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Abstract

This study focuses on the computational implementation of structured non-uniform finite volume method for the 2-D laminar flow of 

viscoelastic fluid past a square section of cylinder in a confined channel with a blockage ratio 1/4 for Re = 10-4, 5, 10 and 20. Oldroyd-B 

model (constant viscosity with elasticity) and the PTT model (shear-thinning with elasticity) are the constitutive models considered. 

In this study effects of the elasticity and inertia on the drag coefficients and stress fields around the square cylinder are obtained 

and discussed in detail. With an increase elasticity, drag coefficients get smaller due to stronger shear thinning effects for PTT fluid, 

however, the drag coefficients show slightly enhancement for the Oldroyd-B fluid.
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1 Introduction
Numerical analysis of flow past the obstacles has received 
considerable attention for a long time [1-5]. Fluids around 
obstacles is encountered in many industrial applications such 
as shell and tube heat exchangers, coating processes, cool-
ing towers, extruders and membrane processes. The bulk of 
the literature of fluid flow studies relate to flow over circu-
lar cylinders, followed by square, elliptic and rectangular 
cylinders or obstacles [6-8]. Indeed, even for the simplest 
shape of a circular cylinder which is free from geometri-
cal singularities [7], the flow exhibits a rich variety of phe-
nomena depending upon the nature of the mainstream flow 
(type of fluid Newtonian or non-Newtonian), blockage ratio 
of the cylinder (length to diameter ratio) and the character-
istic Reynolds number of the flow. The behavior of a fluid 
flow past a square cylinder often has many complex phe-
nomena such as flow separation, vortex shedding, recircu-
lation length of wake flow (the flow path behind the square 
cylinder), distribution of the shear and normal profile around 
the solid surfaces of the square cylinder and, drag and lift 
force coefficients [9-12]. Majority of these studies in the lit-
erature deal with flow of a Newtonian fluid around a circular 

obstacle and to a smaller extend, around a square obstacle. 
For example Breuer et al. [9] examined laminar Newtonian 
flow around a square cylinder in a 2D channel using two 
different computational techniques, finite volume and lat-
tice-Boltzmann automata. Their blockage ratio B, defined 
as the ratio between the obstacle dimension and channel 
height, was 1/8. They compared the results of the techniques 
in terms of velocity field, drag coefficient, Cd, recirculation 
length and Strouhal number. They observed an excellent 
agreement between the results of the techniques. A numeri-
cal study to investigate Newtonian flow past a square cylin-
der for Reynolds numbers Re ≤ 40 was conducted by Sen et 
al. [10] using a stabilized finite-element formulation with a 
non-uniform structured mesh. In order to mimic an uncon-
fined flow, a small blockage ratio, B = 1/100, was employed. 
For comparison purposes they also used cylinders of ellip-
tical and circular cross-sections. They investigated impact 
of Re on the flow separation angle and Cd. They found that, 
flow separation over the square cylinder occurs at a smaller 
Re compared to the other cylinders giving rise to the high-
est Cd among the investigated obstacles. The flow structures 
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and wake flow characteristics, vortex shedding behavior 
of behind square cylinder at high Reynolds numbers were 
experimentally studied using particle image velocime-
try (PIV) with different blockage ratios by Saha et al. [11]. 
They employed the two-dimensions flow past a stationary 
square cylinder at zero incidence for Reynolds number, 
Re  150 using a stabilized finite-element formulations. 
They also compared with a circular cylinder that the flow 
separated at a much lower Re from a square cylinder leading 
to the formation of a bigger wake. Consequently, at a given 
Re, the drag on a square cylinder was higher more than that 
on drag of a circular cylinder.

In spite of their important industrial implications, num-
ber of studies involving non-Newtonian fluids around 
enclosed obstacles is much smaller than those on Newtonian 
fluids in the literature. For example in their computational 
study Dhiman et al. [12] employed finite volume technique 
to investigate 2D flow of power-law fluids around a con-
fined square cylinder. The fluids had index values between 
0.5 ≤ n ≤ 2.0. Their results revealed that the effects of Re 
and B on the size of the recirculation zone and on Cd were 
stronger than that of the power-law index.

