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Abstract

Solubility parameters are widely used in the polymer industry and are often applied in the high pressure field as well as they give 

the possibility of combining the effects of all operational parameters on solubility in a single term. We demonstrate a statistical 

methodology to apply solubility parameters in constructing a model to describe antisolvent fractionation based chiral resolution, 

which is a complex process including a chemical equilibrium, precipitation and extraction as well. The solubility parameter used 

in this article, is the Hansen parameter. The evaluation of experimental results of resolution and crystallization of ibuprofen with 

(R)-phenylethylamine based on diastereomeric salt formation by gas antisolvent fractionation method was carried out. Two sets of 

experiments were performed, one with methanol as organic solvent in an undesigned experiment and one with ethanol in a designed 

experiment. The utilization of D-optimal design in order to decrease the necessary number of experiments and to overcome the 

problem of constrained design space was demonstrated. Linear models including dependence of pressure, temperature and the 

solubility parameter were appropriate to describe the selectivity of the GASF optical resolution method in both sets of experiments. 
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1 Introduction
Gas antisolvent precipitation (GAS) is one of the most 
promising innovative applications of supercritical fluids  
of the last decades. Its semicontinuous scaled up  
version might be also interesting for continuous  
pharmaceutical production [1]. During GAS process-
ing the environmentally benign carbon dioxide is mixed 
intimately with an organic solvent containing the solute 
to be precipitated. Due to the instant and high oversatu-
ration, small crystals or amorphous particles are formed  
with controllable mean particle sizes, narrow  
size distributions and sometimes controllable morphologies 
as well. Applications of and parameter effects on antisol-
vent precipitations were extensively reviewed [2-4]. While 
for typical GAS applications the goal is to completely pre-
cipitate the solute in a desired size, crystallization habit and 
morphology, gas antisolvent fractionation (GASF) is a com-
bination of the precipitation and an extraction step [5, 6]. 
The GASF technique can be efficiently used in diastereo-
meric salt based optical resolutions [7-11] and purifica-
tion of scalemic mixtures as well [7, 12, 13]. However, the 

efficiency of GASF is influenced by various operational 
parameters. The most important ones are the pressure, the 
temperature, the concentration of the solutes, the solvent 
and the CO2. Furthermore, their effects are often non-lin-
ear. Our goal was to find a better way to optimize the opti-
cal resolutions with GASF than evaluating the effect of all 
these parameters individually.

The efficiency of the GASF optical resolution method 
can be characterized as the selectivity (S) of the process. 
Selectivity is calculated as the product of yield and diaste-
reomeric purity. To describe selectivity, pressure (p), tem-
perature (T ) and the Hansen solubility parameter (HSP, δ) 
are taken into account. HSP is an attribute which describes 
how likely one material dissolves in another to form solu-
tion. Materials with similar HSP mix well with each other. 
Beside the nature of the components, HSP also depends 
on temperature and pressure. The formulas for calculating 
HSP of pure materials can be found in the literature [14] 
also for carbon dioxide and organic solvents [15] and their 
mixtures [16]. The parameter optimization difficulties of 
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supercritical antisolvent precipitation (or related) tech-
niques have already been addressed using (Hansen) sol-
ubility parameters. However, only limited correlations 
were found [17-20].

Despite the fact that HSP itself is a function of the con-
ditions of the operating system (pressure, temperature, 
quality of the components of the solvent mixture, ratio 
of the components of the solvent mixture), it cannot be 
expected that the selectivity could be described by this 
parameter only, because optical resolutions are not barely 
solubility controlled. That is the reason why we took into 
account temperature and pressure as well independently 
in our model. Evaluations of two experimental data-
sets are interpreted in this paper. The first one belongs 
to the antisolvent process performed with methanol as 
organic solvent. The second one includes data gained in 
the experiment performed with ethanol. Designed exper-
iment was utilized in the experiments with ethanol, while 
in the case of methanol it was not utilized. The reason for 
lack of designed experiment in the case of methanol is 
that the experiment was being conducted without statis-
tical support.

