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Abstract

Nanoscale fibers were prepared for the fabrication of scaffolds by using a strong electrostatic field on the polymer solution. 

Electrospinning is widely applied for production of drug delivery, tissue engineering, and regenerative medicine systems as well as 

biosensors and enzyme immobilization. Nanofibers, thanks to their high surface area to volume ratio, can also mimic the extracellular 

matrix, thus it has been recognized as a suitable technique for the fast fabrication of scaffolds. This article demonstrates the fabrication 

of several nanofibrous scaffolds from biopolymers such as polycaprolactone, poly(lactic acid), poly(lactide-co-glycolide), poly(lactide-

co-caprolactone) and poly(hydroxybutyrate-co-hydroxy valerate). The characterization and comparison of the scaffolds were achieved 

based on the morphology and surface characteristic of the nanofibers. The samples showed hydrophobic characteristic, thus a plasma 

surface treatment was applied successfully to increase hydrophilicity and the effect of the treatment was evaluated based on the 

wettability and the change in elemental composition of the surface based on X-ray photoelectron spectroscopy.

Keywords

electrospinning, nanomaterials, scaffolds, plasma treatment

1 Introduction
Nanotechnology and nano-scale science have been a major 
part of research in the past few decades. The increasing 
need for discovering something new on a nano-scale level 
encouraged scientists to develop nanofibers with control-
lable pore structure [1, 2] for several fields of application 
such as filtration [3-5], military protective clothing [6-8], 
nanosensors [9, 10], wound dressings [11-13], drug deliv-
ery systems [14-17], enzyme immobilization [18, 19] and 
scaffolds for tissue engineering [20, 21].

Nanofibers can be manufactured with several meth-
ods like drawing [22, 23], template synthesis [24, 25], 
self-assembly [26], phase separation [27, 28] and electro-
spinning [29-32]. The last one is the most commonly used 
technique as it has been bursting into the industry in the 
past few years. It is a quite simple, versatile and reliable 
method to produce nanofibers from synthetic and natu-
ral polymers with diameters in the submicron scale [33]. 

Electrospinning involves the application of a high electric 
field to generate nanofibers from a charged polymer solu-
tion or melt. Electrospinning parameters can be changed to 
affect the properties of the nanofibers [14]. These param-
eters can be the concentration of the polymer solution, 
polymer molecular weight, conductivity of the polymer 
solution, voltage, flow rate of the solution, solvent and the 
distance between the tip and the collector. Additives to the 
solution can play a major role in controlling the properties 
of the solution, such as electrical conductivity, dielectric 
constant, surface tension, and viscosity [34].

It has been determined that nanofibrous structures can 
create excellent artificial scaffolds for cell cultivation 
by mimicking the fibrous structure of the extracellular 
matrix (ECM) as the size of the fibers can be similar to 
the structure of the ECM. Owing to this advantageous fea-
ture, scaffolds have the ability to be seeded with cells and 
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engrafted into the human body to stimulate regeneration 
and regrowth of tissues [31]. These nanofibrous scaffolds 
have a huge impact on cell migration, embedding, prolif-
eration, and differentiation. The nanofibrous scaffolds can 
make it possible to grow tissues such as skin [35, 36], mus-
cle [37, 38], nerves [39-41], veins [42-44], bone [45, 46], 
cartilage [47, 48] and ligament [49, 50].

Increased academic interest have shown recently in 
exploiting the electrospinning technique to produce nano-
fibers from biocompatible polymers such as polycaprolac-
tone (PCL) [51], poly(lactic acid) (PLA) [52, 53], poly(-
lactide-co-glycolide) (PLGA) [54, 55], polyurethanes [56], 
silk fibroin [57], collagen [58, 59], hyaluronic acid [60], 
cellulose [61] and their blends [62, 63].

In the present work, fabrication and optimization of 
nanofibrous scaffolds from PCL, PLA, PLGA, poly(-
lactide-co-caprolactone) (PLC) and poly(hydroxybutyr-
ate-co-valerate) (PHB / HV) biocompatible polymers 
were achieved using electrospinning method. The scaf-
fold prepared from these biocompatible polymers is a 
possible choice for the cultivation of cells for different 
tissue engineering application. Although these polymers 
are biocompatible, the hydrophobicity of the scaffolds 
must be reduced in order to promote cell adhesion and 
migration. Plasma treatment was applied to eliminate this 
adverse feature. Characterization and comparison of the 
scaffolds were accomplished based on morphology and 
surface characteristic.

