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Abstract
As a continuation and generalization of an article dealing

with quadripartite vaults using the same approach, this paper
proposes spherical segment approximations of some medieval
sexpartite vaults having pointed arches, with the idea of finding
simple, yet representative geometric models for them. On the
supposition that the bounding curves of every vault cell can be
reckoned as vertical sections of spherical surfaces, it results in
severe, yet expressive models of a wide range of vault shapes, re-
vealing feasible computer representations of several vault types
appearing in the books of architectural history either in textual
or non-textual forms.
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1 Basics
The order of the presented constructional methods, and even

the conventions of the wording and the characteristics of the il-
lustrations follow those of the previous paper [3]: for the sake
of brevity and clarity architectural terms will be used parallel
with the geometric ones where it seemed reasonable; and the
diagrammatic figures show only the vaulting bays themselves
(above the level of the imposts), disregarding the vault and rib
thicknesses. Two perspective illustrations are included also,
demonstrating the appearance of the vaulting forms as given by
the proposed approximate construction methods.

1.1 Triangulated plan
In this paper the proportions of the vaulting bay will play an

important role, and in this respect the “triangulated base plan”
will be referred to quite a number of times. Triangulation has
been one of the standard principles for making “geometrical
construction” in medieval architecture. The quotation mark here
is justified, because in geometrical terms triangulation is not
an exact Euclidean construction method. Actually, it was only
a way of finding certain kind of “modules”, the characteristic
points of which would produce equilateral triangles.

The triangulated floor plan shown in Fig. 1 [1] is particu-
larly interesting for us, because it consists of rectangular bays
the width and length of which are identical to the ratio of the
height and side of equilateral triangles. The ratio of side o and

Fig. 1. Triangulated plan [1] 485.
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height m of the large equilateral triangle:

o2
= m2

+

(o
2

)2
H⇒ o2

−
o2

4
= m2

H⇒ 3o2
= 4m2

As it can be seen, the width of the triangle is divided into four
parts (o = 4a), and its length into three parts (m = 3b). The
ratio of the sides of a given vaulting bay is as follows:

3(4a)2
= 4(3b)2

H⇒ 4a2
= 3b2

H⇒
a
b

=

√
3
4

(1)

In this paper the terms triangulated floor plan or triangulated
ratio will be used for this ratio, thus clarifying, and at the same
time, restricting the original meaning of these terms.

1.2 Principles of the geometrical construction
First let us examine the general rules of geometrical construc-

tions of pointed sexpartite vaults.
A characteristic feature of the sexpartite vault (see Fig. 2) is

that the six compartments of the bay meet at a single apex point
(Z), consequently, the planes of the transverse crowns are not
perpendicular to the longitudinal axis of the bay and the aisle,
thus, four of the six compartments are not orthogonally sym-
metric.

Let the base shape of the vault be a rectangle having sides 2a
and 2b, and consider that the centres of the transversal, longitu-
dinal and diagonal arches are given as X’, Y’, and A’. Even if
these points are not known, it is easy to find them from the spans
and heights of the main arches (as piercing points that the halv-
ing perpendicular lines of line sections AH, AK and AZ produce
at plane ABC of the springing of the vault).

Let X, Y and V be the three centre-points of the spherical
segments, and let the perpendicular offset of these sphere centres
from the corresponding axes of the bay be x and y. We do not
have to deal with distance v of centre-point V from transverse
axis MC, because (in order to ensure symmetry) centre-points
Y’ and V’ of the longitudinal arch must be at equal distance from
point K, i.e. distances QV’ and QY’ are always equal (y +

b
2 ),

and this determines v (v = y).
Since diagonal arch AZ is a common section of adjacent

spherical segments of the vault, line XY must be perpendicu-
lar to diagonal AD. Besides, since the boundary arches are also
circular sections of spherical segments, the lines connecting the
centres of the boundary arches and the centres of the correspond-
ing spherical segments (i.e. X’X, Y’Y and V’V) must be perpen-
dicular to the sides of the base shape.

