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Abstract

We define a truss family T, by a statically determinate truss T,
and a recursive step T ,=f(T), such that step f(T) inserts new
joints and bars, while it keeps static determinacy. Such recur-
sive algorithms have been broadly discussed in the literature,
e.g. the Henneberg operation 1 is a well-known example. Ear-
lier we introduced the concept of geometric sensitivity index r¢
of trusses, here we investigate the sensitivity of truss families,
in particular, the limit sensitivity }Lrg ré(T)).
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1 Introduction

Generating algorithms for statically determinate trusses was
first discussed by Henneberg [5] who proved that each of such
trusses can be generated by the repetitions of the so-called
Henneberg operations H1 and H2. We discuss this algorithm,
another universal generating algorithm, and some other gener-
ating operations in section 2.1. The Henneberg algorithm also
divides statically determinate trusses into two, disjoint and
complementary mathematical classes: simple trusses can be
constructed solely by applying H1; all other trusses are called
compound trusses. In this paper we define families of trusses
characterized by a single (discrete) parameter i and a recur-
sive scheme T, =A(T). Only such families are investigated, in
which each member of a family belongs to the same class, i.e.
we can speak of simple families and compound families. In our
earlier works ([7], [15], [16]) we defined the (scalar) geometric
sensitivity index 0<r¢<[ associated with a truss; here (in section
3) we extend this definition for families. In particular we inves-
tigate the limiting valuelim*(7;)and we show that for simple
families lim7# (7)< 0.5.

Trusses have been classified by engineers based on various
properties [4]. While these classifications are not always rigor-
ous in the mathematical sense, they are extremely useful to un-
derstand the mechanical behaviour of the truss. In section 2.2 we
discuss one of these engineering classifications: the classification
based on truss topology, yielding fopology types. These types
do not necessarily belong to the same class (i.e. class of simple
or compound trusses), and they are not necessarily disjoint sets,
however, their overlap is at most one truss. Families may or may
not belong to any type, however, if more than one member of a
family belongs to a given type, then so do all the other member.

We use the following assumptions: trusses are supported by
links which we call external bars. Joints on the fix ground are
joined with exactly one external bar and these joints are called
external joints. The rest bars and joints are called internal bars
and internal joints, respectively. In order to be able to handle
uniformly the supported and unsupported trusses, we use the
concept of minimal rigidity instead of static determinacy. We
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call a truss minimally rigid, if it is either statically determinate,

or it has no external bars, but one can make it statically determi-

nate by adding 3 external bars. We call a problem a typical truss

problem [15], if it fulfils three criteria:

1. the axes of the forces running to the single joints (i.e. bar forc-
es and loads) are not collinear

2. all bar forces (calculated by linear theory) differ from zero

3.the above criteria are fulfilled also in the case that the geom-
etry or the load is perturbed slightly.

In our investigations - according to the most widely used defi-
nitions of a truss (e.g. see [10]) - all bars can stand both compres-
sion and tension. However, we mention, that some engineering
literature also range tensegrity structures into the class of trusses
(such a structure is studied in [11]), although these structures
contain slender cables, which cannot stand compression.

2 How to generate trusses, truss families?

2.1 Universal algorithms, generating operations

and classification of trusses.

Henneberg gave the following universal algorithm for gener-
ating — unsupported - minimally rigid trusses [5]:

A planar framework is minimally rigid if and only if it can
be constructed from one rod by the following two operations:
e H1 operation: add a new joint z and connect z to two distinct

existing joints by rods (figure 1a),

a)

e H2 operation: subdivide an existing rod u-v by a joint z and
connect z to an existing joint distinct from « and v (figure 1b).
By applying these operations one has to avoid constructing an

infinitesimal mechanism (in [13] Miiller-Breslau gives a wide

range of these structures). In case of H1 there is solely one con-
dition to fulfil: the axis of the added bars should not be collinear

[2]. However, by applying H2, more complex geometric inves-

tigations are needed.

Trusses, which can be generated by applying solely H1 op-
erations, are called simple trusses [3], [6]. Observe, that in these
trusses, bar forces can be simply calculated by the joint method.
Simple trusses can be constructed in two ways by applying H1
operations:

e sctting out from the fix ground we generate a supported truss
(figure 2a) [3],

e sctting out from a bar we generate an unsupported truss, and
we either leave it unsupported or we support it with 3 external
bars (figure 2b) [3].