2 Experimental
2.1 Materials
The polymers used in the experiment were the follow-
ing: polycaprolactone (PCL, Perstorp, Capa™ 6800, 
Mw = 80,000). poly(lactic acid) (PLA, Purasorb® PL 24, 
Mw = 339,000), poly(lactide-co-glycolide) (PLGA, 
Purasorb® PLG 8523 (85 % PLA), Mw = 362,000) and 
poly(lactide-co-caprolactone) (PLC, Purasorb® 8516 
(85 % PLA), Mw = 221,000) was purchased from 
Corbion (Netherlands). Polyhydroxybutyrate (PHB, 
Mw = 973,000) and poly(hydroxybutyrate-co-hydroxy val-
erate) (PHB / HV, type L®, 87 % PHB, Mw = 600,000) were 
obtained from Biomer (Germany). Chloroform (CHCl3), 
dichloromethane (CH2Cl2) and N,N-dimethylformamide 
(DMF) was obtained from Merck Millipore (USA).

2.2 Electrospinning process
To perform electrospinning, an infusion pump 
(Aitecs SEP-10S Plus syringe pump, Lithuania) was used 

and high voltage provided by a direct current power sup-
plier (NT-35 High Voltage DC Supply MA2000, Hungary) 
was applied on an electrostatic spinneret (with an inner 
diameter of 0.5 mm). Nanofibers were collected on con-
ventional aluminum foil immobilized to the grounded col-
lector plate. The high voltage, the collector distance, and 
the dosing speed were optimized for each solution. All of 
the experiments were carried out at room temperature.

2.3 Scanning electron microscopy (SEM)
The morphology of the nanofibers and the surface of the 
scaffolds were examined by a JEOL JSM-6380LA scan-
ning electron microscope within the settings of 15 kV 
acceleration voltage and 10-15 mm sample distance from 
the microscope in high vacuum. The samples were placed 
on a copper tool and coated with gold in argon atmosphere 
in order to avoid electrostatic charging. The experiments 
must have been performed quickly to prevent the nanofi-
bers from melting.

2.4 Surface treatment by plasma
Since the nanofibers are electrostatically charged and quite 
hydrophobic, surface treatment by plasma is inevitable to 
increase the hydrophilicity of the scaffolds. The nanofibrous 
structures were treated with a Femto V1 (Diener Electronic 
Plasma Surface Technology, Ebhausen, Germany) appara-
tus at 30 W in high vacuum. The duration of the plasma 
treatment was optimized using PCL scaffolds.

2.5 Water contact angle measurement
The measurement of the contact angle has been performed 
using the sessile drop technique. After applying a drop of 
distilled water (20 μL) on the scaffold, a photo was taken 
of the sample carefully, positioning the contact of the drop 
in line with the camera's lenses. The contact angles were 
measured digitally and noted for further use.

2.6 X-ray photoelectron spectroscopy (XPS)
XPS tests were performed using a Kratos XSAM 800 
(Manchester, UK). The samples were induced by Mg Kα 
radiation at 1258.6 eV energy level. The analizator was 
working in fixed analyzer transmission (FAT) mode with 
the setting of the transmission window at 40 eV energy 
level. Small resolution spectra were registered with the 
step size of 0.5 eV and high-resolution spectra with 0.1 eV. 
Qualitative evaluation of spectra was carried out with 
Kratos Vision 2 and the quantitative evaluation with XPS 
MultiQuant computer program.
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3 Results and discussion
3.1 Preparation of nanofibrous scaffolds
Nanofibrous scaffolds were prepared by electrospinning 
technique for the purpose of cell cultivation and tissue 
engineering. In the experiments, the following polymers 
were used and compared: PCL, PLA, PLGA, PLC and 
PHB / HV (Fig. 1).
The structure of the nanofibrous system and the diame-
ter of the fibers have a huge impact on the in vitro and 
in vivo availability of the scaffolds, so the optimization of 
the electrospinning technology was necessary.

Since the concentrations of the polymer solution have 
great influence on fiber diameter during electrospinning, 
several solutions of different concentrations were pre-
pared from PCL, PLA, PHB / HV, PLC and PLGA poly-
mers. The optimal concentrations for each polymer are 
summarized in Table 1.

The polymers were dissolved in the mixture of haloge-
nated organic solvents and dimethyl-formamide (DMF). 
DMF has high dielectric constant and is widely used as an 
addition to form a mixture solvent system to obtain ultra-
thin fibers with uniform distribution [34].

