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Abstract
In regard to highly poisonous effects of cyanide ion, concerns 
have been focused recently on treatment of such compounds in 
different ways. Four bacterial strains (C1-C4) capable of using 
cyanide as nitrogen source were isolated from contaminated 
gold mine soil samples under alkaline conditions at 30 °C, 
pH 9.5-10.5, and agitation speed 150 rpm. The gram-negative 
bacterium C3 (identified as Pseudomonas parafulva NBRC 
16636(T) by 16S rRNA gene sequencing) was able to tolerate 
cyanide up to 500 ppm besides removing 93.5% of 200 ppm 
cyanide in 13 days which was confirmed by microorganisms 
growth. The addition of basal salts enhanced the removal 
efficiency of C3 by 16%. Cyanide removal efficiency of 
co-culture was 30% less than C3. Optimization of three 
significant parameters including temperature, pH, and glucose 
concentration for cyanide biodegradation was studied using 
response surface methodology (RSM). The optimum conditions 
for maximizing cyanide biodegradation were temperature 
(32.23 °C), pH (9.95), and glucose concentration (0.73 g/l).

Keywords 
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1 Introduction 
Cyanides are technically defined as compounds with a 

negative charge of one, consisting one carbon atom in the +2 
oxidation state along with one nitrogen atom in the -3 oxidation 
state. Cyanide is produced by a number of fruits, seeds, leaves, 
and roots of various plants such as cassava, a number of soil 
bacteria, fungi, and various species of invertebrates [1, 2]. 
Nevertheless, industrial wastes of human activities contribute 
the largest portion of environmental cyanide pollution [3, 4].
The most important application of cyanide is in the mining 
of precious metals (e.g. gold and silver). Gold and silver are 
precious metals that are insoluble in water. Instead, they form 
soluble complexes, [Au(CN)2]

- and [Ag(CN)2]
-, that require an 

alkaline environment (pH > 10) to keep cyanide in its ionic form 
and prevent the formation of volatile toxic hydrogen cyanide [3].

Hydrogen cyanide is extremely toxic, and is able to 
deactivate the enzyme cytochrome oxidase, the last enzyme in 
the respiratory cycle, which causes cell suffocation. Due to its 
excessive toxicity to the ecosystem, especially that of hydrogen 
cyanide (HCN), the level of cyanide compounds permissible 
in the environment, is below 1 ppm. Therefore, environmental 
protection necessitates the treatment of industrial cyanide-
containing waste streams prior to their release into the 
ecosystem. The most conventional cyanide treatment method 
is alkaline chlorination. Although this technique is successful 
in free cyanide detoxification; it is incapable of treating 
metallic-cyanide complexes (MCNs). Moreover, other 
physical or chemical treatment techniques are rather expensive. 
Consequently, despite toxicity of cyanide compounds to living 
microorganisms, biological treatment, however, can be just as 
effective as it is becoming less costly [5-7].

Numerous organisms use these toxic compounds as their 
energy or nutrient source. A number of these organisms use 
cyanide solely as their nitrogen source [1, 8, 9], while for 
some others, the previous compound provides both carbon and 
nitrogen sources [10-12]. Biodegradation of cyanide compounds 
may occur in the presence of various carbon sources including 
simple carbohydrates, e.g. glucose [13], fructose [8], acetate 
[14, 15], and methanol [16]. Cyanides such as free cyanide 
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[17, 18], metal complexes [17, 19], and thiocyanates [17], are 
the exclusive nitrogen source for numerous microbial strains.

Extensive research has been conducted on bacteria 
capable of using cyanide, Klebsiella, Serratia, Noraxella, 
Pseudomonas sp. [20], Pseudomonas pseudoalcaligenes [15], 
and Agrobecterium tumefaciens [21], are the related examples. 
A recent bacterial species “Rhodococcus UKMP-5M” capable 
of degrading cyanide to less toxic compounds has been 
isolated from petroleum-contaminated soils [1]. In another 
study, two fungi mixtures in which one comprising Fusarium 
solani and Trichoderma polysporum, and the other consisting 
of Fusarium oxysporum, Scytalidium thermophilum, and 
Penicillium miczynski, as well as both being capable of 
consuming iron- or nickel-cyanide complex, as their nitrogen 
source, under acidic or neutral conditions were isolated from 
acidic soils of gas-production factories [22].

