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Abstract
We define a truss family Ti by a statically determinate truss T0 

and a recursive step Ti+1=f(Ti), such that step f(Ti) inserts new 
joints and bars, while it keeps static determinacy. Such recur-
sive algorithms have been broadly discussed in the literature, 
e.g. the Henneberg operation 1 is a well-known example. Ear-
lier we introduced the concept of geometric sensitivity index rg 
of trusses, here we investigate the sensitivity of truss families, 
in particular, the limit sensitivity
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1 Introduction
Generating algorithms for statically determinate trusses was 

first discussed by Henneberg [5] who proved that each of such 
trusses can be generated by the repetitions of the so-called 
Henneberg operations H1 and H2. We discuss this algorithm, 
another universal generating algorithm, and some other gener-
ating operations in section 2.1. The Henneberg algorithm also 
divides statically determinate trusses into two, disjoint and 
complementary mathematical classes: simple trusses can be 
constructed solely by applying H1; all other trusses are called 
compound trusses. In this paper we define families of trusses 
characterized by a single (discrete) parameter i and a recur-
sive scheme Ti+1=f(Ti). Only such families are investigated, in 
which each member of a family belongs to the same class, i.e. 
we can speak of simple families and compound families. In our 
earlier works ([7], [15], [16]) we defined the (scalar) geometric 
sensitivity index 0≤rg≤1 associated with a truss; here (in section 
3) we extend this definition for families. In particular we inves-
tigate the limiting value and we show that for simple 
families .

Trusses have been classified by engineers based on various 
properties [4]. While these classifications are not always rigor-
ous in the mathematical sense, they are extremely useful to un-
derstand the mechanical behaviour of the truss. In section 2.2 we 
discuss one of these engineering classifications: the classification 
based on truss topology, yielding topology types. These types 
do not necessarily belong to the same class (i.e. class of simple 
or compound trusses), and they are not necessarily disjoint sets, 
however, their overlap is at most one truss. Families may or may 
not belong to any type, however, if more than one member of a 
family belongs to a given type, then so do all the other member.

We use the following assumptions: trusses are supported by 
links which we call external bars. Joints on the fix ground are 
joined with exactly one external bar and these joints are called 
external joints. The rest bars and joints are called internal bars 
and internal joints, respectively. In order to be able to handle 
uniformly the supported and unsupported trusses, we use the 
concept of minimal rigidity instead of static determinacy. We 
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call a truss minimally rigid, if it is either statically determinate, 
or it has no external bars, but one can make it statically determi-
nate by adding 3 external bars. We call a problem a typical truss 
problem [15], if it fulfils three criteria:
1. the axes of the forces running to the single joints (i.e. bar forc-

es and loads) are not collinear
2. all bar forces (calculated by linear theory) differ from zero
3. the above criteria are fulfilled also in the case that the geom-

etry or the load is perturbed slightly.
In our investigations - according to the most widely used defi-

nitions of a truss (e.g. see [10]) - all bars can stand both compres-
sion and tension. However, we mention, that some engineering 
literature also range tensegrity structures into the class of trusses 
(such a structure is studied in [11]), although these structures 
contain slender cables, which cannot stand compression.

2 How to generate trusses, truss families?
2.1 Universal algorithms, generating operations 
and classification of trusses.
Henneberg gave the following universal algorithm for gener-

ating – unsupported - minimally rigid trusses [5]:
A planar framework is minimally rigid if and only if it can 

be constructed from one rod by the following two operations:
●	H1 operation: add a new joint z and connect z to two distinct 

existing joints by rods (figure 1a),

●	H2 operation: subdivide an existing rod u-v by a joint z and 
connect z to an existing joint distinct from u and v (figure 1b).
By applying these operations one has to avoid constructing an 

infinitesimal mechanism (in [13] Müller-Breslau gives a wide 
range of these structures). In case of H1 there is solely one con-
dition to fulfil: the axis of the added bars should not be collinear 
[2]. However, by applying H2, more complex geometric inves-
tigations are needed.

Trusses, which can be generated by applying solely H1 op-
erations, are called simple trusses [3], [6]. Observe, that in these 
trusses, bar forces can be simply calculated by the joint method. 
Simple trusses can be constructed in two ways by applying H1 
operations:
●	setting out from the fix ground we generate a supported truss 

(figure 2a) [3],
●	setting out from a bar we generate an unsupported truss, and 

we either leave it unsupported or we support it with 3 external 
bars (figure 2b) [3].
The rest of the trusses are called compound trusses after 

Csonka [3]. Observe, that in the case of supported trusses, the 
following operation may also be considered as an H2 operation:
●	 subdivide an existing bar u-v of a supported truss by a 

joint z and connect z to a new external joint (figure 1c).
In this paper we use the above truss classification (i.e. class of 

simple and compound trusses), however we mention, that other 

Fig. 1. H1 operation (a) and H2 (b) operation. Another operation (c), which is equivalent to H2 in the case of supported trusses.