The electrospinning parameters such as collector 
distance (30-35 cm), flow rate (7-9 mL/h), and voltage 
(25 kV) had been optimized for each polymer in order to 
eliminate the beads and other surficial defects on the scaf-
folds. While optimizing the parameters, the aluminum 

foil was applied on the collector and later when using 
the optimal settings, inert foils were used. Poly(ethylene-
terephthalate) (PET), polypropylene (PP) and PLA foil 
were tested and the PP foil was chosen for further inves-
tigation based on the good process handling. The electro-
spinning of biocompatible polymers on an inert carrier 
makes it possible to test the potential applicability of scaf-
folds in an easy to use plate system.

3.2 Morphology
Optical microscope and scanning electron microscope 
(SEM) were used to analyze the structure of the nanofi-
brous scaffolds and the morphology of the fibers prepared 
using the optimal solution compositions (Fig. 2, Table 2).

SEM image of the polymers showed that the fibers had 
random orientation and the diameter of the fibers was sub-
micron sized, thus the electrospinning proved to be satis-
factory. Fibers in a submicron range are promising for cell 
cultivation since this range of fiber diameters is suitable 
for the biomimetics of the extracellular matrix. The den-
sity of the fibers was similar; however, the PHB / HV scaf-
fold consisted of a thick layer of fiber.

3.3 Surface characteristic
The scaffolds were hydrophobic, thus low-pressure air 
plasma surface treatment was carried out to increase the 
wettability of the samples [64, 65]. The optimization was 
achieved to make the samples hydrophilic for the use of 
cell cultivation. The wettability of the nanofibrous scaf-
folds was quantified by contact angle measurements to 
evaluate the effect of plasma treatment (Table 3). The sam-
ples had high contact angle and hydrophobic characteris-
tic before the plasma treatment. However, the PHB / HV 
scaffold had better wettability, because the contact angle 
is affected not only by the surface chemistry but also by 
the surface roughness [66, 67]. Based on the SEM images 
the PHB / HV scaffolds had different fiber density and 
surface roughness (Fig. 2).Fig. 1 Structure of the applied polymers: PCL (A), PLA (B), PLGA (C), 

PLC (D), PHB / HV (E).

Table 1 Optimized solution concentrations of different polymers.

Polymer Concentration
(w/V)% Solvent

PCL 12.0 dichlormethane:DMF 1:1

PLA 5.0 chloroform:DMF 6:1

PHB / HV 12.0 chloroform:DMF 4:1

PLC 10.0 chloroform:DMF 6:1

PLGA 6.0 chloroform:DMF 6:1

Table 2 Average fiber diameters average and standard deviation (SD) 
for the scaffolds

Polymer Polymer 
concentration (%)

Average fiber 
diameter (nm) SD (%)

PCL 12.0 655 22 %

PLA 5.0 763 15 %

PLGA 6.0 643 23 %

PLC 10.0 481 20 %

PHB / HV 12.0 769 20 %
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The plasma treatment was successful to decrease the 
contact angles and to increase the wettability of the scaf-
folds. By increasing the duration of plasma treatment of 
the PCL scaffold, the contact angle decreased. The 5 days 
storage resulted in the increase of the contact angles of 
the 1 minute plasma treated samples. On the contrary, 

the contact angle of the 10 seconds plasma treated sample 
remained the same during the storage. Regarding the sta-
bility of wettability, the shorter plasma treatment would 
be more advantageous, since it polarized mainly the sur-
face of the scaffold and the polymer molecules remained 
less mobile. However, the 1 minute plasma treatment 
resulted better wettability after the plasma treatment and 
after 5 days storage as well. The other polymer scaffolds 
were, therefore, treated for 1 minute. The surface treat-
ment had a different influence on the electrospun mate-
rials since the hydrophobic features of the polymers are 
different (Table 3).