The literature is dominated by studies on cyanide microbial 
degradation under acidic or neutral conditions [22-24]. Under 
these conditions, cyanide is converted to hydrocyanic acid, 
a weak acid with pKa = 9.2, which causes serious problems, 
and hence there is a great interest in biological treatment of 
cyanide compounds under alkaline conditions. The fungi 
F. solani [25], bacterium P. pseudoalcaligenes [13, 15, 26], 
and strain Burkholderia cepacia [8] exemplify species with the 
capacity of producing enzyme biodegrading cyanides under 
alkaline conditions. The bacterium Burkholderia cepacia 
biologically degrades cyanides at pH = 8-10 with the highest 
removal rate, 1.85 mg CN/h [27].

There is a broad use of cyanide in extracting gold; however, 
it was for the first time in my country that indigenous 
microorganisms were used to degrade cyanide in soil sample 
of a gold mine under alkaline condition. Those microorganisms 
offered a practical solution for cyanide biodegradation. 
Therefore, it is necessary to search for new and more efficient 
strains in order to overcome the growing issues caused by these 
toxic contaminants.

The main purpose of this study was to isolate and identify 
cyanide degrading bacteria from soil samples of Takab gold 
mine under alkaline conditions, which increased the safety 
and accuracy of experiments by preventing HCN formation 
and cyanide evaporation. Furthermore, the optimum growth 
conditions of isolated species were found in the presence of 
toxic cyanide compound.

2 Experimental Protocol
2.1 Isolation and purification of microorganisms

In order to isolate and purify microorganisms to be able to 
remove cyanide, a sample from contaminated gold mine soil 
(Takab gold mine, Urmia, Iran) was selected. The desired 
microorganisms were isolated by enrichment in nutrient broth 
containing 30-100 ppm cyanide. For this purpose, at first a 
90 ml saline solution containing 0.1% Tween 80 was added to a 

500 ml Erlenmeyer flask. This compound facilitated the transfer 
of microorganisms from the soil to aqueous phase. Then, 10 g 
soil was added to the saline solution and was mixed for 1 h at 
30 °C and 150 rpm. After precipitation of soil, the supernatant 
liquid was added to the autoclaved nutrient broth supplemented 
with 30 to 100 ppm cyanide. The microorganism enrichment 
was done every 4 days by 10% V/V inoculation into a fresh 
medium, with steps increasing cyanide concentration between 
100-500 ppm. During all steps pH was controlled above 9.5 
by adding 0.1 N NaOH. 10 ml of culture was inoculated into a 
mineral medium to isolate cyanide degrading bacterium.

The mineral medium contained NaOH 0.1 N, K2HPO4 
4.35 g/l, 10 ml solution of trace salts (FeSO4.7H2O 300 mg, 
MgSO4.7H2O 180 mg, CoCl2 130 mg, CaCl2 40 mg, 
MnCl2.4H2O 40 mg, and MoO3 20 mg dissolved in 1 liter 
deionized water) and 0.1% yeast extract [28]. The pH was 
adjusted in the range of 9.5-10.5. The medium was autoclaved 
at 15 psi and 121 °C for 20 min, then was supplemented with 
filter-sterilized glucose (1 g/l) as carbon source. Filter-sterilized 
KCN (50-130 ppm) was added to the mineral medium as 
nitrogen source every 5-6 days. Incubation was done at 30 °C 
and 150 rpm using sealed shake flasks besides controlling of 
pH. Cultured microorganisms were then purified by single cell 
clonal isolation in nutrient agar. Four microorganisms (C1-C4) 
were successfully separated from cyanide-contaminated gold 
mine soil and then were purified. The isolated bacterial strains 
were able to grow and biologically degrade high cyanide levels 
under alkaline conditions. The microorganisms (C1-C4) were 
characterized by several biochemical and bacteriological 
tests (catalase and oxidase), lactose, sucrose, and glucose 
fermentation, a starch hydrolysis test, and finally a Gram 
staining test.