Fig. 2. Two ways of generating simple trusses.
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classifications also exist. For example Hibbeler distinguishes 
three classes [6] (see figure 3):
a) a simple truss can be built up solely by H1 operations 
b) a compound truss cannot be built up solely by H1 operations, 
and it is formed by connecting two or more simple trusses to-
gether. Hibbeler describes three ways to form a compound truss: 
●	 joining two simple trusses by a joint and a bar (see figure 

3b*); 
●	 joining two simple trusses by three bars (see figure 3b**);
● substituting some bars of a large simple truss (called main 

truss) by simple trusses (called secondary trusses) (see fig-
ure 3b***)

c) a complex truss cannot be classified either simple or compound.

Müller-Breslau gave a method in [13] equivalent to Hen-
neberg’s algorithm. Based on his method one can create a uni-
versal algorithm, which is suitable for both supported and un-
supported trusses. He showed that an arbitrary, minimally rigid, 
compound truss can be converted to a simple truss by applying 
the method of substitute bars in a suitable number. The follow-
ing operation is called bar-substitution: remove a bar of the 
minimally rigid truss, and replace it by another bar elsewhere in 
the truss in such a way, that the truss remains minimally rigid. 
Since bar-substitution can be reversed [3], thus, H1 and the bar-
substitution also create a universal algorithm. Two bars substi-
tute each other in terms of rigidity if and only if [10]:
a) the relative motion of the truss, which would be caused by 
a zero couple applied in the position of one of the bars, can be 
stopped by the other bar
b) a zero couple applied in the position of one of the bars in-
duces a bar force in the other bar.

Note that bar-substitution (contrary to the above operations) 
does not increase the number of the joints and bars of the truss, 
but it changes the adjacency relationships between the joints, 
i.e. it varies the topology of the truss. The topology of a truss 
can be described by the adjacency (or topology) matrix A de-
fined as follows:

aij=1, if joint i and joint j are adjacent,
aij=0, if not, 
aii=1.

We mention that in case the first criterion of the typical truss 
problem explained in Section 1 is fulfilled, one can replace the 
above condition (b) with a condition, which does not require any 
bar force calculation. This condition contains the concept of rigid 
core [15], which can be obtained solely from the topology of the 
truss. We define the rigid core of a subset R⊂T of a minimally 
rigid truss T (R is a set of joints) as the smallest, minimally rigid 
subset M(R) such that R⊂M(R)⊂T. It was proven in [15] and in 
[7] that an equilibrium load applied on an H set of hinges (such 
that H⊂T) induces bar forces exactly in the rigid core of H (in 
case the first criterion of the typical truss problem is fulfilled). 
Thus, condition (b) can be replaced by condition (b’):

b’) two bars substitute each other in terms of rigidity if and 
only if the rigid core of the endpoints of the removed bar con-
tains the substituting bar.

Besides those operations, which are suitable for creating uni-
versal algorithms, some further operations also exist, e.g. the 
operations introduced earlier at the Hibbeler classification (see 
figures 2b). In figure 4a-d we show some more of them:
a) joining three trusses by three joints [3]
b) X-replacement: we replace a bar-crossing to a joint [3], [17]
c) gluing two trusses along a bar [17]
d) vertex-splitting [17]:

d1) double a joint z and two bars connected to z, and distribute 
the rest of the bars connected to z among z and the new 
joint z’

d2) double a joint z and one bar connected to z, distribute the 
rest of the bars connected to z among z and the new joint 
z’, and add the bar z-z’.

2.2 Statically determinate topology types of trusses
Trusses have been also classified by engineers based on 

truss topology, yielding topology types [4]. These types do not 
necessarily belong to the same mathematical class (i.e. sim-
ple or compound class). For example types shown in figure 6 
belong to the simple class, on the other hand, types shown in 
figure 5 have simple and compound elements as well. What 
is more, types are not necessarily disjoint sets, however, their 
overlap is at most one truss (for example the truss shown in 
figure 8 in the second column and in the second row is a Pratt 
truss and a Warren truss with verticals at the same time). We 
discuss the main statically determinate topology types [4], 

Fig. 4. Some further generator operations.

Fig. 3. Examples for the truss classes after Hibbeler: simple truss (a), 
compound truss (b figures), complex truss (c).
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[8], [9] for the reason that some truss families investigated in 
the present paper belongs to these types.

In figures 6 and 7 we introduce and illustrate by realised 
structures the most common statically determinate topology 
types. Figure 6 shows types belonging to the class of simple 
trusses (in case the type has a different expression in English 
and German engineering literature [14], we give the German 
expression in brackets):
a) Pratt and Howe truss (N-Fachwerk / Pfostenfachwerk / 

Ständerfachwerk)
b) Warren truss (V-Fachwerk / Strebenfachwerk)
c) Warren truss with verticals (WM-Fachwerk / Strebenfach-

werk mit Hilfspfosten)
d) K-truss
e) statically determinate double Warren truss (statisch bestim-

mtes Rautenfachwerk ohne Hilfspfosten) 
f) Fink truss

Fig. 5. Topology types which also have simple (see the first samples) and 
compound (see the second samples) truss representatives.

