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Abstract

The work is motivated by a separation problem, which is ethanol removal from aqueous mixtures with membranes. Ethanol can 

be considered as promising biomass based platform molecule. The platform molecule includes several building-block chemicals 

grouped together, resulting in a range of downstream chemical products. To solve the target, organophilic pervaporation system is 

investigated using benchmarked Sulzer PERVAP™ 4060 membranes. Separation factors, total permeation fluxes, permeances and 

selectivities are experimentally determined. The target of this work is to parameter estimation for semi-empirical pervaporation 

model. The measured data are evaluated with improved pervaporation model by Valentinyi et al. [1]. Three different polymeric 

flat sheet membranes are investigated, PERVAP™ 4060, PERVAP™ 1060 and CELFA-CMG-OG010. It is found that the model can be 

applied also for each organophilic separation case.
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1 Introduction
As the era of fossil oil nears its end and environmental 
pertains describing to the extraction of non-sustainable 
fossil feedstocks use pressure to the petrol sector, new 
sustainable feedstocks for chemicals and materials will 
be appropriate. The conventional chemical industry relies 
mainly on a small set of base chemical building blocks 
that are fabricated globally on a mighty quantity [2-5].

Farmer and Mascal [2] have defined these resources as 
platform molecules with the followings: “A bio-based (or 
bio-derived) platform molecule is a chemical compound 
whose constituent elements originate wholly from bio-
mass (material of biological origin, excluding fossil carbon 
sources), and that can be utilized as a building block for 
the production of other chemicals”. Ethanol (EtOH) is men-
tioned as platform molecule, it is determined the constit-
uent of this biomass molecule is derived from sugars [2]. 
Fig. 1 shows more ethanol-based organic molecules [6].

Bozel and Petersen [7] have classified ethanol into the 
group of revisited platform molecules [8]. They have also 
summarized the main criteria for the inclusion and result-
ing technology needs of top 10 platform molecules. In the 
case of ethanol the most important recommendations are 
the optimization of fermentation organisms, development 
of biochemical production of alcohols from biomass and 
alcohol-water separations techniques [7].

This research focuses on the third recommenda-
tion, which is the alcohol removal from water mixtures. 
Pervaporation (PV) is selected for investigation of eth-
anol from aqueous mixtures. Pervaporation has more 
green specialties against to other traditional processes, 
such as distillation [9, 10]. There are simply actualiza-
tion, energy-saving and no-pollution effects, further-
more no need for extra material to add for the separation 
[11]. Pervaporation method applied for organic-organic 
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separations, removal of low concentration organic from its 
aqueous mixtures and dehydration of organics [12].

The separated liquid mixture is vaporized at vacuum on 
the permeate side of dense membranes and the transport 
process can be described as sorption and diffusion phe-
nomena. Depending on the affinity of permeating compo-
nent, this method can be specified into main areas: hydro-
philic PV and organophilic PV. Removal of organic, for 
our cases ethanol, organophilic membranes are applied. 
PV can be described by certain equations. The partial flux 
is calculated applying the following formula [13]:

J P t Ai i= ⋅( )∆      (1)

where Pi  is the partial weight of component i  in the per-
meate product, Δ t is the time of duration of separation pro-
cess and A is the effective membrane area.

Separation factor is determined by Eq. (2) [13]:

α = −( )( ) −( )( )y x x yi i i i1 1    (2)

where α is separation factor (dimensionless), xi is weight 
fraction of water in feed and yi  is weight fraction of water 
of permeate. Pervaporation Separation Index (PSI) is 
specified [13]:

PSI J= ⋅ −( )α 1      (3)

The efficiency of pervaporation membranes can be deter-
mined by the permeance as partial flux normalized for driv-
ing force the pressure difference-normalized flux [13-15]:

P J x p y pi i i i i iδ γ= ⋅ ⋅( ) − ⋅( )( )0 0 0 3
  (4)

The membrane selectivity β is calculated as the ratio of 
permeances [13-15]:

β δ δ= ( ) ( )P Pi j     (5)

The ethanol removal is the actual task. As for the liter-
ature survey some papers were published in the separation 
of ethanol-water mixture by organophilic pervaporation. 
Table 1 summarizes a comparison of experimental data 
for the organophilic pervaporation of the ethanol-water 
mixture with polydimethylsiloxane (PDMS) membranes. 
The most widespread benchmarked material of organo-
philic PV is PDMS and the research focuses on the invest-
ment of this membranes.

The focus of this research is to represent the emerg-
ing method of organophilic PV and provide adequate 
understanding of the process for successful explanation 
of experimental data. The aim of this work is to investi-
gate polymeric PV membranes and to fit parameters for 
semi-empirical transport model.

