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Abstract

This article addresses some recurring difficulties and problems of computing phase equilibria involving supercritical fluid phases. 

These difficulties prevent a full automatization of thermodynamic calculations and require human interference. Examples are the 

wrong interpretation of experimental data, phase inversion phenomena, or overlooking phases. While none of these insights are knew, 

publications dealing with them are scattered and sometimes hard to obtain. This article gives a short overview over some of the most 

common difficulties and pitfalls.
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1 Introduction
While there exist powerful computer programs for the cal-
culation of the thermodynamic properties of fluids, even for 
phase equilibria of mixtures, these programs usually cannot 
regarded as “fool-proof ” in the sense that they will always:

•	 arrive at a physically reasonable set of model param-
eters when fitting a model to experimental data,

•	 and find the correct, stable phases when calculating 
phase equilibria.

All this means that human guidance for such thermo-
dynamic software is—and will be for many years— indis-
pensible. Of course, this insight is not new. But publica-
tions addressing these problems are scattered over several 
decades of literature. This article will, in the limited space 
available here, address some of the most common prob-
lems and pitfalls of phase equilibrium calculations.

2 Solid–fluid equilibria
2.1 Solid compressibility
For a stable two-phase equilibrium it is necessary to have 
equal temperatures, pressures, and chemical potentials for 
each component in the coexisting phases,

′ = ′′ ′ = ′′ ′ = ′′ =T T p p i Ni iµ µ , , , .1 		  (1)

In case of fluid phases, the chemical potentials can be cal-
culated from equations of state. For a (pure) solid phase 
one can assume that (a) the chemical potential is equal 

to the molar Gibbs energy, and (b) that the Gibbs energy 
of solid and vapor are equal at the sublimation pressure. 
Consequently, the chemical potential of a pure solid is
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where the integrand is the molar volume of the solid as a 
function of pressure and temperature. It is advisable not to 
treat this volume as a constant: Many organic compounds 
have solid phases whose compressibilities are compara-
ble to those of liquids. Examples are the so-called plastic 
phases of normal alkanes.

A better approach is to assume that the isothermal com-
pressibility of the solid is constant,
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There exist better equations of state for solids, e.g., the 
Murnaghan equation [1, Section 6.1], but these require 
more experimental input data. Assuming a non-zero com-
pressibility is a minimal requirement for high-pressure 
applications (above ca. 10 MPa), and even a crude esti-
mate is better than none.
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2.2 The (carbon dioxide + caffeine) system
The extraction of drugs, dyes, or flavours from biological 
material by means of supercritical fluids is an established 
technique. An important application is the extraction of 
caffeine from green coffee beans with supercritical carbon 
dioxide. One of the phase equilibria relevant in this con-
text is the solid–fluid equilibrium of the (carbon dioxide 
+ caffeine) system (The real process also involves water). 
Here the thermodynamic modelling is complicated by the 
fact that anhydrous caffeine has two different solid phases. 
Fig. 1 shows the phase diagram.

The prediction of the melting pressure curve was 
attempted with three equations of state, the Peng–
Robinson equation (PR) [2, 3], which is a cubic equation 
of state, the “simplified perturbed-hard-chain” equation 
(SPHCT) [4], a simple non-cubic equation with a more 
realistic hard-sphere term, and the PC-SAFT equation [5]. 
As explained above, the calculation needs the sublima-
tion pressures and the molar volumes of the solid phases. 
It turned out that none of the publications of the subli-
mation pressure curves had spotted the solid–solid tran-
sition. While there was a good agreement between sev-
eral authors on the volume of the high- temperature solid 
phase s1 , there is a surprisingly wide range of values for 
the volume of the low-temperature phase s2 (see Table 1).

The authors of the X-ray studies state that the s2 phase 
of caffeine is polymorphic, i.e., a mixture of different 
crystal structures having almost the same energy [6]. 

From a thermodynamic point of view, however, this 
is rather dubious. Moreover, the crystal volumes of the 
X-ray studies are not compatible with the slope of the s1s2 
transition curve, from which the volume change can be 
obtained via Clapeyron's equation.