The rest of the trusses are called compound trusses after
Csonka [3]. Observe, that in the case of supported trusses, the
following operation may also be considered as an H2 operation:

e subdivide an existing bar u-v of a supported truss by a

joint z and connect z to a new external joint (figure 1c).

In this paper we use the above truss classification (i.e. class of
simple and compound trusses), however we mention, that other

z b)
u v u Z
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Fig. 1. H1 operation (a) and H2 (b) operation. Another operation (c), which is equivalent to H2 in the case of supported trusses.
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Fig. 2. Two ways of generating simple trusses.
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classifications also exist. For example Hibbeler distinguishes
three classes [6] (see figure 3):
a)a simple truss can be built up solely by H1 operations
b)a compound truss cannot be built up solely by H1 operations,
and it is formed by connecting two or more simple trusses to-
gether. Hibbeler describes three ways to form a compound truss:
e joining two simple trusses by a joint and a bar (see figure
3b%);
e joining two simple trusses by three bars (see figure 3b**);
e substituting some bars of a large simple truss (called main
truss) by simple trusses (called secondary trusses) (see fig-
ure 3b***)

¢)a complex truss cannot be classified either simple or compound.

a) <)
W
% 7
secondary

b*) simple truss
W

% main

W 3

simple truss

Fig. 3. Examples for the truss classes after Hibbeler: simple truss (a),

compound truss (b figures), complex truss (c).

Miiller-Breslau gave a method in [13] equivalent to Hen-
neberg’s algorithm. Based on his method one can create a uni-
versal algorithm, which is suitable for both supported and un-
supported trusses. He showed that an arbitrary, minimally rigid,
compound truss can be converted to a simple truss by applying
the method of substitute bars in a suitable number. The follow-
ing operation is called bar-substitution: remove a bar of the
minimally rigid truss, and replace it by another bar elsewhere in
the truss in such a way, that the truss remains minimally rigid.
Since bar-substitution can be reversed [3], thus, HI and the bar-
substitution also create a universal algorithm. Two bars substi-
tute each other in terms of rigidity if and only if [10]:

a) the relative motion of the truss, which would be caused by
a zero couple applied in the position of one of the bars, can be
stopped by the other bar

b) a zero couple applied in the position of one of the bars in-
duces a bar force in the other bar.

Note that bar-substitution (contrary to the above operations)
does not increase the number of the joints and bars of the truss,
but it changes the adjacency relationships between the joints,
i.e. it varies the topology of the truss. The topology of a truss
can be described by the adjacency (or topology) matrix A de-
fined as follows:

a=1, if joint i and joint j are adjacent,

a,.j:O, if not,

a=1.

il

We mention that in case the first criterion of the typical truss
problem explained in Section 1 is fulfilled, one can replace the
above condition (b) with a condition, which does not require any
bar force calculation. This condition contains the concept of rigid
core [15], which can be obtained solely from the topology of the
truss. We define the rigid core of a subset R&T of a minimally
rigid truss T (R is a set of joints) as the smallest, minimally rigid
subset M(R) such that ReM(R)T. It was proven in [15] and in
[7] that an equilibrium load applied on an H set of hinges (such
that HCT) induces bar forces exactly in the rigid core of H (in
case the first criterion of the typical truss problem is fulfilled).
Thus, condition (b) can be replaced by condition (b’):

b’) two bars substitute each other in terms of rigidity if and
only if the rigid core of the endpoints of the removed bar con-
tains the substituting bar.

Besides those operations, which are suitable for creating uni-
versal algorithms, some further operations also exist, e.g. the
operations introduced earlier at the Hibbeler classification (see
figures 2b). In figure 4a-d we show some more of them:

a) joining three trusses by three joints [3]
b) X-replacement: we replace a bar-crossing to a joint [3], [17]
¢) gluing two trusses along a bar [17]
d) vertex-splitting [17]:
dl)double a joint z and two bars connected to z, and distribute
the rest of the bars connected to z among z and the new
joint z’
d2)double a joint z and one bar connected to z, distribute the
rest of the bars connected to z among z and the new joint
z’, and add the bar z-z’.