Fig. 6. Topology types belonging to the class of simple trusses.
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Figure 7 shows such types, in which almost all elements be-
long to the class of compound trusses:
a) subdivided truss
b) double K-truss
c) Bollman truss

3 Geometric sensitivity of truss families
In previous sections we showed the generating operations, from 

which the recursive algorithms of the families are built up; we in-
troduced the truss classes, to which the families belong to, and we 
illustrated the topology types, among which some of the families 
can be ranged. Our investigations about geometrical sensitivity of 
the families concern typical truss problems. We begin the discus-
sion with the explanation of the concept geometric sensitivity.

Due to minor manufacturing or constructional inaccuracies 
the location of some joints of a truss may differ slightly from 
the location originally designed. In case the location of an un-
loaded, not V-type, internal joint is perturbed in a loaded truss 
(such that all bar forces calculated by the linear theory differ 
from zero), the internal forces will change in a certain set of 
the bars. We call the joint perturbed an imperfect joint and the 
degree of the perturbation geometric imperfection. The set of 
those bars (and the joints connected to these bars), in which bar 
forces change due to almost every small dislocation of a denot-
ed imperfect joint j, is called the influenced zone of joint j. The 
geometric sensitivity matrix Rg of a truss is defined as a matrix, 
which makes connections between the internal joints and their 
influenced zones in the following way:

rg
ij=1, if the influenced zone of the internal joint j contains bar i,

rg
ij=0, if not.
To measure the geometric sensitivity of a truss, we introduced 

[16] the scalar concept of geometric sensitivity index 0≤rg≤1, 
which can be obtained from Rg as follows:

where b and n denotes the total number of bars and the total 
number of internal joints, respectively.

In earlier papers [16], [7] we showed that influenced zones 
can be calculated solely from the topology of the truss, thus, no 
bar force calculations are needed. We proved that in minimally 
rigid trusses - in case of typical truss problems - the influenced 
zone of a denoted joint corresponds to the rigid core of the star 
of the joint. The star of a denoted joint i consists of i and the bars 
and joints joined to i. We restrict that in case i is a V-joint, then 
the rigid core of the star of i equals zero. The above equality 
between the influenced zone of a denoted joint and the rigid core 
of the star of the denoted joint means, that Rg can be obtained in 
the following way:
rg

ij=1, if the rigid core of the star of the internal joint j contains 
bar i, 
rg

ij=0, if not.
Since any rigid core can be determined solely by the topol-

ogy of the truss, the matrix Rg and the index rg can be too. 
The geometric sensitivity of truss families can be character-

ized by the function rg(Ti) and its infinite limit (Ti). To 

Fig. 7. Topology types, in which almost all elements of the type are compound trusses.
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obtain function rg(Ti), the rg of the first k members of the family 
(where 5≤k≤10) were calculated numerically on the basis of the 
topology: in each member of the family we determine the rigid 
cores of the stars of the internal joints, we fill in the matrix Rg 
according to (1), and we calculate the index rg. After, the general 
formula for rg(Ti) was deduced from these results.

Figures 8 and 9 show simple and compound truss families, 
and their geometrical sensitivity, respectively. The following 
data are given in the columns of the figures:
●	 serial number of the family, and the topology type of it (if 

the family is a subset of a type)
●	figure illustrating the topology of the initial truss T0

●	figure illustrating the topology of truss T1

●	 recursive algorithm f(Ti) 
●	geometric sensitivity rg(Ti) of the members Ti 
●	 limit sensitivity of the family  (Ti).

We mention, that based on the function type of n(i) (where n 
and i denote the number of the joints and the serial number of 
the family member, respectively) three different recursive algo-
rithms took place in our examples: linear (e.g. see the first seven 
families in figure 8), power (e.g. see family No. 8 in figure 8), 
and exponential algorithms. In our examples all exponential al-
gorithms generate fractal trusses [1], [12] (e.g. see family No. 7 
and 8 in figure 9), however, this is not necessary.

Comparing the limit sensitivities of the truss families, we can 
observe, that the limit sensitivities of compound families adopt 

each possible value 0≤ (Ti) ≤1, while the limit sensitivities 
of simple families are at most 0.5. In our opinion it is associated 
with the fact, that the simple truss families can be constructed 
solely by H1 operations, while the rest of the families cannot.

4 Summary
In this paper the geometrical sensitivity of statically deter-

minate planar truss families was investigated. A truss family 
is defined by an initial truss and a recursive step, which keeps 
static determinacy. These steps are truss generating algorithms, 
which contain generating operations. A literature overview was 
presented about the generating operations, and about univer-
sal truss generating algorithms. It was shown that the correct 
bar-substitution can be carried out by using the concept of rigid 
core. The families were ranged into the truss classes according 
to whether they can be built up solely by H1 operations or not. 
Beside this mathematical classification another – engineering – 
classification was discussed based on the truss topology types.

The formulas for geometric sensitivity rg(Ti) of truss families 
were determined in deductive way. Investigations showed, that 
while compound families may have limit sensitivities with all 
possible values 0≤ (Ti)≤1; the simple families have limit 
sensitivities equal to at most 0.5.
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Fig. 8. Geometric sensitivity of simple truss families



18 Per. Pol. Arch. Krisztina Tóth

Fig. 9. Geometric sensitivity of compound truss families


