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Abstract

For Friedel-Crafts alkylation of aromatic hydrocarbons an ionic reaction path is considered as classical reaction mechanism. 

The alkylation with benzyl chloride in the presence of ion-exchanged K10 montmorillonite catalysts containing multivalent, reducible 

cations had an outstanding activity, therefore a radical initial step as a supplement to the ionic mechanism was proposed earlier. 

We made ESR investigations to clarify the existence and the nature of the suggested radical species. The ESR experiments verified that 

the reaction involves a radical step.
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1 Introduction
Friedel-Crafts reaction is one of the most important reac-
tions of organic chemistry and chemical industry [1, 2]. 
It serves to functionalize aromatic compounds, providing 
useful intermediates of different classes of materials, such 
as pharmaceuticals, dyes, surfactants, and agrochemicals. 
Nowadays instead of the traditional Lewis acids (AlCl3, 
FeCl3, ZnCl2) heterogeneous acid catalysts are used more 
and more in these reactions [3], in order to facilitate the 
separation of the catalyst as well as the work-up of the 
reaction mixture, to avoid the corrosion and the formation 
of large amount of waste water, and yielding environmen-
tally more bening processes. A great number of acidic het-
erogeneous catalysts are suitable for Friedel-Crafts reac-
tions (see e.g. the list in [4]), the use of the clay-based ones 
is very advantageous because of the good activity, low 
price and simple preparation process.

We investigated in detail the alkylation of benzene 
and toluene with benzyl alcohol as well as benzyl chlo-
ride, using ion-exchanged K10 clays as catalysts [5]. The 
kinetic evaluation of the reactions showed that using ben-
zyl alcohol as alkylating agent the initial reaction rate was 
proportional to the Brønsted acidity of the catalysts, but 

in the case of benzyl chloride there was no correlation 
between the reaction rate and neither the Brønsted, nor the 
Lewis acidity. At the same time in this latter reaction the 
catalysts containing multivalent, reducible cations (Fe3+, 
Cu2+, Sn2+) had an outstanding activity. This observation 
suggested that the reaction involves an oxido-reductive 
process, therefore we have proposed a radical initial step 
as a supplement to the classical ionic mechanism.

Exactly the same radical part-process was proposed 
later by Choudary et al. [6], without mentioning at all our 
precedent proposition.

The possibility of a radical step has arisen also on the 
basis of other reactions carried out in the presence of clay-
based catalysts, in liquid phase, where the presence of rad-
icals or radical cations was proved: nitration of aromatic 
hydrocarbons or phenols [7-10], Diels-Alder reaction 
between methyl acrylate and cyclopentadiene [11].

Three probable mechanistic interpretations can be 
found in the literature for benzylation of aromatic hydro-
carbons with benzyl chloride on solid acid based sup-
ported metal catalysts, without any direct (preparative or 
spectroscopic) experimental verification: a simple radical 
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step [12-17] – see Scheme 1; the presence of a benzyl chlo-
ride radical cation [4, 18-25] – see Scheme 2; or the pres-
ence of a benzyl radical cation [26-28] as intermediate 
– see Scheme 3. In some cases the same authors have dif-
ferent suggestions for similar catalytic systems.

For an experimental support of our proposition and 
for the shake of orientation between the three suggested 
mechanism variants we have investigated by ESR spec-
troscopy whether a radical is formed in the reaction, and 
in a positive case what is its structure.

2 Results and discussion
Mixing benzyl chloride, toluene and Fe3+-K10 clay in an 
ESR tube a sharp singlet appeared even at room tempera-
ture at g = 2.0037 with 20 G linewidth (Fig. 1). This is 
characteristic to a carbon-type radical. Since the signal 

was obtained also when toluene was omitted from the 
reaction mixture, the radical can be unambiguously orig-
inated from benzyl chloride. Nevertheless, a benzyl-type 
radical should show multiplicity. The large linewidth and 
the lack of multiplicity can be explained with either the 
solid surface of the catalyst or the oxygen adsorbed on 
the bulk solid phase which can hinder the splitting of the 
signal. The intensive evolution of HCl which resulted the 
foaming of the mixture in the sample tube might also dis-
turbed the observation of a clear liquid phase. The evolu-
tion of the signal was quite fast, and the signal reached a 
maximum after about a half an hour (Fig. 2). 

The formation of the radical was continuous, after a fast 
rise its concentration reached a maximum value (Fig. 3, 
left). Simultaneously, the concentration of Fe3+ in the solu-
tion reached a maximum (Fig. 3, right).

Next we examined the other metal-modified K10 cata-
lysts, the reaction of which showed outstanding reactivity 
in our former benzylation experiments [5]. Thus, when 
Sn2+-K10 was used instead of Fe3+-K10, a similar sig-
nal having the same g value and linewidth was detected 
(Fig. 4).
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Scheme 1 Proposed reaction mechanism for Friedel-Crafts benzylation 
of benzene with benzyl chloride over iron-containing mesoporous 

TUD-1 catalyst [12].
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Scheme 2 Proposed reaction mechanism for Friedel-Crafts benzylation of 
benzene with benzyl chloride over iron-modified ZSM-5 zeolites [18].
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 Scheme 3 Proposed reaction mechanism for Friedel-Crafts benzylation 

of benzene with benzyl chloride over iron mesoporous silicas [28].
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Fig. 1 Signal obtained in the reaction of benzyl chloride with toluene in 
the presence of Fe3+-K10.