oE

-\
PN

Fig. 4. Some further generator operations.
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2.2 Statically determinate topology types of trusses
Trusses have been also classified by engineers based on

truss topology, yielding topology types [4]. These types do not
necessarily belong to the same mathematical class (i.e. sim-
ple or compound class). For example types shown in figure 6
belong to the simple class, on the other hand, types shown in
figure 5 have simple and compound elements as well. What
is more, types are not necessarily disjoint sets, however, their
overlap is at most one truss (for example the truss shown in
figure 8 in the second column and in the second row is a Pratt
truss and a Warren truss with verticals at the same time). We
discuss the main statically determinate topology types [4],
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[8], [9] for the reason that some truss families investigated in

truss types | truss samples for the truss type
the present paper belongs to these types.
L. In figures 6 and 7 we introduce and illustrate by realised
subdivided

structures the most common statically determinate topology
types. Figure 6 shows types belonging to the class of simple

trusses (in case the type has a different expression in English

2

and German engineering literature [14], we give the German
double K

expression in brackets):
a) Pratt and Howe truss (N-Fachwerk / Pfostenfachwerk /
Stianderfachwerk)
b) Warren truss (V-Fachwerk / Strebenfachwerk)
c¢) Warren truss with verticals (WM-Fachwerk / Strebenfach-
werk mit Hilfspfosten)

3.

Bollman

Fig. 5. Topology types which also have simple (see the first samples) and d) K-truss
compound (see the second samples) truss representatives. e) statically determinate double Warren truss (statisch bestim-
mtes Rautenfachwerk ohne Hilfspfosten)
f) Fink truss

realized truss sample
photo and structural form ! main data

truss type

al) Pratt truss name of the building/structure: Szabadsag hid
place: Budapest, Hungary

| architect/engineer: Janos Feketehazy

span: 171 m

number of trussbars: 193
sources of pictures:
http://commons.wikimedia.org/wiki

inde: icle?g0=48730274
&t=9023878

a2) Howe truss

name of the building/structure: Airplane hangar
place: Locarno, Switzerland
architect/engineer:

Giacomazzi@Associati Architetti

year: 1996

material: timber and steel

span: 40 m

number of trussbars: 25

source of pictures:

Herzog. Natterer, Schweitzer, Winter, Volz: Holzbau Atlas
(Edition Detail), 2003, Kdsel Gmbh & Co. KG, Kempten

v

name of the building/structure: Pompidou Center
place: Paris, France

architect . R. Piano, R. Rogers

year: 1977 material: stee!

span: 48 m number of trussbars: 27
sources of pictures:

Vamossy Ferenc: Az épitészet torténete - A Modern Mozgalom
és a késomodern, Nemzeti Tankdnyvkiado Budapest, 2002
http:/ferb.buzznet ‘pompi

section/?id=1983370

b) Warren truss

name of the structure: Railroad bridge in Tokaj
" place: Tokaj, Hungary

¢ architect/engineer: no data

year: no data

1 material: steel

span: 3*68 m

) number of truss bars: 3¥37
i o source of picture: hitp:/vasutihid.hw/legifoto.html
d) K-truss
name of the building/structure: Look-out tower
place: Venne, Germany
y arch : Hocht nt Osnabriick
) year: 1976
e i material: timber

hieght of the tower: 18 m

number of truss bars: 36

source of pictures:

Herzog. Natterer, Schweitzer, Winter, Volz: Holzbau Atlas
(Edition Detail), 2003, Késel Gmbh & Co. KG, Kempten

e) statically determinate
double Warren truss

O

o .
f) Fink truss

SN

name of the structure: Green River Railroad bridge
place: Kentucky, USA

architect/engineer: A. Fink

year: ~1860"

material: cast iron

span: no data

number of truss bars: 59

sources of pictures:

hutp: y.blogspot.com/2010/04/old-pill
green-river-in.htmi
http://en.wikipedia iki/Fi i 20.png

Fig. 6. Topology types belonging to the class of simple trusses.
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truss type realized truss sample

photo and structural form

main data

a) subdivided truss

Z
7 4

name of the building/structure: Airship Hangar
place: Karachi. Pakistan

architect/engineer: no data

year: 1925 material: steel

span: 70 m number of trussbars: 303
sources of pictures:
htp://www.airshipsonli
0. Biitter, H. Stenker: Stahlhallen - Entwurf und Konstruktion,
VEb Verlag fiir Bauwesen, Berlin, 1986

ipg

7

74

AN

<

b) double K-truss

o ke

n?me ogthc? building/structure: "K-hid"

ace: Budapest, Hupga

grchitect/engri,neer: FOI%[”P!lERV

year: 1955

material: steel

span: 98 m

number of trussbars: 272

source of picture:
http://hu.wikipedia.org/wiki/K-h%C3%ADd

¢) Bollman truss

name of the structure: Bollman bridge
place: Savage, Mar&l/a d, USA
architect/engineer: W. Bollman
year: 1852 material: iron
span: 2*49 m number of truss bars: 81
sources of pictures:

i featured/bollman-truss-
bridge-at-savage-in-maryland-william-kuta.html
http://wwwhistoricbri yland/bollman/

i Sl 2 i X
| AN 1
I‘LT Ttk e
) p 1
 Bollman Truss Railroad Brid !
[ potiman Truss Raitcoad pridge | 7|

Fig. 7. Topology types, in which almost all elements of the type are compound trusses.