Fig. 1 Ethanol as a platform molecule [6]

Table 1 Comparison of experimental data with composite PDMS membranes with different supports and without fillers for organophilic  
pervaporation of ethanol-water mixture

Membranes
T FEtOH Jtotal α PSI

Reference
[°C] [m/m%] [kg/(m2h)] [-] [kg/(m2h)]

PDMS - PTFE s. 30 2 0.10 10.0 0.9 Zhang et al. [16]

PDMS - CA s. 40 5 1.14 9.3 9.5 Luo et al. [17]

PDMS - PA s. 45 4 1.85 8.5 13.9 Shi et al. [18]

PDMS - CA s. 40 5 1.30 8.5 9.8 Li et al. [19]

PDMS - PS s. 42 5 1.44 6.7 8.2 Zhang et al. [20]

PDMS - PS s. 50 8 0.26 6.4 1.4 Guo et al. [21]

PDMS - PS s. 45 4 1.60 5.0 6.4 Shi et al. [18]

PDMS - PVDF s. 40 10 8.00 2.2 9.6 Chang et al. [22]

PDMS - CA s. 50 0.3 2.80 3.0 5.6 Mohammadi et al. [23]

PDMS 40 6 0.10 8.7 0.8 Naik et al. [24]

PDMS 30 5 0.05 8.0 0.3 Slater et al. [25]

PDMS graft copol. 48 6.6 0.03 6.6 0.2 Kashiwagi et al. [26]

PDMS 50 5 0.08 4.2 0.3 Lazarova et al. [27] 
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2 Materials and methods
The laboratory apparatus is P-28 membrane unit from 
CM-Celfa Membrantechnik AG (see Fig. 2). The equip-
ment has 28 cm2 effective area (A). Cross-flow circulation 
is achieved at constant value of ∼182 L/h and the size of 
the feed tank is 500 mL [13].

The isotherm conditions are adjusted with an ultrath-
ermostat. The vacuum on the permeate side is maintained 
with VACUUMBRAND PC2003 VARIO vacuum pump 
and kept up at 2 Torr (3 mbar). The permeate is gathered in 
two traps connected in series and cooled with liquid nitro-
gen to hinder loss of the permeate [13]. The ethanol concen-
tration of the feed (F), permeate (P) and retentate (R) are 
measured with Shimadzu GC2010Plus+AOC-20 autosam-
pler gas chromatograph with a CP-SIL-5CB column con-
nected to a flame ionization detector, EGB HS 600 head-
space apparatus is used for sample preparation [13, 29].

Composite PDMS flat sheet membranes are used in 
organophilic laboratory experiments. The pervaporation 
measurements are carried out at six different feed concen-
trations and three temperatures with Sulzer PERVAP™ 
4060, as follows: 1, 3, 5, 10, 15 and 20 weight percent 
(m/m%) ethanol in feed and 50, 60 and 70°C.

The procedure of Valentinyi et al. [1] is elected for mod-
elling of pervaporation, which is a development of basic 
Rautenbach model [30]. The concentration dependencies 
of the transport coefficient Di  and the temperature depen-
dencies of the pervaporation mean the improvements 
[13, 31]. Eq. (6) shows the basic equation of the improve-
ment PV model:

J D B x p

D B x

i i i i i

i i

= + ⋅ ⋅( )  ⋅( ){ }( )
⋅ ⋅ ⋅( ) 

1 1
1 0

1

exp

exp

γ

γ    ii i i ip p p
1 3 0
−( )( )

 
(6)

The fundamental Rautenbach model (Model I) and 
the advanced one (Model II) are applied for modelling 
of organophilic pervaporation experiments. Di  and acti-
vation energies Ei and in the case of improved model B 
parameters are estimated based on experimental data 
[13]. In Eq. (6) the exponential B parameter represents the 
concentration dependencies of the transport coefficients. 
Nonlinear estimation is applied by determining a regres-
sion custom loss function (Eq. (7)) in STATISTICA® pro-
gram environment. The model verification can be taken 
with objective function (OF), which is minimized the dif-
ference of the measured and the modelled values.

OF J J Ji measured i elled i measuredi

n
= −( )( )=∑ ,� ,�mod ,�

2

1
 (7)

Further membranes are investigated for parame-
ter estimation: Sulzer PERVAP™ 1060 and CELFA-
CMG-OG010. The preliminary pervaporation experi-
ments are carried out by Molina et al.  [32] and conditions 
of measurements are described in detail in PhD Thesis of 
Molina [33].

3 Results and discussion
Fig. 3 presents the effect of feed concentration on the per-
vaporation achievement of the PERVAP™ 4060 organo-
philic membranes at different operating temperatures. 
It can be seen that increasing ethanol feed concentra-
tion and operating temperature increase the total fluxes. 
However, increasing the ethanol concentration decreases 
the separation factors. The maximal total flux of  
4.03 kg/(m2h) can be reached at 70°C and at the feed eth-
anol concentration of 18.4 m/m%. Compared with other 
literature results (see Table 1), it can be seen PERVAP™ 
4060 has the highest total flux value and PSI and it fol-
lows the tendency of the total flux. Studying Table 1, it 
can be determined the maximum separator factor of 8.1 
is also a high value. Furthermore, selectivity follows the 
trend of the separator factor.

It can be stated at higher ethanol concentration the sep-
aration effectiveness of the organophilic pervaporation 
membranes are decreased, similar tendency have been 
already published by Slater et al. [25], Lazarova et al. [27], 
Vane [34], Chai et al. [35] and Fu et al. [36].