2.2 Cyanide degradation capability of 
microorganisms 

In order to assess cyanide removal, a desired amount of soil 
was autoclaved and 10 g of the soil samples were dispensed in 
sterile sealed plates. Then, 3 ml of autoclaved basal salt solution 
containing 0.5 g/l KH2PO4, 0.5 g/l K2HPO4, 0.5 g/l MgSO4.7H2O, 
0.01 g/l CaCl2, in addition to 1 g/l filter sterilized glucose and 
KCN (100 and 200 ppm) were added into the samples. These 
salts were nutritive which promoted microbial growth. In order 
to evaluate cyanide removal capacity of each strain, the isolated 
microorganisms were cultured in nutrient broth for 24 h at 30 °C 
and agitation speed of 150 rpm, and then they were inoculated 
into soil samples. The initial bacteria count was 1×107 CFU/ml. 
Soil moisture was controlled daily by weighing the samples. 
A single strain was selected based on its higher efficiency 
in removing cyanide, then the ability of this microorganism 
was analyzed in different initial cyanide concentrations, 
100 - 500 ppm. In all steps, non-inoculated medium served as 
control and all experiments were performed in duplicate.
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Identification of the C3 strain was performed in 
Iranian Biological Resource Center (IBRC) by using 
microorganisms bank. Total DNA of the selected 
microorganism (C3) was extracted according to modified 
Marmur method [29]. PCR reaction was carried out using 
27F [5’-AGAGTTTGATCMTGGCTCAG-3’] and 1492R 
[5’-GGTTACCTTGTTACGACTT -3’], universal primers, to 
amplify the gene coding for 16S rRNA.

2.3 Cyanide biodegradation assay
Cyanide removal efficiency of a mixture of four 

microorganisms was compared with the selected strain. 
For this purpose, a mixture of four isolated bacterium was 
cultured in nutrient broth for 24 h and then was inoculated into 
soil samples supplemented with 200 ppm cyanide. The amount 
of cyanide removal was detected from the 9 to 13th day.

The effect of yeast extract, as a nutritive source for microbial 
growth, on the removal of cyanide was evaluated. For this 
purpose, at 200 ppm initial cyanide concentration, 1 g/l yeast 
extract was also added to soil samples.

All the experiments were done in duplicate at 30 °C, pH=9.5-
10.5, and agitation speed of 150 rpm. Control experiments 
(without bacterial inoculation) were also performed.

2.4 Bacterial Growth
The growth of isolated microorganism was analyzed by 

using one of the most reliable techniques which is culturing by 
pour plate technique and counting of colonies. For this purpose, 
firstly, 1 ml of grown microorganisms in soil samples which 
were prepared previously (Section 2.2), was resuspended in 
9 g/l NaCl in order to carryout serial dilution. Then 1 ml of 
each dilution was added into sterile plates containing 15 ml 
nutrient agar. They were incubated for 24 h at 30 °C (each 
dilution was performed in duplicate). The plates containing 
30-300 colonies were used for counting viable cells as colony 
forming units/ml (CFU/ml) [28]. 

2.5 Analytical methods
Measurement of residual cyanide was done using a DR 

5000 Spectrophotometer UV-VIS (HACH, Germany) and 
cyanide test-kit (24302-00) according to the method 8027 
(Pyridine-Pyrazalone (0.002 to 0.24 ppm CN-)) developed 
by the HACH company. The blue compound formed during 
the determination of cyanide was quantified by measuring 
absorbance at 612 nm [30]. Variation in pH was measured 
using a pH meter (827 Metrohm, Swiss). The number of 
colonies was counted using a microscope (JENUS, china) 
and a rotary shaker-incubator (Wise cube, South Korea) was 
utilized for all experiments.

2.6 Experimental design and optimization
Response Surface Methodology (RSM) was employed for the 

optimization of process variables to improve the degradation of 
cyanide using design expert 7.1.5 version (Stat-Ease, Minneapolis 
2008) to analyze the results. RSM is an empirical modelization 
technique for studying the influence of different variables on 
responses by varying them simultaneously and conducting a 
limited number of experiments. In this study, central composite 
design (CCD) was used to study optimum variable levels in 
cyanide biodegradation, temperature (25-40 °C), pH (9-12), and 
glucose concentration (0.1-1.0 g/l). The experiments in the central 
point were done in triplicate for 7 days.