Rao et al. [13] extended the results on momentum and 
heat transfer characteristics to highly shear thinning flu-
ids, especially n ≤ 0.5 at low Reynolds number. Fluid ele-
ments followed the contour of the square cylinder and flow 
remained attached to the surface. These works reveal that 
shear-thinning behavior increases both Cd and the rate of 
convective heat transfer from the square cylinder surface. 
Shear thinning behavior not only delays the formation of 
a visible wake but the resulting wake is also somewhat 
shorter than that of Newtonian fluid case. The shear thick-
ening, on the other hand, has exactly the opposite influ-
ence on wake formation.

In the case of non-Newtonian fluid flow around con-
fined obstacles, the literature is dominated by the stud-
ies with generalized Newtonian model to capture shear 
thinning or thickening effects. On the other hand, inves-
tigating the effects of viscoelasticity on the hydrodynam-
ics of the flow around the obstacles has potentially crucial 
implications on many industrial applications. Therefore 
the authors believe that, the absence of viscoelastic flows 
around various obstacles in the literature merits a study 
on the hydrodynamics of such industrially important flows 
to reveal both microscopic and macroscopic flow charac-
teristics. Hence, the objective of the present study is to 
investigate flow of a viscoelastic fluid, a linear PTT fluid 
and Oldroyd-B fluid, around a confined square obstacle 

computationally. Finite volume method is employed to 
solve coupled equations of continuity, motion and con-
stitutive model along with appropriate boundary condi-
tions. Effects of inertia in terms of Re, elasticity in terms 
of Weissenberg number, We, and constitutive equation 
parameters on the recirculation length, drag and on the 
flow field in terms of stress and velocity fields are exam-
ined and presented in detail.

2 Numerical Method 
In this study isothermal flow of a viscoelastic fluid over a 
2D confined square cylinder is considered. The flow sys-
tem is schematically depicted in Fig. 1. The ratio between 
heights of the square and the channel, referred to as the 
blockage ratio, is 1/4 (b/H = 1/4). In the computations the 
upstream region length is set as 1/6 of the total channel 
length, L to ensure fully developed flow region. The ratio 
between channel length and height was set as L/H = 30.

The formulation of the flow begins by considering basic 
equations of fluid flow, i.e. continuity and momentum 
equations given below.

∇ =.u 0  (1)

ρ ρ τ βη
∂
∂
+ ∇ = −∇ +∇ + ∇

u
t

u u p u. .
0

2  (2)

where u is the velocity, p is the pressure, η0 is the total 
viscosity and τ represents the polymer or non-Newtonian 
contribution to the deviatoric stress tensor. The constant 
β is the ratio between the solvent viscosity and the total 
viscosity (β = ηs / η0). A viscoelastic constitutive model 
provides the additional relation needed to solve the con-
servation equations.  In this study, Linear PTT model 
[14, 16, 17] and Oldroyd-B model [14, 15, 17] given by 
Eqs. (3)-(5) are employed. Linear PTT model captures 
both shear thinning and normal stress effects in the flow. 
The PTT fluid model generally refers to a nonlinear visco-
elastic equation derived by Phan-Thien and Tanner using 
the network theory. Unlike other non-Newtonian fluids, a 
distinctive advantage of PTT model is the inclusion of an 

Fig. 1 Schematic of 2D flow around a square cylinder
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extensional parameter, (ε). The extensional parameter is 
considered ε ≥ 0, as a constant. The extensional parame-
ter imposes an upper bound on the extensional viscosity 
which is inversely proportional to ε [16, 17]. It is worth 
mentioning that ε = 0.25 in the PTT model correspond to 
the flow behavior of extremities for concentrated polymer 
melts polymer solutions [17].

The linear PTT model [14, 16]:

λ τ τ τ η

λ τ τ

∂
∂
+∇




+ ( ) = ∇ +∇( )

+ ∇ +∇( )
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u f Tr u u
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T

T

. � �

. .
 (3)

f tr tr
s
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τ( )( ) = + ( )1 .  (4)

The Oldroyd-B model [15, 16]:

λ τ τ η λ τ τ
∂
∂
+∇




+ = ∇ +∇ + ∇ +∇

u
t
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where ƞp is the zero shear rate viscosity for viscoelastic flow 
contribution and τ is the extra stress tensor, λ1, is the relax-
ation time of flow. Total viscosity, ƞ0, ƞ0 = ƞP + ƞS, is the sum 
of the viscoelastic flow contribution viscosity and solvent or 
Newtonian flow contribution viscosity parts. The Reynolds 
number (Re) and Weissenberg number (We) which is defined 
as the ratio of characteristic fluid relaxation time to charac-
teristic time scale in the flow are given through:

Re =
ρ
η
UH

0

We U
H

=
λ
1

.