Table 2, Table 3 and Table 4 summarize the estimated 
values of transport coefficients, activation energies, expo-
nential parameters and minimized objective functions of 
the two models.

Comparison of the measured and calculated partial 
fluxes are presented in Fig. 4, Fig. 5 and Fig. 6.

Fig. 4, Fig. 5, Fig. 6 and Table 2, Table 3, Table 4 show 
that Model II is much more applicable for description of 
organophilic pervaporation than Model I, because the 
basic model presumes constant Di . Many authors have 

Fig. 2 Flowsheet of CM-Celfa P-28 Membrantechnik AG apparatus in 
PV mode [13, 28]
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Fig. 3 Pervaporation performance as a function of feed concentration at different operating temperatures for PERVAP™ 4060 membrane 
(50°C:  ; 60°C:  ; 70°C: )

Table 2 Estimated parameters and minimized objective functions for ethanol–water mixture in the case of PERVAP™ 4060

PERVAP™ 4060
Model I Model II

Water EtOH Water EtOH

Di [kmol/m2h] 0.015 0.076 0.026 0.077

Ei [kJ/kmol] 31386 33082 31363 33090

B [-] -0.73 -0.04

OF [-] 0.0038 0.1580 0.0001 0.1610

Table 3 Estimated parameters and minimized objective functions for ethanol–water mixture in the case of PERVAP™ 1060

PERVAP™ 1060
Model I Model II

Water EtOH Water EtOH

Di [kmol/m2h] 0.003 0.045 0.006 0.072

Ei [kJ/kmol] 62806 33283 62801 35892

B [-] -0.77 -10.60

OF [-] 0.0088 1.1475 0.0020 0.1109

Table 4 Estimated parameters and minimized objective functions for ethanol–water mixture in the case of CELFA-CMG-OG010

CELFA-CMG-OG010
Model I Model II

Water EtOH Water EtOH

Di [kmol/m2h] 0.003 0.024 0.006 0.038

Ei [kJ/kmol] 63017 46412 63019 47534

B [-] -0.77 -9.14

OF [-] 0.0089 0.9359 0.0020 0.2027
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Fig. 4 Measured partial fluxes ( ) of water and ethanol compared to fluxes calculated with Model I ( ) and Model II ( ) in a function 
of feed ethanol content in molar fraction with PERVAP™ 4060 organophilic membrane

suggested an exponential relationship between feed con-
centration and diffusion coefficient [1, 13, 37, 38] and our 
investigations can be also confirmed that the dependency 
of Di  between concentration in this organophilic case.

4 Conclusions
The flux of the investigated Sulzer PERVAP 4060 mem-
brane is found to vary from 0.22 to 4.03 kg/(m2h) over the 
feed ethanol concentration range of 1.0–20.0 m/m% at 
50–70. The highest PSI of 19.3 kg/(m2h) and it is measured 
with flat sheet, benchmarked PDMS membrane. The sep-
aration factor is reached between 5.4 and 8.1. The figures 

show that the tendency of separation factor and selectivity 
are similar, which is in agreement with former researches.

Semi-empirical model is applied, where parameter 
estimation from laboratory experiments are required to 
determine the parameters of the pervaporation model. 
Thereafter, the verification of the determined parameters 
is carried out by comparing the modelled and measured 
data. The results of parameter estimation and modelling 
of the organophilic pervaporation show that the model of 
Valentinyi et al. [1] (Model II) is able to the modelling 
of pervaporation and also results in a better fit to the 
experimental data.
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Fig. 5 Measured partial fluxes ( ) of water and ethanol compared to fluxes calculated with Model I ( ) and Model II ( ) in a function 
of feed ethanol content in molar fraction with PERVAP™ 1060 organophilic membrane
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Nomenclature
A Membrane transfer area [m2]
B Constant in Model II [−]
Di  Transport coefficient of component i [kmol / (m2 h)]
F Feed
i Component number
j Component number
Jtotal Total flux [kg / (m2 h)]
Ji Partial flux [kg / (m2 h)]
P Permeate
pi0 Pure  component vapour pressure [bar]
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pi1 Partial pressure of component i on the liquid 
phase membrane side [bar]

pi3 Partial pressure of component i on the vapor 
phase membrane side [bar]

p3 Pressure on the permeate side [bar]
Pi / δ Permeance of component i [kg / (m2 h bar)]
R Retentate
s support
t Time [h]
T Temperature [°C]
xi1 Concentration of component i in the feed [m / m%]

Abbreviations
CA Cellulose acetate
copol. copolymer
EtOH Ethanol
OF Objective function
org organophilic
PA Polyamide
PDMS Polydimethylsiloxane
PS Phosphatidylserine
PSI Pervaporation Separation Index [kg / (m2 h)]
PTFE Polytetrafluoroethylene
PV Pervaporation
PVDF Polyvinylidene fluoride

Fig. 6 Measured partial fluxes ( ) of water and ethanol compared to fluxes calculated with Model I ( ) and Model II ( ) in a function 
of feed ethanol content in molar fraction with CELFA-CMG-OG010 organophilic membrane
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