The most likely explanation of the crystallographic 
results is that the samples were cooled too rapidly: 
The  s1 → s2 transition takes some time. Indeed, a careful 
pyknometric study gave a different result that is compat-
ible with the value estimated by transitiometry [8]. The 
molar volume from Wikipedia, which also is used in sev-
eral computational studies, is wrong; it is probably the 
molar volume of the liquid phase at the triple point. For a 
detailed discussion of the various experimental results the 
reader is referred to a previous publication [9].

The important insight is that it is not always the most 
sophisticated experimental technique that gives the best 
results, but that the outcome of experiments depends very 
much on the sample preparation.

Fig. 2 shows the complete phase diagram of the (CO2 + 
caffeine) system, calculated with the PR equation (Fig. 2(a)) 
and with the PC-SAFT equation (Fig. 2(b)). The diagram 
contains the vapor pressure curves of the pure fluids (labeled 
"(lg)i", with i = 1 (CO2) or 2 (caffeine)), binary critical curves 
("l = g"), and three-phase curves. The calculations were made 
with the ThermoC software package [11]. It turns out that 
the PR equation yields a phase diagram that is in accordance 
with the experimental data, whereas the PC-SAFT equation 
predicts a rather distorted phase diagram with two quadruple 
points. This, however, is not surprising: The molecular model 
underlying the PC-SAFT equation is a fully flexible chain of 
tangential hard spheres—a reasonable model for polymers, 
but not for the caffeine molecule, which is neither spherical 
nor flexible.

It is not always the most modern equation of state that 
gives the best results. Particularly with theory-based equa-
tions it is advisable to check if the underlying assumptions 
are justified.

Table 1 Molar volumes of the solid phases of anhydrous caffeine.

method Vm

s
cm mol

3 1−

s1 s2

X-ray [7] 126.0 134.2

X-ray [6] 140.11 134.95

pyknometry [8] 133.27 134.999

transitionmetry [9] 132.576 "

Wikipedia [10] 157.88
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Fig. 1 High-pressure phase diagram of pure anhydrous caffeine. 
○: experimental data (transitiometry); : triple points; curves: 

Clapeyron equation (C) or equations of state. The sublimation curves 
are not visible at this scale.
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3 Phase inversion phenomena
Equation (1) is symmetric in the sense that there is no pref-
erence or indication which of the coexisting phases is the 
liquid and which is the vapor (or supercritical fluid). If 
Eq. (1) is solved numerically, it is possible that the computer 
returns the phase compositions in an unexpected order.

In calculations of phase envelopes this problem can be 
minimized by taking small steps of the control variable; 

it can be eliminated by integrating the appropriate differ-
ential equation of the phase equilibrium [12–14]. But gen-
erally it is necessary to inspect and identify the solutions 
offered by the computer.

3.1 Pycnic inversion
How can we identify the liquid phase? A common answer 
is that, if there are two coexisting fluid phases, the liquid is 
the one with the higher molar density. This, however, is not 
always true. Fig. 3 shows a density–composition diagram of 
the (hydrogen + hexane) system at 411 K in which the con-
nodes are indicated. The calculations (again based on the PR 
equation of state) as well as the experimental data [15] indi-
cate that at some point the slopes of the connodes change 
from negative to positive, which means that the vapor phase 
attains a higher molar density than the liquid.

The switching of the molar densities of the coexisting 
fluid phases is called “pycnic inversion”. The phenome-
non is not rare; in fact, it is rather common for so-called 
Class  III mixtures (see Section 4). For more details the 
reader is referred to the work of Quiñones-Cisneros [16].

3.2 Barotropic inversion
It is tempting to assume that the liquid phase is the one 
at the bottom of the vessel, and therefore use the mass 
density (specific gravity) to distinguish vapor and liquid 
phases. This, however, may be erroneous. Fig. 4 shows an 
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Fig. 2 High-pressure phase diagram of the (CO2 + caffeine) system.
+: experimental data (transitiometry), : triple point (caffeine), 

○: pure-fluid critical point, ●: critical endpoint, □: quadruple point;
—: calculated phase equilibrium curves; phase labels: f: fluid, 
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isothermal phase diagram of the (carbon dioxide + hexade-
cane) system at 313 K, which means that the carbon diox-
ide is supercritical.