In case of sexpartite vaults one has to locate the additional
centre-point V. The same reasoning is applicable here as in the
case of the diagonal arch: since crown KZ is the common sec-
tion of two adjacent spherical segments, the line connecting the
adjacent sphere centres (Y and V) must be perpendicular to hor-
izontal projection QC of crown KZ. This is a constraint with cer-
tain consequences: for example, three straight lines with given

directions must meet at point Y, including Y’Y (which is per-
pendicular to the side of the base shape), XY (which is perpen-
dicular to the projection of diagonal arch AZ, i.e. to diagonal
AC) and VY (which is perpendicular to the projection of crown
arch KZ, i.e. to line QC).

1.2.1 Equal apex-heights
To construct a vault having equal rises of boundary arches, it

is enough to set apex points H and K at identical heights (h =

h′), and then to place X’ and Y’ at the points where the halving
perpendicular lines of line sections AH and AK pierce the plane
of springing. Although the locations of X’X and Y’Y are set, an
infinite number of possible solutions are still available, since the
location of A’ can be selected arbitrarily within certain limits.

Let us examine algebraically the premise of having equal rises
of boundary arches. Since the line connecting points A and H
is the chord of transverse arch AH, the line erected perpendic-
ularly to line section AH from centre-point X’ of arc AH, will
intersect it at its midpoint F. In this way the height of this point
F is exactly the half of that of point H, i.e. ( h

2 ). As the angles
marked with two arcs (at H, and X’) have perpendicular arms:

h
a

=
x +

a
2

h
2

H⇒ h2
= 2a ·

(
x +

a
2

)
H⇒ x =

h2
− a2

2a
(2)

A similar approach can be applied in case of the longitudinal
arch, considering the angles marked with two arcs at K and Y’:

h′

b
2

=
y +

b
2 +

b
4

h′

2

H⇒ h′2
= b·

(
y +

3b
4

)
H⇒ y =

h′2
−

3
4 b2

b
(3)

Assuming equal rises of the boundary arches:

h2
= h′2

= 2a ·

(
x +

a
2

)
= b ·

(
y +

3b
4

)
H⇒

a
b

=
y +

3
4 b

2x + a
(4)

Fig. 2. Schematic layout of a sexpartite vaulting bay

It is necessary then to comply with Eq. 4 in order to have
equal rises of longitudinal and transversal arches. Note that
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even though the reasoning is the same as in case of quadripartite
vaults, the result is different. Since the geometry of the transver-
sal arch is unchanged, so is Eq. 2. However, Eq. 3, and conse-
quently Eq. 4 will be different, due to the dissimilar geometry
of the transversal cells.

2 Variations
There are quite a number of theories trying to explain the ba-

sic construction principles of quadripartite vaults having pointed
arches. As starting points, we quote statements from the text-
books used by the students of our Faculty – the same ones that
were used in case of quadripartite vaults.

a. “The pointed boundary arches, which can rise to the same
heights even over different spans, enabled the construction of
cross-vaults in rectangular bays.” [2] 131.

b. “Pointed arches became higher and more steeply pointed over
time. Initially, the centres of the arches were at the tierce-
point of the span, then at the quarter-point, finally at the
springing, or even outside of it.” [2] 134.

c. The introduction of pointed arches allowed using identical
radii for the main arches of the vault. [1] 442.

d. The crowns of the pointed quadripartite vault meet each other
with horizontal tangents, without breaking above the centre
of the ground plan. [2] 8., [1] 444.

Let us analyse the constructional and geometrical conse-
quences of the principles listed in points a. to d., and examine
how the different character of the ground plan symmetry of sex-
partite vaults in comparison to quadripartite vaults influences the
geometrical construction . The general relationships described
in 1.2 will stand, so we will discuss only the considerations and
specifications of the constructional variations.

2.1 Vaults without diagonal groins
One of the simplest ways to form a pointed quadripartite vault

is to cut out the central part of a sail vault, analogously to the
transmutation of a barrel vault to a pointed barrel vault. The
result of this procedure is a vault shape whose main arches are
all isomorphic (corresponding to statement b.), while the centres
of its four spherical segments are shifted along the diagonals of
the bay to the vertices of a rectangle having the same proportions
as the bay itself.

