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Abstract 

The appro:ximate detemzination of the elastic-plastic buckling 

load parameter of structures was discussed. For the critical fail­

ure load parameter a Iower alld an upper boLtnd has been estab­

lished, with the aid of which the results of computer calculations 

can be checked. 
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1 Introduction 

Nowadays we can perform the exact stability analysis of 

structures with the aid of computer techniques. The geometric, 

material and cross-sectional nonlinearities can be taken into ac­

count by the programmes (cross-sectional nonlinearity is caused 

for example by the cracking of the reinforced concrete). 

Unfortunately, a mistake in the programme, an incorrect en­

try, or a change of sign may result in an entirely wrong result. 

Hence the design engineer highly appreciates a method by 

means of which the upper and lower bounds of the criticalload 

Ackllowledgemellt parameter of the structure can be determined. 

This paper was prodLtced by the Reinforced ConC/'ete Re- In this way we can check the results of the computer calcula-

search Group of Hungarian Academy of Sciences. tion. Such a method will be presented in this paper. 
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2 The Upper and Lower Sound of the Elastic-Plastic 

SuckIing Load Parameter of Structures 

On the basis of investigations on elastic-plastic structures 

(Bartha, 1972) [l], (Dulácska, 1972) [2], (Home, 1963) [6], 

(Home, 1965) [7] we can state some theorem: 

the elastic-plastic buckling failure load parameter ). F is 

smaller than the "elastic" criticalload parameter ).c; 

- ).F is also smaller than the rigid-plastic failure load parameter 

),p; 

- and }.F is greater than the Rankine-type straight line between 

points le and h, (see in Fig. 1). 

Here }'E is the load parameter of the elastic limit state i.e. at 

which yielding starts in the structure. 

Thus the elastic-plastic buckling failure load parameter },F of 

structure lies on the straight line running at 45° in the hatched 

domain of Fig. 1. Fig. la show s the case of ).c > ),p and Fig. 

lb the case of }.p > }.c. 

According to a more accurate analysis of structures with com­

pact cross sections, ). Fcan be approximated by the formula: 

1 + Ucl},p)2 
(1) 
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Fig. 1. The bounds of the elastic-plastic buckIing failure. load parameter: 

a: I.C 2: I.p. b: I.C ::; I.p 

For laminated and reticulated structures, and for structures with 

I cross sections we can estimate as: 

l + (I.~/).p)]' . . l [ l 
J·F, ~ ic . - C ') + (2) 

- 2 1+ ).C/).E 

We thus have to examine "only" how the values of the load pa­

rameters ).E, I.p, and ).C can be determinated. 

3 The Load Parameter ).E of the Elastic Limit State of 
Structures 

We determine the internal forces of the structure at the load 

parameter )'j and we calculate the stresses from the axial load 

and bending of the structure according to the elastic theory of 

the strength of materials. 

After this we select the maximum stress ).j.max and we com­

pute the load parameter ).E from Eq. (3), 

i·E = ).j' (3) 
Uj.max 

Here Uy is the yield stress of the material. 

4 Determination of the Rigid-Plastic Failure Load Pa­
rameter ). p of the Structure 

We may exactly compute the rigid-plastic failure load (col­

lapse load) parameter ).p by the theory of plasticity (Kaliszky, 

1984) [8]. 

We obtain the lower bound of p if we increase the load of 

the structure until the cross sectional internal force (moment) Y 

at any point of the structure reaches the value Y p that causes 

rigid-plastic failure. 

Of course, the rigid-plastic failure load Y p may also mean 

coupled bending moment M and axial force N (that is the com­

pression is usually eccentric). 

The lower bound of the collapse load parameter may be com­

puted from the equation 
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Fig. 2. Limit curves of cross sections made of various materials a: with 

tensile strength. b: without tensile strength 

The character ofthese curves can be seen in Fig. 2 for various 

materials, or may by computed with knowledge of the strength 

of the materials. 

5 Estimation of the Critical Load Parameter i.c of the 
Structure 

As the basis of the determination of the criticalload parame­

ter ).c we use the "c1assical" criticalload parameter ).c.o which 

is computed by the sec ond-order theory, assuming small defor­

mations (Croll-Walker, 1972) [2]. This value may be deter­

mined from the worked-out cases of the stability theory (Pe­

tersen, 1982) [10]. 

