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Abstract

An efficient and easy-to-perform method was developed for covalent immobilization of lipase from Burkholderia cepacia (Lipase PS) 

on hollow silica microspheres (M540) by bisepoxide activation. For immobilization, various bisepoxides of different length, rigidity and 

hydrophobicity in their linkers were applied to activate the amino groups on the M540 support. Effect of the individual bisepoxides 

on the catalytic performance of the immobilized Lipase PS was studied by using lipase-catalyzed kinetic resolution (KR) of racemic 

1-phenylethanol (rac-1) with vinyl acetate in batch mode. Catalytic activity, enantiomer selectivity, recyclability and thermal stability of 

the new immobilized Lipase PS biocatalysts were investigated. The optimal enzyme / support ratio with the support activated by the 

most efficient bisepoxide, i.e. poly(ethylene glycol) diglycidyl ether (PDE), was 1:5. The most efficient Lipase PS on PDE activated M540 

showed an almost five fold higher biocatalytic activity value (rbatch = 42.8 U/g) with enhanced selectivity (ee(R)-2 = 99.1 %) to the free form 

of Lipase PS (rbatch = 9.0 U/g; ee(R)-2 = 98.9 %). The Lipase PS on PDE-M540 was compared to a commercially available immobilized Lipase 

PS biocatalyst (Lipobond Lipase PS) and also applied in a packed-bed enzyme reactor operated in continuous-flow mode, where the 

optimal temperature of M540-PDE-PS reached the 70 °C, while the optimum for Lipobond Lipase PS was 50 °C.
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1 Introduction
Biocatalysis is becoming increasingly important as an 
efficient and green tool for modern organic synthesis 
[1, 2]. The biocatalytic process cannot be realized without 
enzymes. Enzymes are widely applied, for instance, in the 
fields of chemistry, biochemistry, medicine, or in the phar-
maceutical, food and textile industries [3, 4]. Advantages 
of enzymes as biocatalysts are their high activity, selectiv-
ity, specificity and low toxicity combined with their capa-
bility to being used under mild reaction conditions and a 
limited formation of by-products. Enzymes are biodegrad-
able and usually act under physiological conditions, which 
make them eco-friendly catalysts [5, 6].

In spite of all their advantages of the native enzymes, 
their use as biocatalyst is only rewarding if it is econom-
ically viable. Easy denaturation of their molecular struc-
ture at high temperatures, at acidic or basic pH or in the 
presence of several organic solvents may strictly limit 
their recovered applications. Most often, enzymes are 

mixed with substrate in a dilute solution and may not be 
recovered economically and are generally wasted.

Immobilization of the enzyme can solve their recovery 
and may also improve many other features of the enzyme 
such as stability, activity and selectivity of the enzyme  
[1, 7-16]. What is more, they are reusable, what is econom-
ically more sustainable, and the separation of immobilized 
biocatalyst from the reaction mixture is more easy. Various 
immobilization techniques have been developed, includ-
ing adsorption, covalent binding, entrapment, encapsula-
tion and cross-linking [17-23]. Selection of materials for 
immobilization has an effect on the properties of immo-
bilized enzymes [24-26]. Immobilization of the biocata-
lysts onto solid supports has become a robust and widely 
accepted industrial technique. A very broad variety of 
materials can be used as supports for enzyme immobili-
zation [27]. These materials may be divided into organic 
[28], inorganic [29] and hybrid [30] or composite [31].
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The support should protect the enzyme structure 
against harsh reaction conditions and thus help the immo-
bilized enzyme to retain high catalytic activity. Porous sil-
ica is one of the most frequently used inorganic support 
materials for enzyme immobilization. Its high thermal and 
chemical resistance and good mechanical properties make 
it a suitable material for many practical applications. Due 
to its high surface area and porous structure, silica offers 
good adsorption properties with reduced diffusional lim-
itations and last but not least the possibility of functional-
ization [13, 32].