Sexpartite vaults can also be constructed with centres of some
of their spherical segments on the diagonals of their bays (see
Fig. 3). Naturally, the above statement will not apply for the
intermediate spherical segments (e.g. the one with centre V),
which in fact on the other hand allows the construction of vaults
having semi-circular diagonal arches – although this way the
transverse arch also becomes semi-circular. However, this con-
struction method fails to ensure isomorphic arches in case of
sexpartite vaults.

Fig. 3. Vault without diagonal groins

2.1.1 Equal apex-heights
Since A’ always lies on diagonal AD, the angles marked with

three arcs (at A and at C), have the same alignment, conse-
quently:

a
b

=
x
y

H⇒ ay = bx (5)

Substituting Eq. 2 and Eq. 3 into the above equation will not
determine a specific proportion of the bay – but it is still possible
to set up some constraints.

According to the present construction method, points H and K
must be on the same spherical segment, having common centre
A’ – i.e. the lengths of line sections A’H and A’K are equal. As-
suming that the apex heights of the boundary arches are identi-
cal, the vertical projections of these line sections will have iden-
tical length – and therefore evidently the length of their hori-
zontal projections must also be equal. Now, as A’Q and A’N
distances are equal, the halving perpendicular line of line sec-
tion QV must go through A’. In a horizontal coordinate system
having its centre at C, line A’P passes through point −

1
2 a, − 3

2 b,
and its angular coefficient will be 2a

b (since it is perpendicular to
line section QN having angular coefficient −b

2a ):

y−

(
−

3
4

b
)

=
2a
b

·

(
x −

(
−

1
2

a
))

H⇒ 4by+3b2
= 8ax+4a2

When line A’P passes through C, then x and y become 0:

4b · 0 + 3b2
= 8a · 0 + 4a2

H⇒
a
b

=

√
3
4

Since A’ cannot be closer to A than C, A’ must be located
either at point C or on the part of diagonal AD beyond it, thus
we can say:

a
b

≤

√
3
4
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Another limit can also be specified, as slope 2a
b of the halving

perpendicular line PA’ of section QN must be larger than slope
b
a of diagonal AD:

b
a

<
2a
b

This constraint is rather theoretical though, since in practice
A’ could not be too far beyond endpoint D of diagonal AD. Any-
way, we can say, that the problem can be resolved only if the ra-
tio of the sides of the bay remains within the following interval:√

1
2

<
a
b

≤

√
3
4

(6)

Within this interval (1, 1547a ≤ b < 1, 4142a) it is possible
to assign one and only one location of A’ (and naturally also of
X’ and Y’) to any floor plan (or more accurately to any of its
a/b ratio), where the apex heights of the boundary arches will
become identical.

2.2 Vaults with horizontal central tangents

Fig. 4. Vault with horizontal central tangents

To get crowns with horizontal tangents at point Z, over the
centre of the bay (according to condition d.), the centres of the
spherical segments of a quadripartite vault must lie on the axes
of the bay (see Fig. 4). This applies also for the longitudi-
nal crown of a sexpartite vault; therefore every two longitudinal
cells share the same centre-point. It is not true for the transverse
cells, however, as they have separate centres due to the missing
orthogonal plan symmetry.

In order to get horizontal tangents for crowns HZ and KZ
in point Z, they must be arcs having their centres in point C,
being the common sections of adjacent spherical segments of
the vault. This way lines XM and YV must go through point C,
the common centre-point of these arcs. In other words, centre-
points X and Y must be on lines CY and CX respectively, which

lines are perpendicular to horizontal projections NC and QC of
crown arches KZ and HZ.

The generic method of construction changes only so much,
that the centres of the longitudinal cells (e.g. X) must be on the
transversal axis, while the centres of the transverse cells (e.g.
Y) must be at the intersection of the line erected from point X
perpendicularly to diagonal AD, with the line erected from point
C perpendicularly to QC, the horizontal projection of crown KZ.

