Experimental and Computational Study on the Debenzylation of (2,4-dimethoxybenzyl)-protected 1,3-diazaoxindoles

Eszter Kókai1,2,4, Benjámin Kováts2, Balázs Komjáti3, Balázs Völk4, József Nagy2*

Received 25 July 2017; accepted after revision 28 September 2017

Abstract
The introduction and removal of the 2,4-dimethoxybenzyl (DMB) moiety was studied in order to use it as a protecting group in the synthesis of diverse drug candidates containing the 1,3-diazaoxindole scaffold. The debenzylation of C(5)-unsubstituted and C(5)-isopropylidene-substituted 1,3-diazaoxindoles was investigated under various conditions. The DMB group could only be removed from the latter derivative using triflic acid. This observation can most likely be explained with electronic effects. In order to get a deeper insight into the reaction mechanism, quantum chemical calculations have been performed.

Keywords
1,3-diazaoxindole, dimethoxybenzyl group, debenzylation, DFT, reaction mechanism

1 Introduction
The interest in 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives (1,3-diazaoxindoles) increased in the last few years due to the biological relevance of compound families 1 and 2 (Scheme 1) [1-5].

In our earlier study, the easily available 2-(4-chloropyrimidin-5-yl)acetate derivatives 3a–d were reacted with ammonia to afford the corresponding 2-(4-aminopyrimidin-5-yl)acetamides 4a–d, which were finally cyclized to N-unsubstituted 1,3-diazaoxindoles 5a–d (Scheme 2) [6].

Vaid et al. treated compound 6 with ammonia (3.7 equiv., 1.0 M propan-2-ol solution) at 90°C followed by the cyclization of non-isolated intermediate 7a to give 4-chloro-1,3-diazaoxindole 8a with 60% yield (Scheme 3) [7]. The complex workup procedure involved 3 steps: a) removal of the inorganic salts by filtration, b) concentration of the reaction mixture, c) dissolution of the residue in ethyl acetate followed by activated charcoal treatment, which was used to remove the majority of by-product 9, d) aqueous extraction of the ethyl acetate layer and concentration of the solution to obtain the

Scheme 1 Drug candidates with 1,3-diazaoxindole skeleton
crude product, and finally e) crystallization of the crude product from dichloromethane and heptane to obtain 8a.

According to the literature, 2,4-dimethoxybenzylamine reacts under mild conditions with methyl (4,6-dichloropyrimidin-5-yl)acetate (6) and or its analogues (such as 10, Scheme 4) and the products can be cyclized to the corresponding 1,3-diazaoxindoles [7, 8]. Vaid et al. treated compound 6 with 2,4-dimethoxybenzylamine and α-methylbenzylamine in N,N-dimethylformamide (DMF) in the presence of N,N-diisopropylethylamine (DIPEA) followed by the cyclization of non-isolated intermediates 7b, c to give 4-chloro-1,3-diazaoxindoles 8b, c with 78–88% yields (Scheme 3) [7]. It is known that the 2,4-dimethoxybenzyl (DMB) group can be easily eliminated from amides by oxidation or under acidic conditions [9, 10]. Several attempts were made using this approach for the synthesis of N(7)-unsubstituted 4-chloro-1,3-diazaoxindole 8a by treating 8b, c with sulfonic acids such as methanesulfonic acid, p-TsOH and triflic acid. Nevertheless, the formation of the desired product 8a was not observed [7, 9, 10].

2,4-Dimethoxybenzylamine hydrochloride in presence of DIPEA was successfully used for the substitution of the halogen atom from chloro-ester compound 10, yielding DMB amino ester derivative 11 in 76% yield [8]. Further the complete DMB group removal with p-TsOH under acidic conditions and the subsequent cyclization step provided only the unprotected 2-substituted 4-chloro-1,3-diazaoxindole 12 with 64% yield in one-pot manner.

The selectivity of the alkylation reactions of N(7)-unprotected 1,3-diazaoxindoles has been recently described by us [11]. Herein the introduction and removal of DMB moiety on N(7) atom as an alternative approach to ensure C(5) selectivity is presented. As shown above, deprotection of DMB-amides usually occurs easily under acidic conditions [9]. However, the usefulness of DMB-protection/deprotection only in case of 2- and 4-substituted diazaoxindoles was already investigated. Our aim was to extend this approach to the unsubstituted analogue 5a and to provide a suitable mechanism for the deprotection step.

2 Results and Discussion

The synthesis of the N(7)-substituted target compound was carried out starting from 2-(4-chloropyrimidin-5-yl)acetate (3a), which was treated with 2,4-dimethoxybenzylamine hydrochloride (13) and DIPEA in DMF under argon atmosphere at 110°C (Scheme 5). In the cyclization step of the DMB-amino substituted pyrimidine 14 thus obtained, sodium ethoxide (NaOEt) was used in dry ethyl acetate (EtOAc) to give DMB-protected diazaoxindole 15.
Further debenzylation of 15 performed with p-TsOH, 5 M sulfuric acid, acetic acid, trifluoroacetic acid (TFA), methanesulfonic acid and triflic acid in the presence of anisole failed, the desired unprotected 5a was not formed (Scheme 6). These results were in accordance with earlier finds concerning the stability of N-benzylated 8b,c under acidic conditions [7].