If we do not know the c1assical critical parameter of the full 

load ).c. O of the structure, but we know the c1assical cri tic al load 

parameter ).~ of every component load separately, the critical 

load parameter of the complete load ).c,o can be computed by 

Dunkerley's approximate relationship 

l l 
-~,,-

1 L....·i· /·c,o i ),c,o 
(5) 

In addition we have to analyse whether the post-buckling load­

bearing capacity of our structure is decreasing, constant or in­

creasing. Shells, shallow arches and some reticulated structures 

have, as a rule, decreasing post-buckling load-bearing capacity. 

When examining such structures we must take the reduction 

of the critical load parameter, caused by imperfections and ec-

. Yp 
).p :s ).j . K' 

centricities, into account. This can be done by the following 
(4) formula: 

The collapse load Y p of the cross section can be determined I.C = p . ).c,o. (6) 

with the aid of the limit curves of the load-bearing capacity of For shells, the reduction factor , based on (Kollár-Dulácska, 

the cross sections. 1984) [9] is shown in Fig. 3. 

18 I Per. Pol. Arch. Endre DlIlácska 



p i 

1. ~----------------------

0.5 

o 0.5 

laterally compressed 
long cylinder 

sphere, rodaIly , 
compressed cylinder 

Fig. 3. Decrease of the eriticalload of shells with increasing eccentricity eo 

Plates and frames have a .::onstant (or increasing) post­

buckIing load bearing capacity, hence with these structures the 

imperfections do not inftuence the criticalload. 

Reinforced concrete structures form, however an exception. 

With these, the cracks reduce the stifness, and, thus also the 

criticalload. 

The critical load of structures made of reinforced concrete, 

timber and plastic is reduced by the creep as weIl. The inftu­

ence of creep may be taken into account by reducing modul us 

of elasticity according to the formula: 
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Fig. 4. Decrease of the eritical load parameter i.c of reinforced concrete 

structures with increasing eccentricity eo 

If the reinforced structure has a geometricaIly decreasing load 

-bearing character (e.g.shells), we must take also this effect, 

characterised by , into account. 

Notation 

The elastic-plastic buckling failure load parameter. 

J.c The elastic-classical criticalload parameter. 

E = Eo/(1 + ep) (7) h,o The initial value of J.c. 

where Eo is the initial value of the modulus of elasticity and is 

the creep factor (Dulácska, 1981) [5]. The effect ofthe variation 

of the modulus of elasticity with the stress in the case eo= O is 

taken into account by the Eg (1) (Dulácska, 1.972) [3]. 

We mayestimate the decrease of critical load parameter of 

a reinforced concrete structure with the aid of Fig. 4, based on 

(Dulácska, 1978) [4]. Here eo is the eccentricity of the compres­

sive force of the most onerous cross section of the structure, and 

}.~wer is the lower bound of the critical load parameter of the 

reinforced concrete structure, which is determined by the sec­

ond order theory of elastic stability theory taking the effect of 

the decrease of stiffening caused by cracks and creeps. That is, 

we compute the value of the lower criticalload parameter with 

the bending stiffnesses of the cracked reinforced concrete cross 

section on the basis of stadium Il. (cracked elastic state), with 

the creep reduced modulus of elasticity. 

The value }.~wer is valid in the range eo 2: eO,lim = ~ (1 -
*lower 

J;c ) where t is the height of the cross section. In the range '·c.o ~ ~ 

O S eo S eO,lim the value Cmay be computed from the formula: 

} 10Wer) ( e) e ] 
;.~.o 2 - eo,~m eo.~m . 

(8) 

We may use the value J,~wer in the entire range of eo as a lower 

bound. 
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The rigid-plastic failure load parameter. 

The load parameter of the elastic-limit state. 

The load parameter of the elastic state. 

The load component parameter. 

The J.c value for reinforced concrete. 

The lower value of Xc. 

The upper value of J.c. 

The ;.F for compact cross section. 

The ).F for sandwich and I cross section. 

The modulus of elasticity. 

The initial value of E. 

The bending moment. 

The bending moment at the elastic limit state. 

The ben ding moment at the plastic limit state. 

The axial force. 

The creep factor. 

The eccentricity of the external force. 

The initial eccentricity of the external force. 

The height of the cross section. 

Factor for shells. 

Gy The yield stress of the material. 

G',max The cross sectional stress at the elastic state. 

y The cross sectional internal action effect. 

Y, The Y value at the elastic state. 

Y p The Y value at the rigid-plastic failure state. 
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