Thus e.g. covalent bonds can be formed involving het-
erofunctionalized epoxy supports [33-35]. Epoxy func-
tions can react with different nucleophilic groups (such 
as amine, thiol or carboxylate) on the protein surface 
under mild conditions and these advantageous properties 
led to the idea of using bis-epoxides for enzyme immo-
bilization. Thus, poly(ethylene-glycol)-diglycidyl ether 
was applied for binding various oxidases onto a biosen-
sor microelectrode [36]. Glycerol diglycidyl ether was 
used as cross-linking agent for immobilization of lipases 
and phenylalanine ammonia-lyase (PAL) yielding cross-
linked enzyme aggregates (CLEAs) [10]. Later, a method 
was developed for immobilization of Candida antarc-
tica lipase B  (CALB) [37] and ω-transaminase from 
Chromobacterium violaceum (CVTA) [38] on bisepox-
ide activated mesoporous aminoalkyl polymer supports. 
Lipases (EC 3.1.1.3) represent one of the most frequently 
used class of enzymes due to their ability to catalyze a 
wide range of reactions in a mild and selective manner, 
thus they were ideal targets for immobilization studies 
[39-42]. E.g. lipase from Burkholderia cepacia, formerly 
known as Pseudomonas cepacia lipase (Lipase PS), is a 
commercial enzyme in both soluble and immobilized 
forms widely recognized for its thermal resistance and 
tolerance to a large number of solvents and short-chain 
alcohols [43]. The main applications of this lipase are in 
transesterification reactions [44, 45] and in the synthesis 
of drugs. This enzyme is a widely applied for highly enan-
tiomer selective resolution of racemic primary and sec-
ondary alcohols [46-49]. 

Lipases have a mechanism of catalysis that differenti-
ates them from standard esterases and permits that they 
act in interfaces of insoluble drops of substrates: the inter-
facial activation [50, 51]. The active center may be closed 
by a polypeptide chain, which can move giving two dif-
ferent forms of lipases: the open and active form, or the 
closed and many times inactive one [52, 53]. The open 

form of lipases tends to become adsorbed on any hydro-
phobic surface via the huge hydrophobic pocket formed 
by the active center and the internal face of the lid [8, 54]. 
Because of this conformational mobility influencing the 
catalytic activity, the final outcome of the biocatalytic 
properties of immobilized lipases can be influenced by 
various activating agent during the covalent attachment. 

In the present study (Fig. 1), Matspheres 540 (M540) 
a porous hollow silica microsphere support (size of par-
ticles: 10-30 µm, pore size: 15-30 nm) covered with polar 
and non-polar chemical groups on the surface, was stud-
ied as carrier for covalent immobilization of Lipase PS at 
the first time. M540 was especially developed for enzyme 
immobilization and other bioapplications. The physical 
properties (size, pore size) of M540 are different from 
conventional silicas (e.g. Kieselgel 60) as the carrier has 
a smaller size with smaller, shorter channels, which can 
reduce the diffusion limitation for the substrate and prod-
uct. Surface activation of M540 was performed using a 
variety of bisepoxide activating agents to maximize sta-
bility and activity of the enzyme after immobilization. 
Enzyme loading capacity of the activated carrier and 
reusability of the best immobilized biocatalyst were inves-
tigated. Furthermore, to promote the practical applica-
tion of the novel biocatalyst Lipase PS immobilized onto 

Fig. 1 Immobilization of Lipase PS onto surface functionalized M540 
and application of the biocatalyst in kinetic resolution of racemic  

1-phenylethanol in batch and continuous-flow mode
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M540 biocatalysts, effect of temperature on a lipase-cata-
lyzed kinetic resolution (KR) was also studied by using an 
immobilized Lipase PS-filled packed-bed reactor (our best 
immobilized preparation and the commercially available 
Lipobond Lipase PS) operated in continuous- flow mode.