3 Results and Discussion
3.1 Isolation and purification of microorganisms

Table 1 shows characteristics of isolated microorganisms. 
In order to compare cyanide removal efficiencies of C1-C4 
strains, they were inoculated into soil samples. After 6 days 
of incubation, at initial cyanide concentration of 100 ppm, the 
removal efficiency of the four strains (C1-C4) was about 51, 
39, 58 and 47% and at 200 ppm it was 38, 40, 63.5 and 49%, 
respectively. Pseudomonas parafulva C3 was selected as the 
best strain based on its higher removal efficiency and was used 
in the subsequent steps. The 16S rRNA gene sequence analysis 
of the C3 strain showed that the isolate composed of 1406 
nucleotide had 99.4% identity with Pseudomonas parafulva 
NBRC 16636(T) accession number BBIU01000051.

Table 1 Characterization of the separated microorganisms

Microorganism C1 C2 C3 C4

Appearance
Thin rod 
-shaped

Long 
rod-shaped

Thin 
rod-shaped 

rod-shaped

Gram staining Negative Negative Negative Positive

Catalase test Positive Negative Positive Negative

Oxidase test Positive Negative Negative Negative

Starch hydrolysis 
test

Positive Positive Positive Negative

Glucose, lactose, 
and sucrose 
fermentation test

Only 
ferments 
glucose

Only 
ferments 
glucose

Only 
ferments 
glucose

Only 
ferments 
glucose

H2S gas production Negative Negative Negative Negative

3.2 Cyanide degrading experiments
3.2.1 Removal efficiency of Pseudomonas parafulva C3 

The effect of the initial cyanide concentration was analyzed 
by adding 100, 200, 300, 400, and 500 ppm cyanide into the 
soil samples and cyanide concentration was monitored every 
day consecutively. 

The results (Fig. 1) showed that Pseudomonas parafulva 
C3, could remove 93.5% of cyanide with initial concentration 
of 200 ppm at 13 days. The bacterium C3 tolerated cyanide 
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concentrations, as high as 500 ppm, during this period. 
The cyanide concentration of 200 ppm recorded the highest 
removal efficiency in the shortest period of time, compared 
to other concentration values; so it was determined as the 
optimum initial concentration. Increasing the concentration 
beyond this value had a destructive effect on cyanide removal. 
Fig. 1 showed that cyanide was in fact as the substrate up 
to 200 ppm and its inhibitory effect was appeared in higher 
concentrations. So, biodegradation may started gradually at 
those concentrations regarding the microorganisms adaptation 
to this condition. No cyanide removal was detected in the 
absence of augmentation in the control samples.

In most of previous studies, researchers investigated cyanide 
removal using different bacteria under different conditions. Most 
of those bacteria were mesophilic while optimum temperature 
was about 25- 30 °C and the optimum pH varied from 5.5 to 11.5. 
It is evident that by increasing cyanide concentration, the amount 
of cyanide removal decreased or the required time increased 
markedly. Ezzi and Lynch [12] studied cyanide removal at 
concentration of 2,000 ppm and successfully removed total 
cyanide at 90 days. Other researchers investigated the effect 
of lower amounts of cyanide. For instance, Naveen et al. [18] 
removed 83% of cyanide with initial concentration of 150 ppm 
at 120 h. Ӧzel et al. [31] investigated the use of fungi on cyanide 
removal and found that by using S. commune, P. arcularis and G. 
luncidum at pH 10.5 for 42 h, cyanide degradation was almost 
100%, but the initial cyanide concentration was just 25 ppm. It 
showed that by increasing cyanide concentration up to 200 ppm, 
the removal efficiency decreased to less than 50%. The results 
of literature data are presented in Table 2. 

Fig. 1 Cyanide removal efficiency of the isolate C3 at different initial 
concentrations

3.2.2 Removal efficiency of mixed culture
In order to compare the C3 strain with co-culture, a mixture 

of the four isolated bacteria, C1-C4, was cultured in nutrient 
broth medium for 24 h and inoculated into soil samples 
supplemented with 200 ppm cyanide. 

