to condition a, only the boundary arches were ex-
pected to have equal rises (we examine this condition in each
case separately), but now consider the diagonal arch having the
same rise too (see Fig. 4).

To ensure that apex-points H and Z have equal heights, the
centre-point of crown HZ – and thus centre-point X also – has
to be halfway between them, on a transverse line having b

2 (one
fourth of the length of the bay) offset from the frontal (AB) side
of the bay.

Centre-point Y of the transversal cell can be found as the
intersection of a longitudinal line having a

2 (one fourth of the
width of the bay) offset from the side of the bay, with another
line being erected from X perpendicularly to diagonal AD.

Since the centre-points are not in a symmetrical position, this
type of construction results separate centre-points for all eight
spherical triangles of the vault. However, all of these centre-
points can be obtained by mirroring X and Y about the axes of
the vault.

This type of construction is possible even if the diagonal arch
is semicircular. Note also that the radius of the diagonal arch
is smaller then the radii of either of the boundary arches, since
while all main arches have equal rises, the diagonal arch has the
greatest span.

2.3.1 Equal Apex-heights
As the angles marked with three arcs (at A and at Y) have

perpendicular arms, the following relationship can be found:

a
b

=
y +

b
2

x +
a
2

(8)

As this equation is the same as Eq. 3, it is obvious that this setup
ensures equal apex-heights for all boundary arches no matter

how long a, b or h is, or in other words what proportions the
bay or the boundary arches have.

2.4 Main Arches Having Equal Radii
In order to ensure that all main arches of the vault have equal

radii (see statement c), the centres of the spherical segments (e.g.
X) should be at equal distances from the respective side of the
bay (e.g. AB), and from the diagonal (e.g. AD). This obviously
means that X and Y must reside on angle bisectors AX and AY
respectively (see Fig. 5).

Since (assuming a non-square plan) the resulting centre-
points are not in a symmetrical position, all sphere segments will
have different centre-points, which can be obtained by mirroring
X and Y about the axes of the vault.

Note that this type of construction is also possible even if the
diagonal arch is semicircular.

2.4.1 Equal Apex-heights
As in this case the radii of boundary arches (AH and AK)

having their centre-points in X’ and Y’ are equal, it is evident,
that the heights of their apexes can only be equal if these arcs –
and hence their AH and AK chords also – have equal length:√

a2 + h2 =

√
b2 + h2 H⇒ a2

= b2
H⇒

a
b

= 1 (9)

Again, this mode of geometrical construction can lead to identi-
cal apex heights of boundary arches only if the floor plan of the
vault is a square (a = b), and the centres of the boundary arches
are at equal distances from the vault axes (x = y).

2.5 Highest Possible Boundary Arches
Considering the locations of points X and Y from figure to

figure we can see that they get closer and closer to the sides of
the bay, and all previous cases belonged to certain special char-
acteristic locations of these points. There is, however, one more
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Fig. 5. Vault shape with main arches having equal radii

Fig. 6. Vault shape with the highest possible boundary arches

such characteristic location: namely the planes of the boundary
arches. Let’s construct the vault with this assumption (see Fig.
6).

As the sphere-centres get closer and closer to the sides, the
apex-height of the diagonal arch becomes the lowest, and the
apex-height of the boundary arch having smaller span (usually
the longitudinal arch) becomes the highest. When they finally
reach the sides, the highest points of the crowns will be on the
boundary arches, and the crowns of adjacent vault bays will lie
on a single arc. Hence, this configuration also has its own special
attribute: the chord-lengths of the main arches (e.g. AK, AZ
and AH distances) will always be equal. As point A is located
on the line erected perpendicularly to the plane of arc HZ at its

centre-point, line segments AH and AZ can be considered as
two generators of a cone having its apex in point A, and part of
its base circle in HZ.

Note that this construction method results in steeply pointed
boundary arches. For example, over a square bay, the centres
of the boundary arches cannot be inside the springing (x ≥ a),
even if the diagonal arch is semicircular.