Where H and U are the characteristic length and veloc-
ity in the flow, respectively.

A finite volume method [18-20] with non-uniform stag-
gered grid is used to obtain discrete form of the flow equa-
tions. Second order central difference scheme is used for 
the approximation of the diffusion terms in the momen-
tum equations. Convective terms in the constitutive equa-
tions are approximated by at least second-order accu-
rate, bounded and non-uniform version of CUBISTA [21] 
scheme. This scheme is preferred due to its documented 
advantages on the higher order schemes when viscoelastic 
fluids are considered [22].

The implementation of the CUBISTA scheme is car-
ried out via deferred correction method that was proposed 
by Rubin and Khosla [23], Hayase et al. [24]. The method 
is widely used to ensure stability of the higher-order 

schemes for the evaluation of the variables at the faces of 
the control volumes. Mathematically this technique may 
be stated as;

φ φ φ φf LO HO LO= + −( )0  (6)

where ϕf is flow property (u, v, p, τxx, τyy, τxy ), the first term 
in Eq. (6) is the result from the low order (LO) scheme, 
and is used to evaluate the coefficient of the discretized 
equation. The other term is obtained at the previous itera-
tion. Upwind Differencing Scheme (UDS) is used to han-
dle the first term in Eq. (6). High order (HO) results are 
also obtained using Eq. (7). The purpose of the convec-
tion scheme use is then to specify the values of ϕf at the 
face of the control volume, based on existing values at the 
neighbouring cell centres, ϕc (ϕP). The detailed numerical 
computations were given in the study of Tezel (2016). [25]
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The final form of the two dimensional discretized gov-
erning equations over a control volume can be expressed 
symbolically as follows using finite volume method:

A A A A A bP i j E i j W i j N i j S i jφ φ φ φ φ
, , , , ,

.= + + + ++ − + −1 1 1 1  (8)

Where ϕi,j reprensents ith and jth component of ϕ in con-
trol volume. The coefficients are also approximated by the 
upwind differencing scheme. Gradients of velocities in the 
source terms of the constitutive equations are computed by 
central differences at interior points of the domain. However, 
at the flow boundaries they are calculated by approximating 
velocity profiles in the form of polynomial functions [24].

The SIMPLE [26] method is employed to handle the 
coupled system of the continuity, momentum and consti-
tutive equations. The set of linearized algebraic equations 
are then solved by using the Thomas algorithm or the trid-
iagonal matrix algorithm (TDMA). The solution process is 
reiterated until the maximum relative change of flow vari-
ables, Øi,j (u, v, p, τxx, τyy, τxy) is less than a prescribed tol-
erance or residual as:
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Use of correct boundary conditions especially for stress 
components is crucial to capture the physics of the flow. 
Boundary values of stress components are obtained by solv-
ing constitutive equations with the known velocity bound-
ary conditions. The following inlet conditions are imposed 
for x and y-components of the velocity, u and v respectively. 
Corresponding values of stresses are given in Eq. (11).
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No slip boundary conditions are assumed at the sol-
id-fluid interfaces:

u
v
=

=

0

0 .
 (12)

Stress boundary conditions for solid channel walls can 
then be expressed by the following equations:
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At the channel exit Neumann boundary conditions are 
imposed for the flow variables.
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3 Numerical Results and Discussion
A Reynolds number range 10-4 ≤ Re ≤ 20 was investigated 
numerically, where Re is based on the cylinder diameter 
b and the maximum flow velocity umax of the parabolic 
inflow profile as seen in Fig. 1. The following section starts 
with a description of the different flow patterns observed 
with respect to Re and We. The subsequent sections pres-
ent a detailed comparison of the computed results based 
on velocity, pressure and stress profiles at several posi-
tions in the flow field for both of the viscoelastic model. 

Furthermore, the computations are analyzed and com-
pared in terms of drag coefficient.