Fig. 2 shows the performance of a mixture of strains from 
C1 to C4 in degrading 200 ppm cyanide from the 9 to 13th day 
compared to that of individual C3, under the same conditions.

Fig. 2 Comparison between cyanide removal efficiency of the isolate C3 and 
C1-C4 mixture at 200 ppm initial cyanide concentration

It was observed that the removal efficiency of the mixture 
of the four microorganisms was 30% less than the isolate C3. 
Competition between individual species in a heterogeneous 
microbial community affected the removal of cyanide by 
releasing inhibitory side-products. On the other hand, the cyanide 
concentration was 200 ppm which was the known optimum 
concentration for Pseudomonas parafulva C3. It implied that 
cyanide was a substrate with no inhibitory effect on the growth of 
the C3 strain until it reached 200 ppm. It was reasonable that this 
amount would be different for the mixed culture and consequently, 
the C3 strain offered more efficient removal than the co-culture. 
In some studies, mixed culture would display higher efficiency 
on cyanide removal, if optimum substrate was provided. 
For example, Kang and Kim [20] studied the degradation of 
cyanide by a mixture of bacteria. They demonstrated that cyanide 
played a role as a substrate until 300 ppm in which the mixture 
recorded maximum growth rate and cyanide removal. Nwokoro 
and Dibua [32] examined the degradation of cyanide by single 
and mixed culture of Pseudomonas stutzeri and Bacillus subtilis, 
and they reported that P. stutzeri, B. subtilis and their mixture 
removed cyanide up to72, 66.9 and 88.5%, respectively.

3.2.3 The effect of nutrients on cyanide removal
Figs. 3 and 4 show cyanide removal yield in the 3rd, 6th, 9th, 

and 13th days of treatment to indicate the effect of inorganic 
basal salts and yeast extract, respectively, on microbial growth 
and their ability in promoting cyanide removal.

It is shown in Fig. 3 that inorganic basal salts were necessary 
as they facilitated C3 growth and the removal of cyanide. The 
presence of these salts improved the removal efficiency by 16%.

As illustrated in Fig. 4, yeast extract also improved cyanide 
removal capability of Pseudomonas parafulva C3 by enriching 
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its growth. However, considering the negligible enhancement 
(~1.5%), feasibility studies and economic analysis should be 
conducted prior to the industrial application of yeast extract. 
Maniyam et al. [1] studied the biodegradation of cyanide by 
Rhodococcus. They analyzed the effect of glucose and yeast 
extract on bacterial growth and cyanide removal efficiency at two 
cases. First in the presence of both supplements simultaneously 
and second by adding only yeast extract to the culture medium. 
Results showed that in the presence of glucose, the bacterial 
growth was in a high level after 11 days of incubation, while 
the bacteria could not grow efficiently in the second case. 
Cyanide removal efficiency in the first case was four times 

more than in the second one. This indicated significantly higher 
effect of glucose than yeast extract, as cyanide degradation 
occurred partially by using yeast extract [1]. In addition, 
Dumestre et al. [25] examined the degradation of cyanide under 
alkaline conditions by a strain of Fusarium solani isolated 
from contaminated soils in both the presence and absence of 
yeast extract. It was concluded that yeast extract could affect 
formamide conversion, but the graph showed that this nutrient 
did not have any significant effect on cyanide removal.

Highly aerobic condition in the current study, ruled out the 
effect of chemical reaction (Kiliani-Fischer reaction) between 
glucose and cyanide [1, 12, and 33].