2 Methodology of model building
Two stages of model building are considered in this paper:

• model selection,
• residual analysis.

In the phase of model selection, the aim is to find a 
model which suitably describes and predicts the behavior 
of the observed system while it remains as simple as pos-
sible. Afterward a candidate model is selected, residual 
analysis is used to check the assumptions of regression 
method, to verify the adequacy of the selected model and 
to identify outlier data.

2.1 Model selection
There are two basic philosophies behind model selection. 
First, one would want the model to describe the given data 
as well as possible and has as high predictive accuracy as 
possible. This can be achieved by adding more and more 
parameters and different functions of the parameters (qua-
dratic terms, cross-products, logarithms, etc.) to the model. 
On the other hand, one would want the model to be sim-
ple with as few terms as possible. The reason for the lat-
ter is that this way the model is easier to handle, to calcu-
late with, and to understand the behavior of the observed 
system [21]. Also as Occam’s razor (i.e. law of parsimony) 

states, the simplest solution tends to be the correct one, 
therefore it is preferable to choose the simplest one.

There is no perfect model that could be selected in any 
situation. As Box and Draper [22] describe: "The most 
that can be expected from any model is that it can supply 
a useful approximation to reality: All models are wrong; 
some models are useful". It is the task of the experimenter 
to choose an appropriate model in view of the above-men-
tioned philosophies.

There are different statistical methods that can be used 
to choose the most suitable model [21]. In this paper, best 
subset regression procedure is being used. Other meth-
ods like stepwise regression and backward elimination 
could also be used, however they are more constrained 
and give less freedom in choosing from candidate mod-
els. The best subset method gives information about the 
goodness of fit of all possible models that can be built by 
the parameters. Afterwards the preferable model can be 
chosen by considering the goodness of fit (i.e. descriptive 
power) and the number of terms in the model. There are 
different indicators to describe the goodness of fit [23], in 
this paper the adjusted R2 is applied. 

The higher the adjusted R2 the higher is the descriptive 
power of the model. However, adjusted R2 is a random vari-
able, a higher R2 may be observed only by chance when 
there is no true difference in expected values. Two models 
with adjusted R2 relatively close to each other are worth to 
be compared based on the residual variances of the models. 
Significantly lower residual variance indicates better good-
ness of fit (significantly higher adjusted R2). The statistical 
comparison of variances is carried out with F-test.

A more sensitive test to compare models is based on 
the test of the extra sum of squares [24]. The extra sum of 
squares measures the reduction in the error sum of squares 
of a given model when terms are added to it. F-test is used to 
test the null hypothesis that the expected value of the extra 
error sum of squares is zero, i.e. adding these terms to the 
model does not increase the descriptive power of the model 
significantly. The test statistic is calculated by Eq. (1)

F
SS SS r q
SS n r
q r

r
0

1
=

−( ) −( )
− −( )

,
   (1)

where SSq is the error sum of squares of the basic model,  q 
is the number of terms in that model, SSr is the error sum 
of squares of the model with added terms in it, r is the total 
number of terms in that model and n is the number of data 
points. If the test statistic, F0 does not exceed the F-critical 
value at 5 % significance level with degrees of freedoms of 
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r q−( )  and n r− −( )1  the null hypothesis is accepted. Thus 
there is no significant difference between the two models.

2.2 Residual analysis 
2.2.1 Checking assumptions
Assumptions of regression method have to be fulfilled oth-
erwise the estimates of the regression parameters might be 
biased. In cases where the assumptions are not fulfilled, 
other statistical regression methods (e.g. Generalized Linear 
Regression, Nonparametric Regression) are to be used. 
Normality of the residuals with constant variance and inde-
pendence of the residuals are those to be tested. Fulfilled 
assumptions are indicators of a proper model, therefore 
checking them also supports the verification of the model. 
The methods to check assumptions are not discussed in this 
paper, but demonstrated in the data evaluation section.

2.2.2 Outlier data detection
Identifying and removing outlier data is of importance, as 
they may distort the model estimation. A single point can be 
outlier in two ways: it can be outlier in the space of the depen-
dent variable or in the space of the independent variables. 