The oxidative removing of DMB with cerium ammonium nitrate (CAN, 3 equiv.) in acetonitrile-water or with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ, 1.5 equiv.) in DCM [9] was also useless for the deprotection of 15.

Condensation of N(7)-protected 1,3-diazaoxindole 15 with acetone in acetic acid afforded N(7)-substituted 5-isopropylidene-1,3-diazaoxindole 16 in 98% yield (Scheme 6) [11]. DMB deprotection of 16 occurred using a mixture of trifluoroacetic acid and triflic acid in the presence of the leaving group entrapping anisole [12-13] yielding (25%) 5-isopropylidene-1,3-diazaoxindole (17). The difference in reactivity found for deprotection of 15 and 16 enforced us to investigate the reaction mechanism using quantum chemical calculations.

All calculations were carried out with the Gaussian09 software [14]. The calculations were performed on ωB97XD/6-311++G(2df,2pd)/ωB97XD/6-31+G(d,p) level of theory in the presence of the IEF-PCM solvation model with UFF radii [15, 16]. TFA was selected as the solvent.

The reaction mechanism was also investigated with the variation of the dielectric constant, and it was found that there was no significant difference in the outcome of the calculations. For comparison, the ratio of the reaction rates was calculated based on the Arrhenius-equation, where the pre-exponential factor was considered the same for 15 and 16 since they are very similar compounds. (Fig. 1)

It was assumed that only protonated 15 and 16 could be transformed into free amides, since strong acidic reaction conditions were the prerequisite of DMB deprotection. Because pK_a of triflic acid is much lower than that of TFA, the formation
energies for protonated 15 and 16 triflates were calculated. Detailed investigation of protonation, tautomerization and transition-state energies involving all proton-acceptor sites and tautomers revealed that DMB deprotection could proceed only from double protonated molecules. Two energetically close reaction mechanisms were formulated: (I.) the transition state occurs from the double protonated pyrimidine ring; or (II.) one of the two protons is migrating to the oxo group enhancing the debenzylation by favouring the oxo-enol tautomerization in the transition state (Scheme 7).

It was important to note that triple-protonation of the molecules is energetically less favourable. Furthermore, transition states involving nitrogen protonated amide tautomer or protonated DMB group were energetically ruled out. Since calculations demonstrated that the second protonation of the already protonated pyrimidine ring is energetically favoured, it was assumed that the most feasible mechanism is depicted in Scheme 7, path I.

It was also found a slight energetic difference (1.20 kcal/mol) for protonation but a more significant difference in transition state energies (3.64 kcal/mol) between 15 and 16 (Fig. 2), explaining why 16 is deprotected about 200 times faster than 15.

Comparing in transition states the Mulliken charge distribution of the amide nitrogen atom and the methylene unit of DMB group (Fig. 3) it was found that in the double protonated 15 the electrostatic force between the amide nitrogen atom and the DMB methylene group is much stronger than in the similar transition state generated from compound 16. A larger partial charge difference causes a greater cohesive force between the amide nitrogen and the leaving group, reducing the reactivity.

Scheme 7 The two most preferred mechanisms

Fig. 2 Gibbs Free Energy diagram of deprotection of compounds 15 and 16
of 15 compared to 16.

3 Conclusion

In order to explain the significant difference between the reactivity of compounds 15 and 16 in terms of removal of the DMB protecting group, the investigation of the reaction mechanism of these two 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives has been performed. Due to the multiple proton-acceptor sites of both 15 and 16, the exact mechanism of the deprotection reaction remains uncertain. It was found a slight energetic difference in protonation but a significant difference between the transition states of the most favoured mechanism. This result was explained taking into account the charge delocalizing effect of the isopropylidene group, enhancing the protonation of 16 compared to 15 and improving the formation of the unprotected product from 16.

4 Experimental section

Melting points were determined on an OptiMelt Automated Melting Point System by Stanford Research Systems. IR spectra were obtained on a Bruker IFS-113v FT spectrometer. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance III (400 and 100 MHz for 1H and 13C NMR spectra, respectively). Chemical shifts (δ) and coupling constants (J) are given in parts per million and in Hertz. The ESI+ mass spectra were recorded on a Thermo LTQ XL mass spectrometer coupled with an Acquity™ UPLC. The reactions were followed by analytical thin layer chromatography on silica gel 60 F254. All unspecified reagents were purchased from commercial sources.