2 Experimental section
2.1 Chemicals and enzymes
Racemic 1-phenylethanol (rac-1), 2-propanol (IPA), GA 
(glutaraldehyde), PDE (poly(tetra ethylene oxide) diglycidyl 
ether), NPE (neopentyl glycol diglycidyl ether), GDE (glyc-
erol diglycidyl ether), CDE (cyclohexanedimethanol diglyc-
idyl ether), HDDE (1,6-hexanediol diglycidyl ether), GTGE 
(glycerol triglycidyl ether), monobasic sodium phosphate, 
disodium phosphate heptahydrate, vinyl acetate, n-hex-
ane, tert-buthyl methyl ether (MTBE), acetone, toluene 
and ethanol were commercial products of Alfa-Aesar 
Europe (Karlsruhe, Germany), Sigma–Aldrich (Saint 
Louis, MO, USA) or Merck (Darmstadt, Germany). 
M540 was the product of Materium Innovations (Granby, 
Canada). M540-PDE, M540-NPE, M540-GDE, M540-
CDE, M540-HDDE and M540-GTGE supports were the 
products of SynBiocat LLC. (Budapest, Hungary). These 
bisepoxide-activated derivatives of the M540 hollow sil-
ica microspheres were prepared according to a previously 
published method [55]. Amano Lipase PS (lipase from 
Burkholderia cepacia, EC 3.1.1.3) for immobilization 
experiments was obtained from Sigma–Aldrich (Saint 
Louis, MO, USA).

2.2 Analytical methods
Gas chromatography (GC) analyses were carried out on 
Agilent 4890 instrument equipped with FID detector and a 
Hydrodex β-6TBDM column (25 m × 0.25 mm × 0.25 µm 
film with heptakis-(2,3-di-O-methyl-6-O-t-butyldimeth-
ylsilyl)-β-cyclodextrin; Macherey & Nagel) using H2 as 
carrier gas (injector: 250 °C, FID detector: 250 °C, head 
pressure: 12 psi, 50:1 split ratio, oven: 120 °C, 8 min).

GC: tR (min) for rac-1: 4.0 [(S)-2], 4.4 [(R)-2], 5.8 [(R)-
1], 6.0 [(S)-1].

To characterize the productivity of the biocatalysts, 
specific reaction rate (or specific biocatalyst activity) in 
batch reactions (rbatch) was calculated using the formula 
rbatch = n(R)-2 / (t × mB) (where n(R)-2 (µmol) is the amount 
of the product, t (min) is the reaction time and mB (g) is 
the mass of the applied biocatalyst). Specific reaction 
rates in continuous-flow systems (rflow) were calculated 
using the formula rflow = ([(R)-2] × v) / mB (where [(R)-2] 

(µmol mL-1) is the molar concentration of the product (R)-2,  
v (mL min-1) is the flow rate and mB (g) is the mass of the 
applied biocatalyst) [56].

2.3 Scanning electron microscopy (SEM)
The structure and morphology of the SNPs were investi-
gated with a JEOL JSM-5500LV scanning electron micro-
scope. Samples were prepared by placing some silica sup-
port on a copper grid coated with carbon and coated with 
gold prior to analysis. Electron beam energy of 20-22 kV 
was used. 

2.4 Preparation of activated supports
Surface activation of M540 was carried out by suspend-
ing 300 mg of support in 16 mL of 2.5 %(v/v) of activat-
ing agent (GA) in phosphate buffer (100 mM, pH 7.5). The 
suspension was kept shaken at room temperature (RT) 
for overnight, followed by washing with phosphate buffer 
(3 × 20 mL, 100 mM, pH 7.5) for glutaraldehyde activated 
supports. The modified support was then dried at RT and 
stored at 4 °C.

2.5 Enzyme immobilization onto activated supports
150 mg of various supports (M540, M540-GA, M540-
PDE, M540-NPE, M540-CDE, M540-GDE, M540-
HDDE and M540-GTGE) were suspended in phosphate 
buffer (15 mL, 100 mM, pH 7.5) containing 2 mg/ml of 
Lipase PS. The suspension was shaken overnight at room 
temperature (RT). After that, the suspension was washed 
three times with phosphate buffer (10 mL, 100 mM, 
pH 7.5) and stored at 4 °C.

2.6 Evaluation of the catalytic properties of Lipase PS 
biocatalysts
Free or immobilized Lipase PS (25 mg) was added to the 
solution of the racemic 1-phenylethanol (rac-1, 48 mg mL-1) 
and vinyl acetate (2.76 equiv.) in n-hexane:MTBE 2:1 (v/v, 
1 mL), and the resulting mixture was shaken at 30 °C in a 
sealed glass vial at 750 rpm.

For GC analyses, samples (25 μL, diluted with ethanol 
[975 µL]) were taken directly from the reaction mixture 
after 0.5, 1, 2, 4 h and analyzed by GC.