Plotting studentized residuals against predicted val-
ues [25] is a way to identify potential outlier data in the 
space of dependent variable. The points should scatter 
around zero approximately within a constant width band. 
Statistical software usually provides the studentized val-
ues thus they can be easily plotted. Usually values higher 
than 2.5 should be checked more closely as there is a great 
chance that these points are outliers. 

Mahalanobis distance (Di ) is used to identify data that 
are outlier in the space of the independent variables. The 
Di values for the data are usually provided by statistical 
programs (calculations of Di can be found for example 
in [26]). Plotting Di against predicted values can make the 
examination easier by visualization. Points which are far 
from the rest may be considered outliers. Table for critical 
values for Di can be found in [27]. Di higher than the criti-
cal value is considered outlier in the space of independent 
variables and should be removed from the dataset. 

Cook’s distance (Ci) measures the combined influence 
on the case of being an outlier in the space of the depen-
dent variable and the independent variables. Parameters of 
the fitted model significantly change when data with high 
Ci (formulas for calculations can be found in [28]) is omit-
ted from the data set [29]. Cook suggests that data with Ci 
higher than 1 should be flagged as outlier and omitting the 
data should be considered [30].

3 Methodology of designed experiments
Design of experiments (DOE) is a statistical tool that con-
structs an experiment with least necessary experiments 
needed to be performed for creating a certain model. The 
structure of experiment designed by DOE can be made to 
be orthogonal which means that the parameters of the fit-
ted model are estimated independently from each other. 
This results in a less uncertain model estimation than that 
of non-designed experiments [31].

Due to the fact that the solubility parameter itself 
depends on the other two controlled parameters (tem-
perature and pressure) the settings of the experiments 
in a designed experiment is not straightforward. Three 
parameters define HSP: carbon-dioxide – organic solvent 
ratio, pressure and temperature. In order to tune HSP at 
any given set of pressure and temperature combination, 
the ratio of the solvent mixture is to be set. However, 
this ratio is constrained by the solubility of the ibuprofen 
and the solubility of the diastereomeric salt forms in the 
organic solvents. As experiments were designed with con-
stant apparent concentrations of both the ibuprofen and of 
the salts in the GASF crystallizer, decreasing the amount 
of the organic solvent was limited by the solubility of the 
components in it. Increasing the amount of the organic 
solvent, which results in an increasing solubility of all 
components of interest, was limited as well since no frac-
tionation could be possible without a diastereomeric salt 
precipitation. In practice due to the constraint, the HSP 
cannot be set to constant maximum and minimum values 
during the experiment as it would be desired in an orthog-
onal design. This means that full orthogonality cannot be 
achieve, approximate only. However, other advantages, 
such as smaller variance of estimates, can be gained over 
undesigned experiments by designing the experiment.

In our case there are 3 parameters, namely pressure, 
temperature and HSP. The expectation of the authors 
is that the selectivity of the antisolvent process can be 
described mostly by the linear effect of HSP, while tem-
perature and pressure are less important factors and take 
part in the model only as correction terms. The effects 
that are evaluated are the linear effects of each param-
eter, the quadratic effects of temperature and pressure 
and the interaction of temperature and pressure. To 
estimate these effects a 2 × 32 design would be desired, 
where HSP would be set at 2 levels while temperature 
and pressure would be set at 3 levels during the experi-
ments. However, as it was discussed above, the setting of 
HSP is constrained, an orthogonal 2 × 32 design cannot 
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be constructed. But designs with other advantages over 
undesigned experiment can be constructed. The fre-
quently used D-optimal design [32] minimizes the volume 
of joint confidence region of estimated parameters of the  
model, i.e. minimizes the uncertainty of the esti-
mates. TIBCO Statistica Software was used to create 
the D-optimal design for experiments in ethanol with 
Sequential algorithm [33].