Table 2 Cyanide removal efficiency using different microorganisms

Microorganism Removed compounds
Initial Cyanide 
Concentration (ppm)

pH Temperature (°C)
Process Time 
(days)

Removal 
Percentage (%)

Trichoderma SPP. and Fusarium 
SPP. [12]

A stock solution 
contain CN-

2000 6.5 25 90 100

CMN2 and CM5 specious of 
pseudomonas [11] CNWAD

(weak acid 
dissociable)

400 9.2-11.4 30 5

93

Natural mixture of nine 
pseudomonas sp. [11]

67

Pseudomonas parafulva C3 KCN 200 9.5-10.5 30 13 93.5

Rhizopusoryzae
Ferrocyanide 150

5.6
25 5

83

Stemphylium loti [18] 7.2 90

Agrobacterium tumefaciens 
SUTS1 [21]

KCN
25, 50

7.2 30 15
87.5

150 97.9

Fusarium solani [25] KCN 50 9.2-10.7 30 6 100

Bacterial mixture [20] containing 
species of: the genera Klebsiella

KCN 70 8 28 2

100

Seratia 80

Noraxella 100

Pseudomonas 95

Rhodococcus UKMP-5M [1]
Petrochemical 
contaminated soil

2.6 6.3 30 3 100

Fig. 3 Cyanide removal efficiency of the isolate C3 with or without adding 
inorganic basal salts at 200 ppm initial cyanide concentration

Fig. 4 Cyanide removal efficiency of the isolate C3 with or without adding 
Yeast extract at 200 ppm initial cyanide concentration
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3.3 Pseudomonas parafulva C3 growth analysis
Fig. 5 shows that cyanide concentration had a noticeable effect 

on microbial growth as the bacteria count in medium containing 
200 ppm cyanide was more than in medium containing 100 ppm 
cyanide in similar condition, which confirmed the absence of 
cyanide inhibitory effects up to 200 ppm. In other words, cyanide 
worked as a substrate in these concentrations which could 
promote microorganisms growth. The results of bacterial growth 
and cyanide removal were confirmed each other.

Fig. 5 C3 bacterial growth curve at 100 and 200 ppm initial cyanide

3.4 Response surface analysis for optimization of 
three factors

Data from Table 3 were processed by response surface 
method and the results were obtained by fitting to the quadratic 
model equation:

Y A B C AB

AC A B

= + − + +

+ + − −

61 92 2 95 2 01 2 07 0 19

0 063 0 19 0 28 0
2 2

. . . . .

. . . . 119
2C

Where (Y) is the predicted removal percentage of cyanide. 
A, B, and C are the values of temperature, pH, and glucose, 
respectively. The results of Analysis of Variance (ANOVA) for 
response surface model are presented in Table 4.

The model for cyanide biodegradation by Pseudomonas 
parafulva C3 was significant (p<0.0001), indicating the adequacy 
and reliability in representing the actual relationship between 
response and variables [34, 35]. In regard to effective and removed 
terms, the model, Eq. (1), might be modified into Eq. (2): 

Y A B C AB

A B C

= + − + +

+ − −

61 92 2 95 2 01 2 07 0 19

0 19 0 28 0 19
2 2 2

. . . . .

. . . 

The fit of the models was controlled by the coefficient of 
determination R2. According to the ANOVA results, the models 
reported high R2 value of 0.9982 for cyanide biodegradation, 
which implied that it was a very good fit and 99.8% of the 
variation could be explained by the model [36]. Furthermore, 
the high value of the adjusted R2 = 0.9965 proved a high 
significance of the model. Adequate Precision which was the 

ratio of signal to noise should have been more than 4 in order 
to indicate the adequacy of the signal; and it was 96.21, in this 
study. The diagnostic plot (Fig. 6) was also used for estimating 
the adequacy of the regression model [37]. Tendencies in 
linear regression in the graph showed a satisfactory correlation 
between predicted and experimental values.

Table 3 Three factors central composite design and experimental results

Run
A: Temperature
(°C)

B: 
pH

C: Glucose 
concentration
(g/l)

Removal efficiency (%)