2.7 Reuse of Lipase PS biocatalysts
The immobilized biocatalysts (50 mg) was added to the 
solution of 1-phenylethanol (rac-1, 48 mg mL-1) and vinyl 
acetate (2.76 equiv.) in n-hexane:MTBE 2:1 (v/v, 2 mL), and 
the resulting mixture was shaken at 30 °C in a sealed 4 mL 
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glass vial at 750 rpm for 1 h. Samples (25 µL) were taken 
after 1 h and after dilution with ethanol (975 µL) analyzed 
by GC. After one reaction cycle, the Lipase PS prepara-
tions were centrifuged at 3000 rpm at RT and supernatant 
was removed. Then, it was washed with 2-propanol (5 mL), 
phosphate buffer (5 mL, 100 mM, pH 7.5), 2-propanol 
(5 mL) and n-hexane (5 mL). Between each washing step 
immobilized enzymes were centrifuged at 3000 rpm at RT 
and at the end dried at RT. The reactions were repeated 
with each biocatalyst in 5 cycles under identical conditions 
(keeping the proportion of the components constant).

2.8 Continuous-flow kinetic resolution of racemic 
1-phenylethanol (rac-1) with immobilized Lipase PS 
biocatalysts
Continuous-flow kinetic resolutions were performed in a 
laboratory scale flow reactor, which comprised an HPLC 
pump (Knauer, Azura 4.1S), a packed-bed CatCart™ col-
umn (stainless steel, inner diameter: 4 mm; total length: 
70 mm; packed length: 65 mm; inner volume: 0.816 mL) 
filled with immobilized Lipase PS biocatalyst (filling 
weights: M540-PDE-PS: 291.2 mg (30-60 °C), 282.0 mg 
(70 °C), 285.6 mg (80 °C), 255.7 mg (90 °C) and 260.4 mg 
(100 °C); for Lipobond PS, 302.8 mg (30-60 °C), 310.3 mg 
(70 °C), 308.6 mg (80 °C), 326.4 mg (90 °C) and 319.9 mg 
(100 °C)) placed into an in-house made multicolumn ther-
mostated aluminum metal block holder with precise tem-
perature control (Lauda, Alpha RA8).

The solution of rac-1 (0.398 M. i.e. 48 mg mL-1) and 
vinyl acetate (2.76 equiv.) in dry toluene was pumped 
through the column filled with immobilized Lipase PS 
thermostated to various temperatures (30–100 °C in 10 °C 
steps) at a flow rate of 0.30 mL min-1. At each temperature 
samples were analyzed by GC at every 10 min up to 40 min 
after the start of the experiment. After a stationary opera-
tion was established (40 min after the start of the experi-
ment) samples (25 µL) were collected, diluted with ethanol 
to 1 mL and analyzed as described in Section 2.2. After a 
series of experiments, columns were washed with toluene 
(0.5 mL min-1, 30 min) and stored in refrigerator (4 °C).

3 Results and discussion
In the first set of experiments, six bisepoxides with 
linkers of different lengths, rigidity and hydrophobicity 
were selected for surface modification of M540 a support 
material with good adsorption properties. As reference, 
untreated M540 was used for comparison with adsorption 
immobilization of Lipase PS [48, 57]. M540 activated with 

glutaraldehyde (M540‑GA) was also included for further 
comparison with covalent binding. After pre-activation, 
immobilization of Lipase PS was carried out from the 
commercially available enzyme powder. 

Activity and selectivity of the immobilized biocatalysts 
were compared with the free enzyme powder by means of 
the enantiomer selective acylation of racemic 1-phenyleth-
anol (rac-1) (Fig. 1). The reaction was characterized by the 
specific reaction rate (rbatch ), conversion of the substrate (c), 
and enantiomeric excess of the product (ee(R)-2 ) (Table 1) [56].

As it can be gleaned from Table 1, the unmodified 
form of Lipase PS powder exhibited high activity (rbatch = 
9.0  U/g) and selectivity (ee(R)-2 = 98.9 %). In the present 
study, our objective was to improve these properties by 
means of various modes of immobilization. Our experi-
ments provided the following findings:

1.	 Immobilization by adsorption onto unmodified 
porous hollow silica microspheres (M540) with 
vinyl and amino functional groups on their surface 
resulted in high adsorption efficiency of the enzyme 
to the support (M540-PS).