To understand the effect of plasma treatment, the chem-
ical composition of the surface of the PCL scaffold was 
examined using X-ray photoelectron spectroscopy on the 
untreated and the 1 min plasma treated sample (the day 
after surface treatment). The atomic composition of the 

Fig. 2 SEM images of nanofibrous scaffolds: PCL (12.0 %) (A), PLA 5.0 % (B), PLGA 6.0 % (C), PLC 10.0 % (D), PHB / HV 12.0 % (E)

Table 3 Contact angle of distilled water on the scaffold surface before 
the plasma treatment, right after and 5 days later

Polymer Before 
treatment

After 
treatment 5 days later

PCL (10 s)
113°

46° 46°

PCL (1 min) 21° 37°

PLA (1 min) 103° 34° 59°

PLC (1 min) 113° 56° 94°

PLGA (1 min) 116° 46° 54°

PHB / HV (1 min) 85° 59° 65°
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surface was determined in order to gain information about 
the differences between the scaffold before and after the 
modification (Table 4). The surface composition of the 
scaffold proved to be different from the theoretical value 
calculated for pure PCL. This can be ascribed to that, the 
polar, hydrophilic groups face inwards in the fibers as a 
consequence of the drying process. During the electro-
spinning the polar solvent first evaporates from the sur-
face of the polymer jet, resulting to direct the groups on 
the polymer chain toward the remaining solvent and other 
polymer molecules inside the fibers. The lack of hydro-
philic groups on the surface could explain the low oxygen 
ratio and the large contact angle of the samples.

The binding energy of the atoms was determined and 
similar energy profiles were detected during the measure-
ment, the intensities of the oxygen atoms were correspond-
ing. As far as the carbon atoms are concerned, the equiva-
lent binding energies were identified on the spectra (Fig. 3).

In Fig. 3 the carbon and oxygen atoms are numbered 
on the structure of PCL polymer to make the evaluation 
easier. The C5 label means the carbon atom right next to 
the oxygen atom with an ether bond.

As it can be seen in the spectra, the surface treatment 
had an enormous impact on the scaffold. It has been 
observed that the untreated samples comprised more 
hydrocarbon-related carbon atoms than the theoretical 
ratio. Carbonyl oxygens (O1) found to be in majority com-
pared to ethereal ones in both scaffolds. Although the 
overall ratio of oxygen atoms increased, their types did 
not change. The ratio of carbonyl carbon atoms increased, 
whilst the top layer of hydrocarbons – probably an air-con-
densed hydrophobic layer – vanished completely after 
the plasma treatment. The molecule became more polar-
ized and consequently hydrophilic due to the removal of 
the inwards oriented (due to drying) surface molecules. 
After the plasma treatment, the polymer scaffolds were 
wettable because of the presence of newly generated oxy-
gen-containing groups on the surface.

4 Conclusion
Nanofibrous scaffolds were prepared from biodegradable 
polymers and copolymers by applying the electrospinning 
technique. The polymer concentrations, the solution compo-
sitions, and the electrospinning parameters were optimized 
to achieve adequate fibers in a submicron range. The electro-
spun fibers of PCL, PLA, PHB / HV, PLC, and PLGA poly-
mer solutions were deposited on an inert PP carrier and was 
placed in a cell cultivation plate to obtain an easy to use the 
system for the comparison of the applicability of scaffolds. 
The prepared scaffolds were characterized based on mor-
phology, wettability, and surface chemical composition. The 
PCL scaffolds comprised more hydrocarbon-related carbon 
atoms than the theoretical ratio and the samples were quite 
hydrophobic. The drying induced orientation of the polar 
groups on the polymer chain presumably the reason for the 
deviation from the theoretical value. The surface treatment 

Table 4 Percent composition of C and O atoms in the PCL scaffolds: 
MM-PCL = untreated PCL scaffold, MM-PCL-P1 = plasma treated 

PCL scaffold

Sample name

Chemical 
composition O/C atomic 

ratio (%)Oxigen 
(%)

Carbon 
(%)

PCL theoretical 25.0 75.0 33.3

MM-PCL 18.6 81.4 22.9

MM-PCL-P1 21.5 78.5 27.4

Table 5 Atomic percent composition according to all the atoms in the 
polymer: MM-PCL = untreated PCL scaffold, MM-PCL-P1 = plasma 

treated PCL scaffold

Atomic percent (%)

Sample name O1 O2 C1 C2 C3 C4 C5

Theoretical 12.5 12.5 37.5 12.5 12.5 12.5 -

MM-PCL 10.6 8.0 54.2 8.9 9.3 8.9 -

MM-PCL-P1 12.8 8.8 39.4 11.0 11.4 10.9 5.7

Fig. 3 XPS spectra according to the carbon and oxygen atoms:  
MM-PCL = untreated PCL scaffold, MM-PCL-P1 = plasma treated 

PCL scaffold and the structural formula of PCL with the atoms labeled
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