2.5.1 Equal Apex-heights
As it can be seen on Fig. 6, the angles marked with three arcs

(at A and at Y) have perpendicular arms, hence the following

Per. Pol. Arch.32 László Strommer



Fig. 7. Different quadripartite vault shapes using the same diagonal arch.

Fig. 8. Quadripartite vault whose main arches have equal radii and whose crowns have horizontal tangents over the centre of the bay.

relationship can be found:

a
b

=
y + b
x + a

H⇒ a · (x + a) = b · (y + b) (10)

Substituting Eq. 1 and 2 and assuming equal (h = h′) rises of
boundary arches:

a ·

(
h2

− a2

2a
+

2a2

2a

)
= b ·

(
h2

− b2

2b
+

2b2

2b

)
H⇒ h2

+ a2
= h2

+ b2
H⇒

a
b

= 1 (11)
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Once again, this mode of geometrical construction can lead to
identical apex heights of boundary arches only if the floor plan
of the vault is a square (a = b), and the centres of the boundary
arches are at equal distances from the vault axis (x = y).

3 Combinations
Since only the diagonal arch connects the two adjacent cells,

evidently even cells constructed with entirely different methods
can be used in a single vaulting bay. Fig. 7 shows variations
of vault cells constructed according to the methods described
above, all derived from the same diagonal arch having its centre
in point A’. The centre-points of all these cells reside on line
A’X, erected from point A’ perpendicularly to diagonal AD.

According to the examinations described above, it’s obvious
that there are only two ways for ensuring equal apex-heights for
the boundary arches of a quadripartite vault. The result can be
guaranteed by either having a square bay or (regardless to the
proportions of the bay) by using the method described in 2.3.

The only unanswered question is whether it is possible to
combine the above constructions – or rather their advantageous
properties. As these properties result from restricting the posi-
tions of cell centres to certain lines, searching for the combina-
tion of the above features means searching for intersections of
these construction lines.

In three cases the sphere centres were restricted to three par-
allel lines obviously not intersecting each other. Their intersec-
tions with diagonal AD also can be ignored, as they appear on
the wrong side of diagonal AD – one in point A, the second in
point C, the third in point F, halfway between them.

The first of their intersections with bisector AX◦ of angle
DAB appears again in point A, so it also can be ruled out. The
second one, intersection point X˙ of bisector AX˙ and line FX˙
is again inappropriate, as the line erected from this point per-
pendicularly to diagonal AD meets it on its wrong side, and this
way the resulting diagonal arch would be bent over, its apex be-
ing higher than point Z is – a highly unlikely solution in case of
quadripartite vaults.

Therefore, the only remaining potential location is point X◦,
the intersection of angle bisector AX◦ and vault axis CX◦. What
it means is that it is possible to construct a vault having horizon-
tal tangents in point Z, and all of its main arches still having
equal radii. Yet, in a rectangular vaulting bay this is possible
only in two of the four cells, as in the other two cells, the same
construction method would give a different result (point Y◦).
The method offers a correct solution for a square bay, however,
due to its symmetry (see Fig. 8).

4 Conclusions
Gothic vaults are testimonies of one of the most unique eras of

architecture. Up to the present time they were described and typ-
ified almost exclusively by the shapes and proportions of their
bays and boundary arches – sometimes with quite ambiguous
results. Nowadays, as the means of informatics and computer

graphics are used more and more often in order to visualize and
elucidate forms and shapes, it becomes more and more impor-
tant to interpret the actual three-dimensional shapes of the vaults
proper, instead of trying to imagine them based on their bound-
ary curves or certain sections.

This paper proposes a geometrical approximation for depict-
ing the shapes of Gothic quadripartite vaults having pointed
arches. On the supposition that the bounding curves of every
vault cell can be reckoned as vertical sections of spherical sur-
faces, it results in severe, yet expressive models of a wide range
of vault shapes, revealing feasible computer representations of
several vault types appearing in the books of architectural his-
tory either in textual or non-textual forms.
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