2.	 Amino groups of M540 were activated using bifunc-
tional compounds to fix the enzyme by means of sta-
ble covalent bonds. Glutaraldehyde (GA) the most 
often used amino-group activator, is very effective 
but also expensive and being a strong disinfectant 
is toxic and irritant. By using bisepoxides as amino 
group activators the drawbacks of GA can be avoided.

The epoxide functions of the activating agent can form 
covalent bonds under mild conditions not only with the 
amine functions of lysine exposed on the surface (see 

Fig. 2 Secondary structure of Lipase PS with surface exposed lysines 
adopted from [48]
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Fig. 2), but also with thiol and carboxylate groups [19].
Thus, covalent bond formation ability of the epoxy-ac-

tivated supports can be higher than those activated with 
the glutaraldehyde. This can explain the higher activity 
of Lipase PS immobilized onto the bisepoxide-activated 
supports as compared to those related with glutaralde-
hyde (Table 1).

We found that out of the six activating agents applied, 
the one treated with the poly(ethylene glycol) diglycidyl 
ether (PDE) bisepoxide improved best the catalytic proper-
ties of the immobilized Lipase PS. PDE being a bisepoxide 
with a long and flexible linker is capable to fix the enzyme 
via multipoint attachment in the proper orientation. In fact, 
compared to the free enzyme (rbatch = 9.0 U/g and ee(R)-2 = 
98.9 %) the biocatalyst M540-PDE-PS showed both 
improved selectivity (ee(R)-2 = 99.1 %) and activity (rbatch = 
42.8 U/g). In previous study, the bioimprinting effect of 
different additives on biocatalytic properties was investi-
gated during immobilization of Lipase PS by adsorption. 
The most active preparation was the adsorbed Lipase PS 
/ PEG 20k biocatalyst, which had an enzyme activity of 
rbatch = 20.5 U/g and ee(R)-2 of 99.0 in acylation of rac-1a 
after 4 h reaction time. Furthermore, a mesoporous silica 
gel (Dv250) grafted with (3-aminopropyl)trimethoxysi-
lane (APTMOS) and phenyltrimethoxysilane (PTMOS) at 
1:3 ratio was selected as carrier to perform the adsorption 
and covalent immobilization of Lipase PS in the presence 
of seven different additives using GDE as cross-linking 
agent. The results of GDE cross-linking after adsorption 
of Lipase PS without additives were discouraging because 
the resulted preparations exhibited almost no activity in 
KRs of rac-1a (only 0.3 % conversion after 24 h). The best 

results were achieved with PVA 18–88 (c = 14.0 % after 24 
h) [27]. The good results with PDE activated support may 
be rationalized by envisaging the spatial disposition of 
the surface exposed lysine residues in the open confor-
mation of Lipase PS (Fig. 2). The structure shown in Fig. 
2 clearly indicates that the majority of the lysine residues 
(four out of seven) exposed on the surface are close to the 
lid domains modulating accessibility of the active site. 
Thus, anchoring the enzyme involving these residues may 
obstruct - at least partially - the entrance to the active site 
leading to inactive forms of the biocatalyst. This effect 
can be reduced or even eliminated by using a longer and 
flexible bifunctional linker. When the length of the linker 
region of the applied bisepoxide was shortened, activity 
of Lipase PS fixed to the bisepoxide-activated M540 car-
rier decreased. Glycerol triglycidyl ether (GTGE) is a tri-
sepoxide with ability to form simultaneously bounds with 
three amino groups generating thereby three attachment 
points. Note, however that this feature does not necessar-
ily guarantee that a carrier activated in this way is superior 
to those activated with bisepoxides. Among the covalently 
bound forms the support activated with GA (coded M540-
GA-PS) offered a Lipase PS biocatalyst of lowest activity 
(rbatch = 3.5 U/g) and selectivity (ee(R)-2 = 94.8 %). This form 
proved to be inferior even to the absorbed form (Table 1).