3.1 Streamlines around the obstacle
We begin presenting the computational results of the flow 
system by the inertial and elasticity effects on the recircula-
tion patterns behind the obstacle depicted in Figs. 2(a) - (d). 
The values of the constitutive model parameters used to 
obtain these results are  ε = 0.25  and  β = 0.2 . Dimensionless 
recirculation length that is also known as the wake region 
is defined by Breuer et al. [9] as the distance between the 
obstacle surface and reattachment point of streamlines to 
form the encapsulated region behind the obstacle. It should 
be noted that at a given Re upper limit of We is determined 
by the stability of the computations. The higher the value 
of Re, the lower We that can be attained for stable computa-
tions. For example when Re is set as 20, the maximum value 
of the attainable We is 3 and 6 for PTT and Oldroyd-B fluid 
respectively. Fig. 2 illustrate that increasing fluid elasticity 
or inertia leads to larger recirculation lengths and eventually 
formation of symmetric vortexes as depicted in Fig. 2(c) sim-
ilar to the results reported by Breuer et al. [9]. Larger recir-
culation lengths and observed vortexes can be attributed to 
Hoop stresses getting stronger at increased fluid inertia and 

(a)

(b)

(c)

(d)

Fig. 2 Effect of We on the recirculation length for PTT fluid  
at (a) Re = 0 (b) Re = 5 (c) Re = 10 (d) Re = 20
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elasticity. Hu and Joseph [27] used UCM model, which has 
the same behavior as Oldroyd-B, and reported similar trend 
in the flow around circular cylinder. They also observed 
larger vortices with increasing elasticity.

The flow quantities such as stress and velocity fields 
are determined through the complex interactions between 
inertia, elasticity and shear thinning that gets stronger at 
elevated Re and We. In Figs. 3(a) - (c), viscoelastic fluid 
effects on the recirculation length (Lr) are compared at 
different Re. Oldroyd-B fluid with constant viscosity flow 
has larger wake region size or recirculation length depicted 
in Table 1. Huang and Feng [28] obtained the same wake 
lengths for Oldroyd-B flow around circular cylinder at 
Re = 10 when We is increased zero to one. Also, Lr is 
increased with Re numbers as in Newtonian flow.

Viscoelastic wake behind square obstacle is longer than 
the Newtonian wake (We = 0). Because, the wake formation 
has strong dependence on the structure of the flow and on 
the presence of vortices in the region of highest stress that 
resides downstream of the rear stagnation point of obsta-
cle surface. Therefore, lacking shear thinning property, 
Oldroyd-B fluid leads to higher stresses and larger wake 
field around the obstacle compared to PTT and Newtonian 
flows. Oldroyd-B flow vortex centers also shift upward 
and downward direction with respect to PTT fluid due to 

expanding wake region in Figs. 3(b) and 3(c). This can be 
clearly seen in Table 2. The vortex pair size increases in 
wake region as Re number increases as in Fig. 3(c), when 
vortex intensities increase for both model listed in Table 2.

However, at Re = 10, the magnitude of vorticity becomes 
lower. For low Re number, inertial force gets lower and 
impact of the elasticity on the flow is comparatively 
smaller than at high Re number. So, at Re = 20, the elastic-
ity of polymer molecule is higher for Oldroyd-B than PTT 
flow in Fig. 3(c). So, vortex intensity values in wake region 
(1.3079 < ψ < 1.3179) gets higher at x locations away from 
the obstacle at a constant y = 2.2006 for Oldroyd-B flow at 
Re = 20 as depicted in Table 2. Also, this vortex enhance-
ment may be attributed to large and constant elongational 
viscosity of Oldroyd-B flow. Because, large elongational 
viscosity delays the acceleration of the fluid which results 
in the increase of vortex size.

3.2 Velocity and Pressure profiles around the obstacle
Fig. 4 presents velocity distribution of component, u the flow 
field for Re = 20 with different We numbers along the cen-
ter line. Axial velocity, u, dominates the flow field as com-
pared to vertical velocity, v. At x = 19 that is the position 
prior to the cylinder region, the velocity profiles differ from 
Poiseuille flow. Streamwise velocity, u, has a local minimum 
points for each We numbers. As the We number increases, 
the local minimum velocity decreases as in Fig. 4(b) at x = 19 
for both model. On the other hand, at x = 22, local maximum 

(a)

(b)

(c)

Fig. 3 Viscoelastic fluid effect on the recirculation length  
for (a) Re = 5 (b) Re = 10 (c) Re = 20