It turns out that above ca. 14 MPa the CO2-rich fluid 
phase attains a higher mass density than the hexadec-
ane-rich liquid phase. A computer program trying to track 
the phase envelope and using mass densities to iden-
tify phases would be “derailed” here. The phenomenon 
is called “barotropic inversion” or “barotropy”. It typi-
cally occurs in asymmetric mixtures where the volatile 
component has small, but heavy molecules, whereas the 
other component has large, but relatively light molecules. 
Examples are (CO2 + alkane) or (SF6 + alkane) mixtures. 
Natural oil reservoirs can be inverted if their gas phase is 
rich in CO2 and H2S (so-called sour gas). A more thorough 
discussion of barotropy can be found in the literature [16].

Barotropic inversion not only poses a problem to chem-
ical engineers because phases do not flow where they are 
expected in distillation and extraction columns; it can also 
hamper the thermodynamic modelling—even though mass 
usually does not play a role in phase equilibrium calcula-
tions. The reason for this is that barotropic inversion can 
take place in two different ways: Far away from the critical 
point, where the interfacial tension between the coexist-
ing phases are large, the liquid and the supercritical phase 
merely change places. Close to the critical point, however, 
where the interfacial tension is low, the phases may form 

a fog or an emulsion, and as gravitation is not able to sep-
arate the phases, this emulsion can exist for several days.

If an experimental apparatus uses the so-called analytic 
method, i.e., if samples of the coexisting phases are with- 
drawn and analyzed, a barotropic two-phase state may be 
mistaken for a single-phase state. The mismatch and the 
scatter of the high-pressure experimental data in Fig. 4 sug-
gest a problem of this kind. Fitting interaction parameters 
of the equation of state to these data would have resulted in 
grossly distorted phase diagram predictions.

When fitting model parameters to experimental phase 
equilibrium data, it is important to make sure that the 
experiments were not affected by barotropic inversion. 
This may be a problem if the phase equilibrium vessel is 
not equipped with a window, so that the determination of 
the phase state is only based on the measurement of the 
compositions.

3.3 Entropic inversion
In contrast to a common belief, one cannot safely assume 
that the liquid is always the phase with the lower entropy. 
Fig. 6 shows the (total) molar entropy of the coexisting 
phases of the (methane + propane) system at 250 K, com-
puted with the PR equation of state. Evidently, the molar 
entropy of the liquid exceeds that of the vapor for pressures 
above 15 MPa.

The “entropic inversion” phenomenon can easily be 
understood by realizing that the molar entropy consists of 
two contributions—a configurational one, which depends 
on the molar volume, and an intramolecular one, which 
depends on the rotational and vibrational degrees of free-
dom of the molecules. While (in this example) the liquid 
has the smaller molar volume and hence the lower con-
figurational entropy, it contains more propane—and pro-
pane has a higher ideal-gas heat capacity and hence a 
higher intramolecular entropy. With increasing pressure, 
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the molar volume of the gas phase drops rapidly, and so its 
“advantage” of configurational entropy dwindles, until the 
liquid phase “wins” because of its higher propane content.

This renders the molar entropy unreliable as a criterion 
for identifying liquid phases. If a distinction between liquid 
and vapor phases is necessary, the presently best method is 
probably that of Venkatarathnam [19], who uses the sign 
of the temperature derivative of the isothermal compress-
ibility, ∂ ∂( )κT VT m

,  to distinguish between liquid-like and 
vapor- like supercritical phases.

4 Phase diagram classes
4.1 Nomenclature
A computer program designed to calculate two-phase 
vapor–liquid equilibria will not necessarily discover liq-
uid–liquid or gas–gas equilibria, let alone three-phase 
states. The question how one can ensure that all relevant 
equilibria have been found is linked to the classification 
of fluid phase diagrams. A first attempt was made in the 
seminal work of Scott and van Konynenburg [20], who 
studied mixtures described with the van der Waals equa-
tion of state and identified five classes, “I” to “V”. Their 
schematic pT diagrams are shown in the top two rows of 
Fig. 6. Van Konynenburg also added a Class VI to their 
list, because it was known to exist, although it cannot be 
obtained with the van der Waals equation. This was some-
what unfortunate, for Class VI is in fact a set of classes. 
Most of them have been observed experimentally, as has 
been Class VIII.