3.1 Enzyme loading capacity of the M540-PDE support
When enzymes are immobilized on a surface, the biolog-
ical activity of the protein depends on how "crowded" the 
surface is. Initially, specific activity of the immobilized 
biocatalyst increases as more and more enzyme mole-
cules are fixed onto the surface. After reaching an opti-
mum, the activity starts decline with increasing enzyme 
density. Accordingly, for maximizing enzyme loadings, a 
large surface area is advantageous. Porous silica materials 
allow high loading density with only slight limitation of 
mass transfer [58]. 

As the best support for Lipase PS proved to be M540-
PDE, therefore it was this support, which was selected for 
detailed study on enzyme loading capacity. At optimum, 
the highest biocatalytic activity can be achieved with the 
lowest amount of the valuable enzyme. To optimize enzyme 
loading in the course of immobilization of Lipase PS on 
M540-PDE, different enzyme / M540-PDE ratios were 
examined. To 50 mg of M540-PDE, successively increas-
ing amounts of Lipase PS (from 1 to 15 mg) were added 
(Fig. 3). Immobilization yield (YI) was also determined 
according to the equation YI = ([P]0 - [P]) / [P]0* 100 [%] 

Table 1 Catalytic properties of the free and immobilized Lipase PS in 
kinetic resolution of rac-1 after 1 h reaction time

Sample c
[%]

ee(R)-2
[%]

rbatch 
[Unit/g]

Free Lipase PS 13.0 ± 0.51 98.9 ± < 0.1 9.0 ± 1.07

M540-PS 5.7 ± 0.27 98.5 ± < 0.1 3.9 ± 0.56

M540-GA-PS 1.5 ± 0.68 94.8 ± 2.3 3.5 ± 1.42

M540-PDE-PS 20.3 ± 1.04 99.1 ± < 0.1 42.8 ± 2.18

M540-NPE-PS 5.5 ± 1.11 98.7 ± < 0.1 12.5 ± 2.33

M540-GDE-PS 6.1 ± 0.29 98.6 ± < 0.1 14.0 ± 0.60

M540-CDE-PS 11.4 ± 0.50 98.6 ± < 0.1 26.1 ± 1.05

M540-HDDE-PS 15.8 ± 1.17 99.1 ± < 0.1 36.3 ± 2.45

M540-GTGE-PS 2.6 ± 0.75 97.4 ± 1.2 5.9 ± 1.57

Reaction conditions: 25 mg free or immobilized Lipase PS biocatalyst, 
1 mL n-hexane/MTBE 2/1, rac-1 (0.398 M. i.e. 48 mg mL-1) and vinyl 
acetate (2.76 equiv.). 
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by using Bradford assay to determine the protein concen-
tration of the supernatant before the immobilization [P]0 
and after the immobilization [P] [59]. In all cases the YI 
was 100 %, which shows the high adsorption efficiency of 
amino and vinyl functionalized M540 (data not shown). 
Next to YI catalytic properties of the formed biocatalysts 
were tested in kinetic resolution of racemic 1-phenyletha-
nol using vinyl acetate as acylating agents. As Fig. 3 shows 
specific activity of the immobilized biocatalyst increased 
with increasing amount of Lipase PS up to 10 mg, beyond 
this value enzyme activity remained constant. As the YI 
was constant at all concentrations, in further experiments 
the optimal enzyme loading i.e. Lipase PS/M540-PDE 1/5 
was used. In an immobilized enzyme, there are several 
possible effects of enzyme crowding. The crowding may 
reduce enzyme mobility because the chain of one enzyme 
will crash versus the protein molecules surrounding it, and 
perhaps may increase the enzyme stability [60]. 

3.2 Reusability of Lipase PS biocatalysts 
Mechanical and chemical (operational) stability are among 
the most important features of a biocatalyst. In order to com-
pare their reusability and catalytic stability in a multi-cy-
cle process, Lipase PS biocatalysts (M540-PDE-PS and 
M540-PS) were selected as a model for kinetic resolution 
(KR) of rac-1 (Fig. 4). After each cycle, the Lipase PS bio-
catalysts were washed (see Section 2.6) and reused in 5 
repetitive reaction cycles. Usually, it is considered that an 
enzyme can be reused until its activity drops to less than 
25 % of its initial value [47]. Fig. 4 shows the retained rel-
ative specific activities of the tested biocatalysts related to 
their initial specific biocatalyst activity as 100 %.