4 Data evaluation
4.1 Experiment with methanol as the solvent
The dataset contains 34 data points that were obtained 
in these experiments. Exact experimental methodology 
can be found our previous paper [34]. The pressure, tem-
perature and Hansen solubility parameter were varied in 
the experiments in a non-designed structure. The aim is 
to find an appropriate model to describe selectivity (S) as 
function of temperature (T), pressure (p) and the Hansen 
parameter (δ). The data can be found in Table 1.

4.1.1 Model selection
The following effects were considered in the candi-
date models: linear effects of temperature, pressure and 
Hansen parameter, quadratic effects of temperature and 
pressure and the interaction of temperature and pressure. 
The choice of the candidate effects are arbitrary and based 
on the preferences and expectations of the experimenters. 
If the data cannot be described appropriately with a model 
including these effects other effects should be considered 
to be taken into account.

The 10 best (based on adjusted R2 ) models obtained 
from best subset method can be seen in Table 2. Every row 
belongs to a certain model and the + signals mark those 
terms that are included in that model. Based on the dis-
cussion of model selection above, higher adjusted R2 and 
smaller number of effects are desired. Therefore #1 and #5 
were chosen for further comparison.

The earlier was chosen because of its high adjusted R2 
value and the latter was chosen because of its simplicity 
(and reasonably high R2 value). Model #1 has residual vari-
ance of 0.003276 with 29 degrees of freedom while model 
#5 has residual variance of 0.003584 with 30 degrees of 
freedom (not shown in the table). The two R2 values are 
relatively close to each other, the comparison is desirable. 
To compare the two models, the null hypothesis of the 
extra sum of square being zero is tested. The F0 is 3.82, 
calculated by Eq. (1). The critical F-value at 5 % signifi-
cance level with degrees of freedom of 1 and 29 is 4.18. 

As F0 is smaller than the critical F-value, the null hypoth-
esis is accepted, there is no significant difference in the 
descriptive power of the two models. This result supports 
the choice of the simpler model with only linear terms in it, 
namely p, T and Hansen solubility parameter (model #5).

4.1.2 Residual analysis
Residual analysis was carried out on the selected model 
in order to detect outlier data and to check assumptions of 
regression analysis and adequacy of the model.

Table 1 Data of experiments with methanol

# p (MPa) T (°C) δ (MPa0.5) S (-)

1 15 45 12.0 0.541

2 15 45 12.2 0.388

3 15 45 12.4 0.328

4 15 45 12.4 0.328

5 15 45 12.6 0.152

6 15 45 12.9 0.002

7 10 45 11.2 0.439

8 11 45 11.5 0.519

9 12 45 11.8 0.502

10 13 45 12.0 0.434

11 14 45 12.2 0.442

12 15 45 12.4 0.378

13 16 45 12.6 0.333

14 17 45 12.8 0.255

15 18 45 13.0 0.374

16 19 45 13.0 0.258

17 20 45 13.3 0.295

18 21 45 13.4 0.254

19 15 35 13.2 0.399

20 15 55 11.5 0.303

21 10 35 12.2 0.444

22 20 55 12.5 0.243

23 20 35 14.1 0.325

24 20 45 13.3 0.249

25 15 45 12.4 0.350

26 10 45 11.2 0.458

27 13 45 12.0 0.402

28 13 45 12.0 0.426

29 15 45 12.3 0.433

30 15 45 12.3 0.435

31 10 45 11.2 0.433

32 15 45 12.4 0.354

33 20 45 13.3 0.219

34 15 45 12.4 0.328
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Normality of residuals was examined with normal 
probability plot (Fig. 1). The data fit well to the red line 
representing the normal distribution and no deviation can 
be seen. Shapiro-Wilk's test [35] verifies the normality of 
residuals (p = 0.98).

In order to detect outlier data studentized residu-
als, Mahalanobis distances and Cook's distances were 
examined. 

Fig. 2 shows the studentized residuals against the pre-
dicted values. Thought the point #6 and #15 are a bit 
extreme compared to the rest, the values are lower than 
2.5 and one has no reason to flag these points as outliers 
based on this plot. A potential anomaly can be seen in 
the plot as if the residuals had a curve trend. This pat-
tern might suggest a need for quadratic term in the model. 
However, extended nature of the trend is not convincing, 
it should not necessarily give rise to concern.