Table 1 Variation of recirculation length (Lr) with Reynolds number (Re) 
for different We numbers

Re We Lr of PTT
at (ψ = 0)

Lr of Oldroyd-B
at (ψ = 0)

5

0 20.2132 20.2132

1 21.6133 22.8912

2 21.9957 23.0755

5 23.4713 25.1997

6 23.8912 25.3664

10

0 21.0341 21.0341

1 24.7001 25.1285

2 25.1213 26.4356

3 25.3634 27.3259

4 26.1784 27.8712

5 26.2467 28.0125

20

0 22.3452 22.3452

1 25.7823 26.5648

2 26.1239 27.1547

3 26.8745 28.7645
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velocity increases at elevated We. In the wake region, x = 22, 
u-velocity profiles become highly modified due to the pres-
ence of the obstacle. For both model, flow is nearly indepen-
dent of We number at Re = 20. These results associated with 
the velocity field can be attributed to shear thinning property 
of the fluid that becomes more pronounced at elevated We 
values as shown in Fig. 4(a) for PTT fluid. On the other hand, 
u velocity for Oldroyd-B has more deformation due to more 
elastic behavior and the maximum velocity region shifts (see 
Fig. 4(b)). In other words, the elasticity changes dramatically 
the flow at high We numbers. The streamwise velocity at 
high We is slower to recover the undisturbed bulk velocity 
than low We flows especially in the wake region as seen in 
Figs. 2(a) - (d). Fig. 4(c) shows influence of We on profiles of 
the streamwise velocity component, u, along the centerline 
(y = 2) for PTT fluid. We also compare these results with the 
corresponding numerically computed velocity profiles for a 
Newtonian fluid under at Re = 20 (see Fig. 4(d)). Upstream of 

the cylinder the flow is essentially independent of We along 
the cylinder, in agreement with Figs. 4(c) - (d). For PTT flow, 
required length to achieve the fully developed velocity, 
∂u / ∂x = 0, is nearly the same for all We numbers plotted in 
Figs. 4(a) and 4(c) while fully developed velocity in magni-
tude is lower than Newtonian flow. Axial velocity is shifted 
downstream and thus decreases relative to Newtonian flow 
with increasing We. For Oldroyd-B flow elasticity of the 
fluid also leads to increase in the required length for veloc-
ity recovery as shown in Fig. 4(d).

Fig. 5 shows the pressure variation in the flow. For vis-
coelastic flow case, pressure gradients are generated by 
mainly elastic effects in near front and rear stagnation 
points of the cylinder. Viscoelastic pressure drop values 
are also higher than Newtonian flow case due to increasing 
effect of longitudinal flow as seen in Figs. 5(a) and 5(b). 
Fig. 5(a) depicts pressure profiles for PTT flow. As We 
increases, pressure value increases as shown in Fig. 5(a). 
This result can be attributed to the smaller extensional 
viscosities associated with higher We for a PTT fluid. 
Pressure drop also gets amplified as in Fig. 5(b) due to the 
breaking of the fore-aft symmetry of flow around obstacle 
(see Fig. 4(d)) at higher We for Oldroyd-B.

3.3 Normal and Shear stress profiles around the obstacle
In order to further examine the behavior of viscoelastic 
flows around the obstacle, we plot shear and normal stress 
profiles as in Fig. (6). τxx and τxy variation around the cylin-
der are given along x and y direction of the flow. Both shear 
and normal stresses are zero at the front and the rear stag-
nant points since the velocity gradient (∂u / ∂x = 0) is zero 
at the centerline as in Figs. 6(a) and 6(b). In the case of 
PTT fluid, at Re = 0 and 10, absolute value of normal and 
shear stresses decreases as We increases due to stress 
decaying of flow field as shown in Figs. 6 and 8. Higher 
the We is, stronger the shear thinning effects that lead to 
the lower stress values. As the inertial effects get ampli-
fied, τxx and τxy along the x direction becomes smaller at 
y = 0. Also, shear stress peak is observed at the front stag-
nation point due to sudden change in the boundary condi-
tion (at singularity point) for all We numbers as shown in 
Fig. 8(a). For the Oldrody-B fluid, absolute magnitude of 
stresses increases compared to PTT in the flow field as in 
Figs. 7 and 9. In Fig. 7(a) overshoot in τxy profile occurs at 
We = 15. It may be resulted from u velocity gradient with 
respect to y direction at x = 19. On the other hand, as We 
gets higher, there is an increase in all stress gradients as 
shown in Fig. 7(b). The saturation of normal stresses at 