Our covalently fixed M540-PDE-PS biocatalyst 
proved to be remarkably durable in the recycling tests, 
retaining after 5 cycles over 60 % of its initial activity 

(rbatch = 61.3 U/g) (Fig. 4). The adsorptively-fixed M540-PS 
preparation was less durable (< 20 % residual activity 
after 5 cycles), supposedly due to the weaker interaction 
between enzyme and support. M540-PS is a prepara-
tion made by adsorption, thus enzyme leaking can occur 
during the washing steps, which can lead to reduced 
enzyme activity. These results show stronger interaction 
of the enzyme with the support activated with PDE, but 
maybe incorrect elimination of the remaining compounds 
during the washing steps, which led to almost 40 % activ-
ity decrease after 5 cycles [61].

Morphology of the M540-PDE-PS was investigated 
by scanning electron microscopy (SEM) before use 
and after the recycling (Fig. 5). SEM investigations of  
M540-PDE-PS before its use in biotransformations shows 
intact morphology of spherical beads with diameters 
10–50 µm (Fig. 5A), and an absence of mechanical damage 
caused by the bisepoxide activation and enzyme immobi-
lization steps. The preparation demonstrated mechanical 
stability and durability as it remained intact after 5 cycles 
of KR experiments in batch mode (Fig. 5B). 

3.3 Comparison of the productivity and selectivity of 
Lipase PS biocatalysts in continuous-flow mode kinetic 
resolution of rac-1 at different temperatures
Catalytic performance of our best Lipase PS biocata-
lyst (M540-PDE-PS) was compared to the commercially 
available Lipobond Lipase PS, which is a lipase from 
Burkholderia cepacia covalently immobilized on acrylic 
/ polystyrene resin (150–700 µm). A lab scale reactor sys-
tem equipped with packed-bed stainless steel columns 
(CatCart™) was used, enabling precise temperature and 
flow rate control.

The two Lipase PS biocatalysts were packed into col-
umns and used for KR of rac-1 with vinyl acetate as 

Fig. 3 Enzyme loading capacity of PDE activated M540 (tested with 
kinetic resolution of rac-1; reaction time: 1 h).

Fig. 4 Reusability of the immobilized Lipase PS biocatalysts in kinetic 
resolution of rac-1 (reaction time: 1 h). ¢: M540-PDE-PS; ¢: M540-PS



420|Nagy et al.
Period. Polytech. Chem. Eng., 63(3), pp. 414–424, 2019

acylating agent in toluene, while raising the temperature 
from 30 to 100 °C in increments of 10 °C at a constant 
flow rate of 0.30 mL min−1. Productivity (rflow) and enan-
tiomeric excess (ee(R)-2) values of the product were plotted 
as a function of temperature (Fig. 6). The stability of the 
two preparations depend on the immobilization strategy 
[62-64]. In the case of Lipobond Lipase PS, the specific 
reaction rate increased significantly up to 50 °C, being 
the optimal temperature (rflow = 157.4 U/g) for this biocat-
alyst. Specific reaction rate of M540-PDE-PS was some-
what lower that for Lipobond Lipase PS between 30 and 
60 °C, but increasing productivity could be observed up to 
70 °C, where M540-PDE-PS had its temperature optimum 
(rflow = 127.3 U/g) and exhibited an almost twofold rflow value 
as Lipobond Lipase PS. At 80 and 90 °C M540-PDE-PS 
proved to be more resistant to the high temperatures, than 
Lipobond Lipase PS. At 100 °C both forms retained only 
about 20 % of their initial activity. During incubation of 
the enzyme at high temperature, internal hydrophobic 
pockets of the enzyme may be on the reversible in the out-
side. If these hydrophobic groups may interact with other 
hydrophobic pockets of other enzymes, the reversibility 
of these conformational movements may be prevented and 
the stability of the enzyme will be decreased [60].