Fig. 3 shows the Mahalanobis distances against the 
predicted values. Based on the table of critical values of 
Mahalanobis distances [27] the point #6 is outlier in the di-
mension of the independent variables at 5 % significance level.

To affirm the outlier nature of this point, Cook's dis-
tances are examined. Fig. 4 shows the Cook's distances 
against the predicted values. 

Table 2 Candidate models for further comparison

# Adjusted 
R2

Number 
of effects p T δ p * T p2 T 2

1 0.73 4 + + + +

2 0.72 5 + + + + +

3 0.72 5 + + + + +

4 0.71 6 + + + + + +

5 0.70 3 + + +

6 0.69 4 + + + +

7 0.69 4 + + + +

8 0.68 4 + + + +

9 0.68 5 + + + + +

10 0.68 3 + + +

Fig. 1 Normal probability plot of residuals 

Fig. 2 Studentized residuals against the predicted values.

Fig. 3 Mahalanobis distances against predicted values

Fig. 4 Cook's distances against predicted values
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The Cook's distance of point #6 is evidently higher than 
those of the other points and also higher than 1 which is a 
suggested limit in [30] to flag the point as outlier. Based 
on the above observations, point #6 is flagged as outlier 
and dropped from the dataset. It is not evident whether 
the point is outlier only in the space of the independent 
variables or both in the space of the independent variables 
and the dependent variable. Added experiences could be 
conducted with settings close to those of point #6 in order 
to test the outlier nature in the space of the dependent 
variable. Also these added experiences would reduce the 
extent of outlier nature in the space of independent vari-
ables of point #6.

As point #6 is dropped from the initial data set, the 
evaluation of the remaining data should be carried out 
from the beginning. The same model was chosen in the 
model selection phase as before, the assumptions of the 
analysis and the model adequacy were verified by residual 
analysis and no further outlier data were detected. 

4.1.3 Fitted model
The selectivity of the GASF optical resolution of ibuprofen 
from methanol can be described by the temperature, the 
pressure and the Hansen solubility parameter. The fitted 
model is presented in Eq. (2). 

S p T= + − −5 20 0 0460 0 0312 0 334. . . . ,δ    (2)

where p is pressure (MPa), T is temperature (°C), 
δ is Hansen solubility parameter (MPa0.5) and S is  
selectivity (-). The coefficient of HSP being much greater 
than the two other parameters, while the scales of param-
eters are within the same magnitude reinforces the expec-
tations of the authors that HSP has the highest effect on 
the selectivity. 

4.2 Experiments with ethanol as the solvent
The second set of experiments was conducted in order to 
evaluate the process with ethanol as solvent in a designed 
experiment. Despite the fact that the response showed 
only linear correlation with the parameters in the experi-
ment with methanol, a design was constructed that allows 
evaluation of quadratic effects of pressure and tempera-
ture as well. This experiment would contain 18 points 
(2 × 32 ) in an orthogonal design. The difficulty is that 
the design space of the experiments is constrained as it 
was discussed in Section 3. The settings of the Hansen 
parameter were the closest that was practically achiev-
able to the settings of those in an orthogonal 2 × 32 design. 

Table 3 shows the settings of the experiments. The δ* col-
umn represents the settings as if the design space were not 
constrained, while the δ column represents the HSP val-
ues that would be practically achievable. Also, the exper-
imenters preferred to reduce the number of experiments 
to 14. D-optimal design method was used to construct a 
design with 14 points (chosen from among the practically 
achievable 18 points of the 2 × 32 design) which allows 
evaluating quadratic effects of temperature and pressure 
as well as linear effects of the parameters and cross-prod-
uct of temperature and pressure.

If it is found that considering these effects only, the 
descriptive power of the model is low, the experimenter 
should include other effects. However, to include other 
effects, it might be needed to complete the designed 
experiment with more experiments. The situation is spe-
cial here, as the design space is restricted and the design 
is not orthogonal. It results in points (Table 3, the points 
with HSP around 13.0) that can be used to evaluate qua-
dratic effect of HSP as well. The quadratic effect is not 
considered in the paper, as it was found to be the way the 
experimenters expected, non-significant. 