Ethyl (4-[(2,4-dimethoxyphenyl)ethyl]amino)pyrimidin-5-y)acetate (14). To a stirred solution of ethyl 2-(4-chloropyrimidin-5-yl)acetate (3a, 2.10 g, 10.5 mmol) in DMF (25 mL) 2,4-dimethoxybenzylamine hydrochloride (13, 2.24 g, 11 mmol) and DIPEA (3.67 mL, 2.71 g, 21 mmol) were added at room temperature (rt) under argon. The reaction mixture was stirred at 110°C for 3 hours. After the reaction was complete and cooled to rt, water (150 mL) was added to the mixture. Stirring was continued for 30 min, and then the volatile components were evaporated at 40°C. The residue was dissolved in distilled water (180 mL) and stirred for 2 hours. The crystalline precipitate was filtered off, washed with water (2×30 mL) and dried at 40°C. The cooling bath was removed and stirring was continued at 20°C for 10 min. After the reaction was complete, it was cooled to 10°C and acetic acid (5.32 mL, 5.58 g, 92.9 mmol) was added to the mixture. Stirring was continued for 30 min, and then the volatile components were evaporated at 40°C. The residue was dissolved in distill Water (180 mL) and stirred for 2 hours. The crystalline precipitate was filtered off, washed with water (2×30 mL) and dried to give 16 as pale brown crystals (5.42 g, 19.0 mmol, 88%). An analytical sample was obtained by recrystallization from EtOAc to give colourless crystals. Mp. 122.5-123.5°C (EtOAc). IR (KBr): ν 1730, 1470 cm−1. 1H NMR (400 MHz, CDCl3): δ 8.79 (s, 1H), 8.32 (s, 1H), 7.12-7.10 (d, J=8.3 Hz, 1H), 6.44 (d, J=2.4 Hz, 1H), 6.41-6.39 (dd, J=8.3, 2.4 Hz, 1H), 4.95 (s, 2H), 3.80 (s, 3H), 3.77 (s, 3H), 3.36 (s, 2H), 3.60 (s, 2H). 13C NMR (100 MHz, CDCl3): δ 173.5, 164.9, 160.6, 158.3, 157.8, 148.7, 129.6, 116.7, 103.9, 98.6, 55.4, 55.3, 38.0, 32.8. MS: 286.09 (M+H)⁺.

7-(2,4-Dimethoxybenzyl)-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one (15). To a vigorously stirred suspension of sodium ethoxide (3.35 g, 47.3 mmol) and ethyl acetate (60 mL), a solution of ethyl (4-[(2,4-dimethoxyphenyl)methyl]amino)pyrimidin-5-yl)acetate (14, 7.12 g, 21.5 mmol) in ethyl acetate (210 mL) was added at 0°C. The cooling bath was removed and stirring was continued at 20°C for 10 min. After the reaction was complete, it was cooled to 10°C and acetic acid (5.32 mL, 5.58 g, 92.9 mmol) was added to the mixture. Stirring was continued for 30 min, and then the volatile components were evaporated at 40°C. The residue was dissolved in distilled water (180 mL) and stirred for 2 hours. The crystalline precipitate was filtered off, washed with water (2×30 mL) and dried to give 15 as pale brown crystals (5.42 g, 19.0 mmol, 88%). An analytical sample was obtained by recrystallization from EtOAc to give colourless crystals. Mp. 122.5-123.5°C (EtOAc). IR (KBr): ν 1730, 1470 cm−1. 1H NMR (400 MHz, CDCl3): δ 8.79 (s, 1H), 8.32 (s, 1H), 7.12-7.10 (d, J=8.3 Hz, 1H), 6.44 (d, J=2.4 Hz, 1H), 6.41-6.39 (dd, J=8.3, 2.4 Hz, 1H), 4.95 (s, 2H), 3.80 (s, 3H), 3.77 (s, 3H), 3.36 (s, 2H), 3.60 (s, 2H). 13C NMR (100 MHz, CDCl3): δ 173.5, 164.9, 160.6, 158.3, 157.8, 148.7, 129.6, 116.7, 103.9, 98.6, 55.4, 55.3, 38.0, 32.8. MS: 286.09 (M+H)⁺.
5-(Propan-2-ylidene)-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one (17). 7-(2,4-Dimethoxybenzyl)-5-(propan-2-ylidene)-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one (16, 75 mg, 0.23 mmol) was stirred in a mixture of triflic acid (1.00 mL, 1.70 mg, 11.3 mmol) and trifluoroacetic acid (1 mL, 1.49 g, 13.00 mmol) in the presence of anisole (1.00 mL, 96.00 mg, 9.12 mmol) at 25°C for overnight, then 1 h at reflux temperature. The volatile compounds were removed in vacuo and water (5 mL) was added. It was extracted with DCM (3×5 mL). The combined organic layer was washed with cc. aqueous NaHCO₃ solution (3×10 mL) and brine (20 mL), then dried and evaporated to give the crude product. It was purified by column chromatography using EtOAc as the eluent. The product 17 (31 mg, 25%) was obtained as white crystals. Mp. 200°C decom. (DMF). IR (KBr): ν 1718 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆): δ 11.52 (s, 1H), 8.66 (s, 1H), 8.63 (s, 1H), 2.53 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 167.6, 160.4 (2 signals: 160.40, 160.36), 156.1, 147.3, 119.1, 116.5, 25.7, 22.7. MS: 175.98 (M+H)⁺.

References