Actual Predicted

1 36.96 11.39 0.28 60 60.2

2 32.50 10.50 0.55 62 61.9

3 28.04 11.39 0.28 54 54

4 36.96 9.61 0.28 64 63.9

5 32.50 10.50 1.00 65 64.9

6 32.50  9.00 0.55 64.5 64.5

7 32.50 10.50 0.55 62 61.9

8 32.50 10.50 0.55 62 61.9

9 32.50 10.50 0.55 61.5 61.9

10 32.50 10.50 0.55 62 61.9

11 28.04 9.61 0.82 62.5 62.4

12 40.00 10.50 0.55 66.5 66.4

13 36.96 9.61 0.82 68 68.1

14 28.04 11.39 0.82 58 58.2

15 25.00 10.50 0.55 56.5 56.4

16 32.50 10.50 0.55 62 61.9

17 36.96 11.39 0.82 64.5 64.6

18 32.50 10.50 0.10 58 57.9

19 28.04 9.61 0.28 58.5 58.6

20 32.50 12.00 0.55 58 57.8

Table 4 ANOVA for the entire quadratic model

Source Mean Square F Value p-value Prob > F

Model 26.09 610.68 < 0.0001

A-Temperature 119.03 2786.02 < 0.0001

B- pH 55.10 1289.71 < 0.0001

C- Glucose concentration 58.53 1369.99 < 0.0001

AB 0.28 6.58 0.0281

AC 0.031 0.73 0.4124

BC 0.031 0.73 0.4124

A2 0.52 12.08 0.0060

B2 1.11 26.01 0.0005

C2 0.52 12.08 0.0060

Residual 0.043

Lack of Fit 0.044 1.05 0.4790

Pure Error 0.042

(1)

(2)
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Fig. 6 The actual and predicted cyanide removal percentage

3.4.1 Interactive effect of processes of independent 
variables

RSM was used to investigate the interactive effect of 
temperature, pH, and glucose concentration on biodegradation 
of cyanide, and the results were shown in three dimensional 
(3D) plots, (Figs. 7, 8, and 9). 

As indicated in Fig. 7, cyanide removal efficiency increased 
remarkably as temperature increased and, in contrast, pH 
decreased.

Fig. 7 Response surface plot showing interactive effect between temperature 
and pH on cyanide biodegradation

Fig. 8 shows the effect of temperature and glucose 
concentration on cyanide removal, simultaneously. As seen in 
Fig. 8, cyanide content decreased with increase in temperature 
and glucose concentration which resulted in increasing cyanide 
removal percentage.

The effect of pH and glucose concentration on the removal of 
cyanide is shown in Fig. 9. By increasing glucose concentration 
and decreasing pH, cyanide content decreased which implied 
that cyanide removal efficiency increased. 

Fig. 8 Response surface plot showing interactive effect between temperature 
and glucose concentration on cyanide biodegradation

Fig. 9 Response surface plot showing interactive effect between pH and 
glucose concentration on cyanide biodegradation

3.4.2 Optimization experiment
The desired goal of the model was to remove cyanide as 

much as possible in order to achieve the most treated soil. 
At optimum condition of 32.23 °C, pH 9.95, and glucose 
concentration of 0.73 g/l, predicted cyanide removal efficiency 
was 66%, while the experimental result was 64%. This implied 
that the strategy for obtaining maximum cyanide removal was 
successful. Although at temperatures of 35-40 °C removal 
efficiency was more than 66%, decrease in cyanide content in 
control samples, without microorganism inoculation, showed 
that at those high temperatures, there were some other reasons 
for cyanide removal in addition to biodegradation.

4 Conclusions
Recent studies have shown that biological treatment 

of cyanide using living microorganisms was reliable, 
environmentally friendly and economical.

In the present study, indigenous microorganisms (C1 - C4) 
were isolated from contaminated soil, purified and their ability 
to remove cyanide was analyzed. The strain C3 was selected 
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as the most efficient strain in cyanide removal with a record 
of 93.5% cyanide degradation at concentration of 200 ppm 
after 13 days. This strain was able to survive and grow under 
alkaline conditions (pH > 10) and tolerated high cyanide 
concentrations up to 500 ppm, making it the most reasonable 
choice for biodegradation of cyanide-contaminated wastes. 
In the presence of glucose, as carbon source, Pseudomonas 
parafulva C3 displayed the highest cyanide removal yield. 
The addition of basal salts enhanced the cyanide removal 
efficiency by 16%. In addition, the results showed that the 
cyanide removal efficiency of the bacterium C3 was higher 
than a mixture of the four strains. The range of temperature, 
pH, and glucose concentration were established to optimize the 
cyanide biodegradation condition by RSM which could save 
experimental time and cost.
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