2.2.1 Equal apex-heights
As the angles marked with three arcs (at A and at Y) have

perpendicular arms, assigning x and y to each other can be char-
acterized by the following relationship:

a
b

=
y

2x
H⇒ 2ax = by (7)

Substituting Eq. 2 and Eq. 3, and assuming equal rises of
boundary arches:

2a ·
h2

− a2

2a
= b ·

h2
−

3
4 b2

b
H⇒ h2

− a2
=

h2
−

3
4

b2
H⇒

a
b

=

√
3
4

(8)

Consequently, this construction method can lead to equal
apex heights of boundary arches only if the bay has a triangu-
lated floor plan (see 1.1). However, if that condition is met, the
rise of the boundary arches will automatically become equal, for
any value of the height of point H.

2.2.2 Semicircular diagonal arch

Fig. 5. Vault with semicircular diagonal arch

Centre-points X and Y can be found as the intersection of
one of the axes of the vault (either X’X or Y’Y), with the line
erected in centre A’ of the diagonal arch AZ, perpendicularly
to its plane. Consequently, if A’ lies in C, X and Y will also
coincide with it (see Fig. 5).
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As this common centre-point lies simultaneously on the axes
(MC, NC) and on diagonal (AD), both logics described above
will apply: the tangent of the crowns will be horizontal in Z
(as in 2.1), and there will be no ridge separating the adjacent
cells (as in 2.2). Furthermore, as it lies on the longitudinal axis,
centre-point X’ of the transverse arch will also be there, which
results in a semicircular transverse arch. This means that there
will be no ridge at crown HZ either.

2.3 Vaults with main arches having equal rises

Fig. 6. Vault with main arches having equal rises

The construction method ensuring equal apex heights for all
main arches in case of quadripartite vaults can be adapted quite
easily for sexpartite vaults (see Fig. 6). Centre-point X of cell
AHZ will be on the halving perpendicular line of horizontal pro-
jection NC of crown HZ – thus X will be on the perpendicular
axis of the transverse arch (QX).

This is relevant, since V can be found as the intersection of
line YV, and the line erected perpendicularly to the side in point
V’, which is at equal distance from Q as Y’ (Y’Q = QV’) – and
this way X will be halfway between Y and V in longitudinal
direction. As the slope of line YV is double of that of line YX,
points X and V will be in equal distance from Y in transverse
direction (V’V = QX). This configuration means that X’, the
projection of X to the plane of the transverse arch AH, and V”,
the projection of V to the plane of the intermediate transversal
arch MZ will be on the same longitudinal line – and this way
the radii of these parallel arches (AX’ and MV’) will be equal.
The same result can be obtained from the consideration, that as
A and M, and also H and Z are on the same longitudinal lines,
parallel with the axis of the vault, the halving perpendicular lines
of AH and MZ should pierce the base plane of construction at

equal distances from A and M respectively. Centre-point Y of
transversal cell AKZ, can be located according to the general
construction method.

2.3.1 Equal apex-heights
This construction method obviously ensures equal apex-

heights for all boundary arches no matter what proportions the
bay or the boundary arches may have.

2.3.2 Four by two is six – is it?
As radii of arches AH and MZ are proved to be equal, we

can designate this shape not only as a sexpartite vault, but also
as two quadripartite vaults, the transverse cells of which are in
asymmetrical position.

The crowns of the longitudinal cells of these hypothetical
quadripartite vaults would have the same geometry as the one
that has horizontal central tangents (see 2.2), which demon-
strates that transversal cells having completely different geome-
tries can be attached to the same longitudinal cell.

Fig. 7. Vault with main arches having equal rises

Fig. 7 illustrates another specific solution, with the crowns of
the transversal cells meeting the crown of the longitudinal cell
at one third of its span (resembling the vaults of St Hugh’s Choir
in Lincoln Cathedral).

Centre-point X remains on axis QX of the transverse arch
and centre-point Y can be found as the intersection of line XY
erected from X perpendicularly to AC, and of line VY, the halv-
ing perpendicular of QC, the horizontal projection of crown KZ.
Centre-point V can be found as the intersection of line VY with
line XV, erected from X perpendicularly to MC.