Table 2 Intensities of the primary eddies and vorticity and 
their locations in the wake region

PTT

We Re ω Ψ x y

5 10 -0.1275 1.3314 21.2222 2.1487

5 10 -0.1462 1.3315 21.2502 2.1487

5 10 -0.1855 1.3317 21.3040 2.1487

5 10 -0.2073 1.3320 21.3405 2.1487

5 10 -0.2284 1.3324 21.3501 2.1487

5 10 -0.2504 1.3329 21.4063 2.1487

3 20 -0.2354 1.3263 21.5527 2.1487

3 20 -0.2620 1.3267 21.6340 2.1487

3 20 -0.2891 1.3276 21.7213 2.1487

3 20 -0.3024 1.3282 21.7673 2.1487

3 20 -0.3154 1.3291 21.8149 2.1487

3 20 -0.3495 1.3322 21.9683 2.1487

Oldroyd

We Re ω Ψ x y

5 10 -0.1281 1.3051 21.5527 2.2006

5 10 -0.1591 1.3068 21.6340 2.2006

5 10 -0.1963 1.3076 21.7212 2.2006

5 10 -0.2172 1.3085 21.7673 2.2006

5 10 -0.2402 1.3104 21.8149 2.2006

5 10 -0.3305 1.3123 21.9683 2.2006

3 20 -0.3884 1.3073 22.2625 2.2006

3 20 -0.3918 1.3086 22.3278 2.2006

3 20 -0.4036 1.3112 22.3954 2.2006

3 20 -0.4095 1.3117 22.4654 2.2006

3 20 -0.4145 1.3157 22.6128 2.2006
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(a) (b)

(c) (d)

Fig. 4 Velocity component, u, profiles for different positions at x = 19 (before cylinder), x = 22 (wake region) and (a) for PTT fluid and  
(b) for Oldroyd-B fluid, at y = 2 (centerline) and (c) for PTT fluid and (d) for Oldroyd-B fluid.

(a) (b)

Fig. 5 Pressure profiles around the cylinder and (a) for PTT fluid and (b) for Oldroyd-B fluid along the centerline.

the obstacle surface was also observed in creeping flow of 
Oldroyd-B fluid around cylinder [29, 30].

At Re = 10, for PTT in the wake region, shear stress 
relaxation occurs in an oscillation manner as in Fig. 8(a). 
However, Oldroyd-B have more absolute shear stresses, 

stress relaxation is more quickly and suddenly owing to 
more flexible behavior of polymer chain, when the stress 
source removed (away from the cylinder), it is returned 
into undeformed case of the flow as in Fig. 9(a). Another 
important flow feature is the response of normal stress 
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(a) (b)

Fig. 6 Shear stress, τxy, and normal stress, τxx, profiles around the obstacle for PTT fluid at Re = 10-4.

behavior along the obstacle surface at x = 20. Normal 
stresses can be considered conceptually due to the ten-
sion of the streamlines of the flow field. Normal stress 
relaxation or distribution occurs between the obstacle 

surface and the channel wall at y = 0. PTT fluid delays τxx 
momentum transfer from the obstacle surface to the chan-
nel wall. Near the obstacle walls, the deformation rate of 
the fluid gets higher that in turn results in decrease in the 

(a) (b)

Fig. 7 Shear stress, τxy, and normal stress, τxx, profiles around the obstacle for Oldroyd-B fluid at Re = 10-4.

(a) (b)

Fig. 8 Shear stress, τxy, and normal stress, τxx, profiles around the obstacle for PTT fluid at Re = 10.
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shear viscosity decreases along with the normal stress. 
For Oldroyd-B fluid, all elastic or normal stresses are 
nearly recovered as suggested by the plots in Fig. 7(b). 
However, as Re increases, elastic stresses reach a max-
imum value (We = 5) at the channel wall as in Fig. 9(b). 
Oldroyd-B flow relaxes quickly elastic stresses at the cen-
ter of the obstacle compared as PTT flow.