Fig. 6 contains many more classes, but is far from being a 
complete list of the possible phase diagrams. Unfortunately, 
it is not possible to present the complete history of the phase 
diagram classification in this article; the reader is referred to 
the review of van Konynenburg et al. [21] or to textbooks 
[1, 22] and the literature cited therein.

It is evident, however, that the nomenclature of phase 
diagram classes by van Konynenburg and Scott is not ade-
quate for handling all possible phase diagram classes: It 
does not provide names for some subclasses of VI and VII, 
and class names like III-A** do not really describe the pT 
diagram and are hard to remember. In contrast to this, the 
rational nomenclature of Bolz et al. [23] is easy to apply. It 
starts from the observation that, in a pT phase diagram, it is 
possible to identify paths (“sequences”) consisting of alter-
nating critical curves and three-phase curves llg. The sim-
plest sequence is of course a single critical curve. Then a 
phase diagram class name is constructed as follows:

1.	One starts at the pure-fluid critical point with the 
higher temperature, determines the number of criti-
cal curve segments in the sequence originating at that 
critical point, and indicates the target of the sequence: 
P for the critical point of the other pure component, Z 
for low temperatures and pressures (“zero Kelvin”), 
C for a (hypothetical) compact state, or Q for a qua-
druple state lllg. The rational name of Class I thus is 
1P (a single critical curve connecting the pure-fluid 
critical points), and that of Class V is 2P (a sequence 
consisting of 2 critical curves, connected by a three-
phase curve).

2.	 If the target of the first sequence is not P, a symbol for 
the sequence originating at the other pure-fluid criti-
cal point is constructed in the same way. Thus Class 
III becomes 1C1Z (one critical curve running to high 
pressures, a sequence consisting of a critical curve 
and a three-phase curve running to the origin).

3.	For critical curves which are not part of these 
sequences, a letter is added that graphically rep-
resents the shape of the curve: “l” for a critical curve 
running from high pressures to a critical endpoint, 
“n” for a curve running between two endpoints at low 
pressures (passing through a pressure maximum), 
and “u” for a critical curve coming from and running 
to high pressures. Class II thus becomes 1Pl.

4.	 If there is critical azeotropy, an “A” is appended to the 
symbol of the affected critical curve. A“Q” can be used 
to indicate the existence of a quadruple point, if this has 
not already been mentioned as a sequence target.
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This way even the variants or subclasses of the Classes 
VI and VII can be clearly distinguished.

4.2 Global phase diagrams
An overview over the phase diagram classes that can be 
obtained with a given equation of state (plus its set of mix-
ing rules) can be obtained with a so-called global phase 
diagram. In such a diagram the parameters of an equation 
of state are treated as freely variable parameters, and each 
point corresponds to a (normal) phase diagram. An exam-
ple is shown in Fig. 7, namely the global phase diagram of 
the Carnahan-Starling-Redlich-Kwong (CSRK) equation 
of state for equal-sized molecules [24].

The global phase diagram is shown in terms of dimen-
sionless coordinates,
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The curves in the global phase diagram represent loci of 
boundary states, e.g., hypothetical phase diagrams marking 
the transition between two classes. As an example, Fig. 8 
illustrates the boundary states via which Class 2P (= IV) 
can evolve to Classes 1Pl (= II) via a tricritical point, to 
1C1Z (= III) via a double critical endpoint, and to 2P (= V) 
via a zero- Kelvin endpoint. There is not enough space here 
to state the mathematical criteria of these boundary states. 
But such criteria exist, and from them global phase dia-
grams like Fig. 7 can be calculated, which give an over-
view over the possible phase diagram classes. The inter-
ested reader is referred to the literature [1, 21, 24].