Triangles AQC and XOY or QMC and OXV are respectively
isomorphic, and so, having equal (OX) base-lengths, the heights
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of triangles XOY and OXV are equal. As the perpendicular (lon-
gitudinal) distances of Y and of V from line QX are equal, Y’
and V’ will be symmetrical to Q – which means, that the result-
ing longitudinal arch AKM will always turn out to be symmet-
rical.

2.4 Vaults with the main arches having equal radii

Fig. 8. Vault with the main arches having equal radii

In order to ensure equal radii for all main arches of a quadri-
partite vault (see statement c.), the centres of the spherical seg-
ments (e.g. X) must be at equal angles from the boundary and
diagonal arches, therefore X and Y must be on angle bisectors
AX and AY respectively (see Fig. 8).

By adopting the quadripartite method presented before to sex-
partite vaults, the radii of arches having their centre-points in
X’, A’, and Y’, will be equal, but the radius of the intermediate
transversal arch having its centre in V” will normally be differ-
ent.

The location of this V” point is determined by V, the location
of which is determined by Y, the location of which in turn is
determined by X. Consequently, to set the correct location for
V” requires the correct placement of X.

As we have seen in 2.3, the radii of the two transversal arches
(having their centres in X’ and V”) will be equal, if centre-point
X has an offset of b

2 from the frontal side of the bay. This method
however fails to produce equal radii for the other arches.

To meet the two conditions at the same time, we have to unite
the logics of the two above construction methods: X should be
on the intersection of the bisector of angle BAC, with the halving
perpendicular QX of horizontal projection NC of crown-curve
HZ. However, the line erected from this point perpendicularly
to diagonal AD meets the diagonal on its AC section – which
means, that Z will not be the highest point of diagonal arc AZD.

Anyway, this location is more realistic in case of sexpartite

vaults than it would be in case of quadripartite vaults, as inter-
mediate transverse arch MZW still supports the inner portion of
the infilling.

2.4.1 Equal apex-heights
The three above possibilities offer different solutions. The so-

lution described in 2.3, which ensures equal radii for the trans-
verse arches only, would always produce the correct result with-
out any restrictions.

The method described above in 2.4 obviously requires a spe-
cific a/b = 1/2 ratio for the bay plan, as it ensures equal radii
for all main arches with the sole exception of the intermediate
transversal arch. Since the boundary arches having their centres
at X’ and Y’ have equal radii, their rise can only be equal if their
span is equal (2a = b). The rise of the boundary arches (and
thus their radii) still can be varied though, so this construction
method can still produce an infinite number of solutions.

The third method, ensuring equal radii for all main arches, in-
herits the above a/b = 1/2 proportion of the bay plan. Further-
more, as this method restricts the position of the centre-points
of spherical segments, in this case there is only one possible so-
lution – the one illustrated in Fig. 8.

2.5 Vaults with the highest possible boundary arches

Fig. 9. Vault with the highest possible boundary arches

To set up a sexpartite vault with the highest points of its
crowns being at its boundary planes, sphere centre X has to be
located on the side of the bay, but points Y and V do not, be-
cause the plane of the boundary arches of the side cells is not
perpendicular to the plane of their crown (see Fig. 9). In order to
have the highest point of crown KZ located over point Q, sphere
centre Y should be on the line erected from point Q perpendic-
ularly to line segment QC. This way point Y can be obtained as
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the intersection of this line, and the line erected from point X
perpendicularly to diagonal AD.

2.5.1 Equal apex-heights
As the highest point of crown KZ is located over point Q, the

fall of line YV over the length of segment YQ will be y +
b
2 .

The slope of line YX (the tangent of angle XYY’) is half of the
steepness of line YV (the tangent of angle VYY’), therefore it
is sure that the distance between points T and Q (intersections
of the side of the base rectangle with lines YX and YV) will be
2y+b

4 , half of the Y’Q distance.
As the angles marked with three arcs (at A and at T) have per-

pendicular arms, assigning x and y to each other can be charac-
terized by the following relationship:

a
b

=

b
2 +

2y+b
4

a + x
H⇒ 4a2

+ 4ax = 3b2
+ 2by (9)

Substituting Eq. 2 and Eq. 3, and assuming equal rises of
boundary arches:

4a2
+ 4a ·

h2
− a2

2a
= 3b2

+ 2b ·
h2

−
3
4 b2

b
H⇒ 8a2

+ 4h2
− 4a2

= 6b2
+ 4h2

− 3b2

H⇒
a
b

=

√
3
4

(10)

Consequently, this construction method can lead to identical
apex heights of boundary arches only if it has a triangulated floor
plan (see 1.1). However, if that condition is met, the rise of the
boundary arches will automatically become equal, irrespective
of the height of point H.