3.4 Viscoelastic Drag Phenomena over the 
square cylinder
The corresponding drag coefficient can be splitted into 
three parts. These are drag coefficient due to normal stress 
contribution, drag coefficient due to shear stress contri-
bution, drag coefficient due to pressure drop contribu-
tion [31]. All these contributions are expected to be func-
tions of Re and We numbers and also coupled each other.

In the case of Oldroyd-B fluid, investigation of drag 
coefficients becomes more involved  due to occurrence of 
higher stress gradients than those of PTT fluid. The drag 
increases with We number as tabulated in Table 3.

This increase in drag is associated with a remarkably 
long recirculation region as shown in Table 1. Another 
reason is the formation of Hoop stresses at high We flows 
in the wake region. For PTT fluid, this region is more 
stabilized owing to decaying of stress field. When We 
increases, shear and normal stresses contributions to 
drag coefficient are small due to constant viscosity of 
Oldroyd-B fluid at a given Re. At Re = 5, up to We = 4, 
there is an effective balance between normal stress and 
shear stress drag contribution leading to nearly the same 
drag coefficients. For We = 5 and 6, pressure drop con-
tribution to drag coefficient decreases because pres-
sure magnitude suddenly drops as in Fig. 7(c), while the 

normal stress contribution to drag coefficients gets ampli-
fied. Furthermore, Cd increases slightly with increased 
We at high Re. This behavior of drag can be explained 
by the secondary flow formation resulting from vortex 
pairs in the wake region.

At Re = 20, large deformation is observed in normal 
stress field especially at We = 3. Therefore, normal stress 
contribution to drag coefficient increases from 85 to 108, 
along with stronger pressure contribution as shown in 
Table 3. Also, the rapid change of pressure and the forma-
tion of normal stress boundary layer generates high exten-
sions and shears around the obstacle. For We < 3, negative 
normal stress field around the obstacle has also decreasing 
effect in magnitude of normal stress contribution to drag 

(a) (b)

Fig. 9 Shear stress, τxy, and normal stress, τxx, profiles around the obstacle for Oldroyd-B fluid at Re = 10.

Table 3 Drag coefficients for Oldroyd-B fluid at Re = 5, 10 and 20

We wr
Pressure 

Contribution 
to Cd

Shear Stress 
Contribution 

to Cd

Normal 
Stress 

Contribution 
to Cd

Cd

5

1 21.017 111.277 117.345 133.484

2 19.752 118.123 119.123 134.402

3 18.807 119.860 121.854 134.310

4 17.494 120.037 129.797 134.922

5 12.182 121.342 150.182 132.975

6 11.176 122.959 160.955 139.917

10

1 16.062 105.028 114.612 76.051

2 16.092 107.543 115.453 76.783

3 16.149 109.912 118.582 77.821

4 17.023 110.123 118.591 79.788

5 17.699 114.723 119.400 82.222

20

1 18.595 94.852 83.381 55.013

2 18.909 95.695 85.561 55.943

3 22.642 96.088 108.727 65.767
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coefficient. Table 4 shows drag coefficients variation with 
polymeric viscosity ratio for PTT fluid.

In our governing equations, polymer concentration 
effect is characterized by the polymer viscosity ratio, wr. 
Polymeric concentration affects both the viscosity and 
the relaxation time of polymer molecules in viscoelas-
tic medium. We carry out a few tests for various wr for 
We = 1, 2 and 3 at fixed Re = 20 tabulated in Table 4. 
Although shear and normal stresses contribution to drag 
increase, the variation of Cd is nearly same for the range 
of We. However, pressure drop contribution has slightly 
increased with wr. The higher is the value of wr, the more 
drag enhances for We = 3 case due to increased elastic-
ity effect. As demonstrated in Table 5, at higher wr, drag 
coefficient increases at a constant We. At high We flows, 
further increase of polymer concentration makes no sig-
nificant contribution to drag force around the obstacle 
as shown in Table 5.

4 Conclusions
In this study numerical studies are carried out for steady 
laminar flows of viscoelastic fluids around the confined 
square cylinder to reach physical mechanism of flow 
behavior around the square obstacle. Oldroyd-B model 
(constant viscosity with elasticity) and the PTT model 
(shear thinning with elasticity) are used to capture vis-
coelasticity. Flows are simulated at various Reynolds 
and Weissenberg numbers by utilizing the finite volume 
method. The results obtained in this study allow one to 
draw the following conclusions:

• Increasing fluid elasticity or inertia leads to larger 
recirculation lengths and eventually formation of 
symmetric vortexes as in Fig. 2(d) and Fig. 3(c).