Mixtures of similar compounds usually obey Berthelot's 
combining rule, T T Tij ii jj

∗ ∗ ∗≈ ( )1 2

. In the global phase dia-
gram, this rule corresponds to a semicircular curve, which 
intersects, or comes close to, the domains of the phase 
diagram classes 1P, 1Pl, 2P, 2Pl, 1C1Z, and their azeotropic 

subclasses: These classes are most likely to be observed 
experimentally.

For mixtures of molecules of unequal sizes the global λζ 
phase diagram loses its symmetry.

The triangular shaded area in Fig. 7, named shield region 
because of its shape, contains domains of rather compli-
cated phase diagram classes containing quadruple points 
lllg. It has been argued that the shield region is fictitious 
and cannot be reached experimentally [25], but an experi-
mental study of (water + n-alkane) mixtures [26] shows a 

T T T

T T T

T T T

T T T

T T T

T T T

p p p

p p p

p p p

p p p

p p p

p p pI

1P

II

1Pl

III

1C1Z

IV

2Pl

V

2P

VI

1Pn

1Pnu 1Pll 1Pnl

VII

2Pnl 2Pnul

VIII

1C2C

IV*

2C1Z

II-A*

1PAQ

III-A**

1C1QA

V
sym

3P

IV
4

1Q1Q

VI*
ii

1C1Zn

Fig. 7 Schematic (incomplete!) overview over the phase diagram 
classes of binary mixtures (blue: rational class names). —: vapor 

pressure curve, —: critical curve, · · · · ·: three-phase line llg, 
 ○: pure-fluid critical point, , : upper, lower critical endpoint, 

□: quadruple point lllg, ●: critical azeotropic point.



Deiters
Period. Polytech. Chem. Eng., 63(2), pp. 261–269, 2019|267

switch of the phase diagram class from 1C1Z to 1Z1C (Class 
III; for a carbon number below 26 the alkane is the volatile 
component, but above 26 it is water) that can occur close 
to or above the shield region only.

The rectangular shaded regions in Fig. 7 mark sensi-
tive portions of the global phase diagram where unusual 
phase diagram classes appear, at least if the molecules have 
different sizes—classes with closed-loop immiscibility or 
with quadruple points—and experimental examples are 
known for many of these.

For the modelling of fluid phase equilibria it is advis-
able to look up the global phase diagrams of the model 
used— they are available for several popular equations of 
state. If the parameters of the model lie safely inside one 
of the major domains of the global phase diagram, one can 
be reasonable sure of the phase diagram class. But if the 
parameter set lies close to a domain boundary or—even 
worse—in one of the sensitive regions, caution is advised.

Independent of the availability of a global phase dia-
gram it is good technique to compute the critical curves 
of a mixture (using an algorithm that finds all of them!), 
because this will hint the phase diagram class and indicate 
the existence of perhaps unexpected demixing phenomena.

5 Conclusion
In this article we have attempted to address some problems 
that can make the modelling of fluid phase equilibria with 
equations of state difficult: proper assessment of the qual-
ity and reliability of experimental data, difficulties stemming 
from wrong identification of fluid phases, and finally ensur-
ing that all relevant phase equilibria have been found. The 
latter is a difficult problem indeed, and even today the total 
number of phase diagram classes for binary fluid mixtures is 
not really known, let alone that of ternary or higher mixtures.

On the other hand, even for ternary mixtures the situa-
tion is not hopeless: In many practical applications there is 
one volatile component together with a few chemically sim-
ilar heavy components, so that the mixtures can be treated 
as pseudobinary at least as far as the phase diagram classes 
are concerned; an example is the removal of fatty acids from 
olive oil by extraction with supercritical carbon dioxide. 
Or there is a mixed extracting fluid and a single product. In 
either case, the study of binary phase diagrams is very useful.

In our examples we have mostly used rather simple 
equations of state. But as even such equations capture 
essential features of phase equilibria, we suppose that the 
advice given in this work is useful for work with more 
advanced thermodynamic models, too.
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Fig. 8 Global phase diagram for the Carnahan-Starling-Redlich-Kwong 
equation for equal-sized molecules. Solid curves: black: zero-Kelvin 
endpoint curve, red: tricritical curve, blue: double critical endpoint 

curve; −· −· −: limit of boundary azeotropy, 
· · · · · : Berthelot combining rule.
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