3 Combinations

Fig. 10. Different sexpartite vault shapes using the same diagonal arch.

Since only the diagonal arch connects the two adjacent cells,
evidently even cells constructed with entirely different methods
can be used in a single vaulting bay.

As it can be seen in Fig. 10, the centres of the cells derived
from a given diagonal arch having its centre in point A’ will lie
on line A’X drawn from point A’ perpendicularly to diagonal
AD.

The special characteristics ensured by the above construction
methods can exist simultaneously only if the cell centres are lo-
cated in the intersection points of the lines matching the given
constructions. Obviously, there is no way to combine the at-
tributes attainable by locating the cell centres on lines parallel
with boundary arch AHB. The same way, we can exclude the
intersection point of diagonal AD with bisector AX◦ of angle
DAB, as this point (A) would be in inappropriate place. This
leaves the six intersection points of the above two groups of
lines: points A, F and C on the diagonal, A, X˙ and X◦ on the
bisector. As the pointed arches definitely require radii greater
then half of the span, we can dismiss points A and F. Normally,
we would have excluded point C as well, but as we have seen in
2.2, it can be dealt with as a special case.

Intersection point X˙ of bisector AX˙ and line FX˙ again gives
an unlikely result, as the line drawn from this point perpendic-
ularly to diagonal AD meets it on its wrong side, resulting in a
bent over diagonal arch. However – as we have discussed it in
2.4 – this solution cannot be ruled out completely.

By placing the cell centre to point X◦, the intersection of an-
gle bisector AX◦ and transversal axis MC, it is possible to con-
struct a vault having horizontal tangents in point Z, and some of
its main arches still having equal radii. Only some of them, be-
cause in the four transversal cells the same construction method
would give a different result (point Y◦), and in case of sexpar-
tite vaults we cannot find the kind of symmetry which in case
of quadripartite vaults enabled Y◦ to be on line X◦A◦. Further-
more, the centre of the diagonal arch obtained from Y◦ would
appear on an inappropriate location (on AC segment).

The construction method described in 2.3 ensures equal apex-
heights for the boundary arches. However (unlike the square bay
in case of quadripartite vaults) we cannot find a single bay shape
that would always guarantee the expected result. In some cases
(see 2.4), we were not able to find a completely satisfying solu-
tion. In other cases (see 2.1) we did not find a certain shape, but
we could specify limits for the proportions of the bay. Finally,
in some cases (discussed in 2.2 and 2.5) we learned that a rect-
angular bay having the triangulated proportions described in 1.1
can guarantee the correct result.

4 Conclusions
Sexpartite Gothic vaults are surely amongst the most unique

shapes ever used in architecture. Up to the present time they
were described and typified almost exclusively by the shapes
and proportions of their bays and boundary arches, but the de-
velopment of informatics and computer graphics enabled us to
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Fig. 11. Perspective view of a vault described in 2.3, whose main arches have equal rises.

Fig. 12. Perspective view of a vault set up with asymmetric layout, described also in 2.3.

deal with the actual three-dimensional shape of the vault proper,
instead of only trying to imagine it based on its certain sections.
This paper proposes potential geometrical approximations of the
shapes of sexpartite vaults having pointed arches. The general-
ization of the construction methods applicable to quadripartite
vaults reveals how the modified form of the ground plan sym-
metry influences these methods, separating the unique results
from the general solutions. On the supposition that the bound-
ing curves of every vault cell can be reckoned as vertical sections
of a single sphere, it results in severe, yet expressive models of
a wide range of vault shapes, revealing feasible computer repre-

sentations of several vault types.
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