• Strong impact of Re on the highest attainable We was 
observed for stable computations. At higher value of 
Re, upper limit of We should be reduced to get stable 
solutions for PTT and Oldroyd-B model.

• A detail examination of velocity profiles around 
the obstacle of PTT and Oldroyd-B flow reveal that 
streamwise velocity at high We flow delays recover 
undisturbed bulk velocity in the wake region for 
both flow at constant Re number. On the other hand, 
for PTT flow, required length to achieve the fully 
developed is nearly same for Newtonian flow at all 
We. But for Oldroyd-B flow with increased of We, 
elasticity of fluid leads to increase required length to 
achieve the fully developed region in the wake com-
pared to Newtonian flow as in Figs. 4(c) - (d).

• Another important feature is the response of nor-
mal stress behavior along the obstacle surface. 
Normal stress relaxation occurs between obstacle 
surface and the channel wall. PTT fluid delays nor-
mal stress momentum transfer from obstacle sur-
face to the channel wall. As the deformation rate is 
raised, shear viscosity decreases approaching to the 
channel wall and normal stress loss is observed. As 
shown in Figs. 7(b) and 9(b), for Oldroyd-B model, 
all elastic or normal stresses are nearly recovered 
and absorbed by the channel wall. It relaxes quickly 
elastic stresses compared as PTT model.

Table 4 Drag coefficients for PTT fluid at Re = 20 for different 
polymer viscosity ratio

We wr
Pressure 

Contribution 
to Cd

Shear Stress 
Contribution 

to Cd

Normal 
Stress 

Contribution 
to Cd

Cd

1

0.5 21.076 39.264 58.813 51.960

0.6 21.131 34.884 62.087 51.959

0.7 21.290 41.441 73.045 54.030

0.8 21.483 49.076 75.840 55.456

2

0.5 18.727 33.503 47.132 45.517

0.6 18.841 38.548 49.264 46.463

0.7 19.147 44.937 65.063 49.294

0.8 19.704 46.934 71.230 51.224

3

0.5 18.079 29.123 45.342 43.604

0.6 18.342 34.456 55.654 45.695

0.7 18.920 37.342 63.651 47.939

0.8 18.951 39.357 70.370 48.874

Table 5 Drag coefficients for Oldroyd-B fluid at Re = 20 for different 
polymer viscosity ratio

We wr
Pressure 

Contribution 
to Cd

Shear Stress 
Contribution 

to Cd

Normal 
Stress 

Contribution 
to Cd

Cd

1

0.5 16.453 42.234 44.321 41.561

0.6 17.262 43.564 49.124 43.792

0.7 18.231 44.122 51.984 46.072

0.8 18.595 44.852 53.381 47.013

2

0.5 17.231 54.546 54.235 45.340

0.6 17.871 55.167 55.146 46.773

0.7 18.453 55.875 55.456 48.039

0.8 18.909 55.695 55.561 48.943

3

0.5 22.134 56.972 65.123 56.477

0.6 22.345 57.012 66.341 57.025

0.7 22.456 58.981 67.891 57.599

0.8 22.643 59.0887 68.727 58.067
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• Design parameter, drag coefficient, Cd, shows that 
viscoelastic wake behind the square obstacle is lon-
ger than the Newtonian wake. With an increase in We, 
Cd values get smaller due to stronger shear thinning 
effects for PTT fluid, whereas Cd continues slightly 
to enhance for Oldroyd-B fluid. The variation of Cd 
with increased wr is nearly same for the range of We 
numbers for both model. At high We flows, further 
increase of polymer concentration makes no signifi-
cant contribution to Cd around the obstacle.

Nomenclature
Re Reynolds number
We Weissenberg number
ε Extensibility parameter

ηs Solvent viscosity
η0 Total viscosity
β Ratio between solvent viscosity and total 

viscosity
B Blockage ratio
τxx Normal stress
τxy Shear stress
P Pressure
u Horizontal velocity
v Vertical velocity
Cd Drag coefficient
n Power law index
ω Intensity of the primary vortex
ψ Stream function
wr polymer viscosity ratio
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