Figure 7 shows such types, in which almost all elements be-
long to the class of compound trusses:
a) subdivided truss
b) double K-truss
¢) Bollman truss

3 Geometric sensitivity of truss families

In previous sections we showed the generating operations, from
which the recursive algorithms of the families are built up; we in-
troduced the truss classes, to which the families belong to, and we
illustrated the topology types, among which some of the families
can be ranged. Our investigations about geometrical sensitivity of
the families concern typical truss problems. We begin the discus-
sion with the explanation of the concept geometric sensitivity.

Due to minor manufacturing or constructional inaccuracies
the location of some joints of a truss may differ slightly from
the location originally designed. In case the location of an un-
loaded, not V-type, internal joint is perturbed in a loaded truss
(such that all bar forces calculated by the linear theory differ
from zero), the internal forces will change in a certain set of
the bars. We call the joint perturbed an imperfect joint and the
degree of the perturbation geometric imperfection. The set of
those bars (and the joints connected to these bars), in which bar
forces change due to almost every small dislocation of a denot-
ed imperfect joint j, is called the influenced zone of joint j. The
geometric sensitivity matrix R¢ of a truss is defined as a matrix,
which makes connections between the internal joints and their
influenced zones in the following way:

r¢,=1, if the influenced zone of the internal joint / contains bar i,
rgl.j,:O, if not.

To measure the geometric sensitivity of a truss, we introduced
[16] the scalar concept of geometric sensitivity index 0<ré<1,
which can be obtained from R¢ as follows:

g — 1 MY 4
" bn;;rij ’
where b and n denotes the total number of bars and the total
number of internal joints, respectively.

In earlier papers [16], [7] we showed that influenced zones
can be calculated solely from the topology of the truss, thus, no
bar force calculations are needed. We proved that in minimally
rigid trusses - in case of typical truss problems - the influenced
zone of a denoted joint corresponds to the rigid core of the star
of the joint. The star of a denoted joint 7 consists of 7 and the bars
and joints joined to i. We restrict that in case 7 is a V-joint, then
the rigid core of the star of i equals zero. The above equality
between the influenced zone of a denoted joint and the rigid core
of the star of the denoted joint means, that R¢ can be obtained in
the following way:
r¢,=1, if the rigid core of the star of the internal joint j contains
bar i,
rgl.jZO, if not.

Since any rigid core can be determined solely by the topol-
ogy of the truss, the matrix R¢ and the index 7¢ can be too.

The geometric sensitivity of truss families can be character-
ized by the function 7%(T) and its infinite limit lim7#(T). To

=0
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obtain function 7%(T ), the 7¢ of the first k members of the family
(where 5<k<10) were calculated numerically on the basis of the
topology: in each member of the family we determine the rigid
cores of the stars of the internal joints, we fill in the matrix R
according to (1), and we calculate the index 7. After, the general
formula for 7%(T,) was deduced from these results.

Figures 8 and 9 show simple and compound truss families,
and their geometrical sensitivity, respectively. The following
data are given in the columns of the figures:

e serial number of the family, and the topology type of it (if
the family is a subset of a type)

e figure illustrating the topology of the initial truss T

e figure illustrating the topology of truss T,

e recursive algorithm f{T)

e geometric sensitivity 7%(T) of the members T,

e limit sensitivity of the family lim7*(T).

‘We mention, that based on the lfﬁﬁction type of n(i) (where n
and i/ denote the number of the joints and the serial number of
the family member, respectively) three different recursive algo-
rithms took place in our examples: linear (e.g. see the first seven
families in figure 8), power (e.g. see family No. 8 in figure 8),
and exponential algorithms. In our examples all exponential al-
gorithms generate fractal trusses [1], [12] (e.g. see family No. 7
and 8 in figure 9), however, this is not necessary.

Comparing the limit sensitivities of the truss families, we can
observe, that the limit sensitivities of compound families adopt
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