 
 
 

 
 
 

Fig. 2 Evolution of the signal detected in the reaction of benzyl chloride 
with toluene in the presence of Fe3+-K10 in the range of 0 – 1508 sec.
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The other catalysts, which showed enhanced reac-
tivity in the Friedel-Crafts alkylation of benzene or tol-
uene with benzyl chloride, were the copper- and man-
ganese-modified K10 clays. These metals have a strong 
disturbing effect on the ESR-measurements. However, we 
could detect the same signal when benzyl chloride was 
treated with Cu2+-K10 and Mn2+-K10 (Fig. 5).

These experiments support our initial hypothesis [5] 
on a radical step in clay-catalysed Friedel-Crafts benzyla-
tion with benzyl chloride. The signals obtained, however, 
could not help in the exact determination of the nature 
of the radical. Thus DFT calculations were made [29] to 
decide between a benzyl radical or a benzyl radical cation 
(see Schemes 1 and 3). The spectra were calculated with 1 
G linewidth (this gives better approximation of the shape 
of the signal) and to minimal energy (this estimates better 
the linewidth). The results are shown on Fig. 6. 

The linewidth of the calculated signal is more compa-
rable with the measured linewidth in the case of the ben-
zyl radical. For the benzyl radical cation the difference 
between the calculated and measured linewidth is unre-
ally big. The lack of the splitting in the case of benzyl rad-
ical can be explained with the disturbing effects during 
the measurement indicated above (foaming, the solid sur-
face and the oxygen adsorbed on this surface). Thus we 
can suppose that from the previous proposition described 
for this type of Friedel-Crafts alkylation the mechanism 
depicted in Scheme 1 may describe the run of the reaction. 

 
 
 

 
 
 

Fig. 3 Evolution of the concentration of the radical (left) and the Fe3+ ion (right) in the sample. 
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Fig. 4 Signal obtained in the reaction of benzyl chloride with toluene in 
the presence of Sn2+-K10.
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Fig. 5 Signal obtained in the reaction of benzyl chloride with toluene in the presence of Cu2+-K10 (left) and Mn2+-K10 (right).
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3 Experimental
3.1 Generalities
Benzyl chloride and toluene were purchased from Merck 
Ltd. Hungary. K10 montmorillonite was the product of 
Süd-Chemie (Germany).

1H NMR spectrum was recorded on a Bruker Avanche-300 
spectrometer. The sample was dissolved in CDCl3. Chemical 
shifts are given on a d scale, d(TMS) = 0 ppm.

ESR spectra were recorded on a Bruker EleXsys 500 
instrument. 100K modulation frequency, 10 G modulation 
and 10 mW microwave power were used.

TLC-s were developed on Merck Kieselgel 60 F254 
plates with hexane/acetone (4:1) eluent.

3.2 Preparation of the catalysts
K10 clay was exchanged as described earlier [5] with 
Cu2+, Fe3+, Mn2+, and Sn2+. Thus the clay was gradually 
added to a stirred aqueous solution of the chloride of the 
cation at room temperature for 24 h. After the exchange 
the suspensions were filtered and washed with deionized 
water to eliminate the physisorbed salts. The resulting 
solids were dried on a thin layer at 373 K and ground. The 
thus obtained K10 catalysts are designated as Men+-K10.

3.3 Reaction of benzyl chloride with toluene
The mixture of 0.79 g (0.72 cm3, 6.25 mmol) benzyl chlo-
ride and 0.1 g Men+-K10 in 10 cm3 toluene was stirred at 
80 °C for 3.5 h (complete consumption of benzyl chlo-
ride, checked by TLC). Then the solid was filtered off, the 
filtrate was evaporated. The residue was subjected to a 
1H NMR analysis. The spectral data showed the presence 
of 1-benzyl-2-methylbenzene and 1-benzyl-4-methylben-
zene in a 1:1 ratio. d: 2.21(s, 3H), 2.28(s, 3H), 3.91(s, 2H), 
3.95(s, 2H), 7.04-7.25(m, 18H).

3.4 ESR experiments
Benzyl chloride, toluene and Fe3+-K10 montmorillonite 
was placed in an ESR tube. Vigorous evolution of HCl 
was observed after a few minutes even at room tempera-
ture. The experiments were repeated with Sn2+-, Cu2+-, and 
Mn2+-modified K10, too. In every case a well-developed 
ESR signal was detected. 

4 Conclusions
ESR experiments verified that the Friedel-Crafts reaction 
of toluene with benzyl chloride in the presence of K10 
clay modified with Fe3+, Cu2+, Mn2+ or Sn2+ ions involves a 

 
 
 

         
 

 
 
 

Fig. 6 Comparison of the measured signal and the signal calculated for benzyl radical (left) and benzyl radical cation (right) 
(blue: measured signal, red: calculated signal).
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Scheme 4 Reaction of benzyl chloride with toluene in the presence of modified K10 clay
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