The other crucial feature of enzyme catalyzed reactions 
is stereoselectivity, permitting the production of chiral 
molecules in high enantiopurity. As it is shown in Fig. 6, 
the enantiomeric excess of the product (ee(R)-2) decreased 
with increasing temperature with both immobilized 
Lipase PS preparations over the entire temperature range 
covered, but even at 100 °C the ee(R)-2 values remained 
above 97 %. Also up to 90 °C, however, the ee(R)-2 values 
obtained with M540-PDE-PS were higher than those pro-
duced with Lipobond Lipase PS. It was already demon-
strated that operational stability of immobilized lipases in 
continuous-flow kinetic resolutions at the optimum tem-
perature are quite high and stationary reaction conditions 
could be maintained even for one week period [17, 65, 66]. 

Because the main goal of this study was to demonstrate 
the effect of using difference activating agents and not to 
produce large quantities of the already known product ((R)-
2a), no further attempts were made for their preparative 
production. However, M540-PDE-PS was compared with 
other Lipase PS preparations using different materials. The 
results are shown in Table 2. Compared with other immo-
bilized lipases, Lipase PS-carbon nanotube has a higher 
reaction speed which can be due to the physical adsorption. 
This immobilization method has less effect to the enzyme 
distortion and loss of activity [72]. But owing to the weak 
interaction between enzyme and carrier, enzyme leakage 
may happen during each batch of the reactions which will 
cause pollution to the products. However, covalent bond-
ing used in this study can avoid such problems as we men-
tioned above. Storage stability of the freshly prepared 
M540-PDE-PS was tested after three months of storage at 
4 °C. It showed less than 5 % loss of biocatalytic activity 
with unchanged ee(R)-2 (data not shown).

Fig. 6 Continuous-flow kinetic resolution of rac-1 at different 
temperatures with M540-PDE-PS and Lipobond Lipase PS  

[rflow values of M540-PDE-PS (●) and Lipobond Lipase PS (●),  
ee(R)-2 values of M540-PDE-PS (♦) and Lipobond Lipase PS (♦)]

Fig. 5 Scanning electron microscopy (SEM) analysis of M540-PDE-PS: 
(A) before kinetic resolution of rac-1; (B) after 5 cycles of KRs in batch
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4 Conclusion
Successful covalent immobilization of Lipase PS was 
demonstrated on hollow silica microspheres having polar 
and nonpolar functions on their surface (M540), after acti-
vating with various bisepoxides. Out of the six different 
bisepoxides used as activating agents, poly(ethylene glycol) 
diglycidyl ether (PDE) characterized by a relatively long and 
flexible linker region proved to be the most successful for 
immobilization of Lipase PS at 1/5 enzyme / support ratio 
as optimal loading. Kinetic resolution and reusability stud-
ies based on acetylation of racemic 1-phenylethanol (rac-
1) indicated that bisepoxide-activated M540 carrier pro-
vided a suitable micro-environment for the enzyme during 
catalysis. M540-PDE-PS exhibiting high specific activity 
(rbatch = 42.8 U/g) and enantiomer selectivity (ee(R)-2 = 99.1 %) 
was used in a continuous-flow reactor and compared with a 

commercially available covalently immobilized Lipase PS. 
In thermal stability tests, at lower temperatures (30-60 °C) 
M540-PDE-PS was slightly less active but more selective 
than Lipobond Lipase PS. At higher temperatures (70-
90 °C) M540-PDE-PS showed higher activity and selectiv-
ity than the commercial PS preparation. These results open 
up the possibility to apply this novel form of Lipase PS for 
industrial applications e.g. for biodiesel production.
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Table 2 A comparison between the M540-PDE-PS and the other immobilized lipase from Burkholderia cepacia

Immobilization support c
[%]

ee(R)-2
(%)

Reaction 
time

Specific productivity
(%conversion/min*mg biocatalyst) References

Modified multi-walled carbon nanotube 50 99 10 min 0.050 [67]

Macroporous resin NKA 50 99 30 min 0.017 [68]

Microgel 35.1 98 5 h 0.012 [69]

Zirconia particles 49.9 99.9 48 h 3.47 x 10-4 [70]

Carboxyl-functionalized meso cellular foams 50 99 48 h 1.74 x 10-4 [71]

Lipobond 19.6 99 60 min 0.013 This study

M540-PDE 20.3 99 60 min 0.014 This study
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