The coloring in Table 3 marks the chosen points. 
Experiment #3, #8 and #17 were selected two times by the 
optimizing algorithm to enhance these settings in order to 
attain D-optimality. 

Table 3 Design of experiment

# p (MPa) T (°C) δ * (MPa0.5) δ (MPa0.5)

1 15 40 12 12.3

2 15 40 14 13.3

3 15 45 12 12.0

4 15 45 14 12.9

5 15 35 12 12.8

6 15 35 14 13.7

7 20 45 12 12.8

8 20 45 14 13.7

9 20 35 12 13.6

10 20 35 14 14.0

11 20 40 12 13.2

12 20 40 14 14.0

13 10 40 12 12.0

14 10 40 14 12.4

15 10 45 12 12.0

16 10 45 14 12.1

17 10 35 12 12.0

18 10 35 14 12.8
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The experimental results can be found in Table 4. 
There are varying differences between the Hansen val-
ues defined in the designed experiment (Table 3, δ col-
umn) and those are set in the experiments (Table 4, δ 
column). The reason for that it is hard to set the parame-
ter to an exact value, therefore what was achieved in the 
experiments those may differ from the ones defined in the 
design. The real values that were set during the experi-
ments were recorded and the calculations were performed 
with them. 

4.2.1 Model selection
The simplest model which is linear in all the parameters 
is more than appropriate to describe the data, comparison 
is not needed with other models. The adjusted R2 is 0.99 
while the residual variance is 0.000526. Note, that this 
residual standard variance is surprisingly smaller than 
the ones in the experiments with methanol as the solvent. 

4.2.2 Residual analysis
Residual analysis was carried out on the selected model, the 
details are not shown here. The assumptions of the regres-
sion analysis are verified, there was no sign of the model 
being inadequate. Also no data was found to be outlier.

4.2.3 Fitted model
The selectivity of the antisolvent fragmentation of ibupro-
fen from ethanol can be described by the temperature, the 
pressure and the Hansen solubility parameter. The model 
fitted is given in Eq. (3)

S p T= + − −6 06 0 0643 0 0389 0 400. . . . ,δ   (3)

where p is pressure (MPa), T is temperature (°C), 
δ is Hansen solubility parameter (MPa0.5 ) and S is  
selectivity (-). It can be stated here as well that HSP has the 
highest effect on the response, S . 

4.3 Comparison of the estimates of the two models
It can be seen in Table 5, that the estimates of the param-
eters in the two models are quite similar. Further analysis 
could be carried out to test whether the two datasets can 
be described by a single model, however it is not in the 
focus in this paper. The standard errors of the estimates 
are function of the residual variance, the number of data 
point, and the structure of the design of the experiment. 
Smaller residual variance, greater number of data points 
and designed nature of the experiments are decreasing the 
standard errors of estimates.

Despite the fact that the designed ethanol experiment 
contained half the number of data compared to the unde-
signed methanol experiment, the standard errors of the 
parameters of the ethanol model are much smaller. This 
is the effects of the residual variance being much smaller 
in the ethanol experiments and the designed nature of the 
experiment. Moreover, the probable reason for the smaller 
residual variance is the D-optimal property of the design. 
The 14 experiments with ethanol were performed consec-
utively, in relatively short time, in a designed structure. 
Contrary, the previous experiments with methanol were 
done less consecutively in longer time scale without utili-
zation of DOE. The discontinuity of the experiments gave 
opportunity to random effects (effect of the day for exam-
ple) to arise and increase the variance of the process sig-
nificantly, making the residual variances greater.

5 Conclusion
Evaluation and model building utilizing statistical meth-
ods were interpreted in the paper for GASF experiments 
with methanol and ethanol as organic-solvents. A proper 
model was found to describe the selectivity of the GASF 

Table 4 Data of the experiments with ethanol

# p (MPa) T (°C) δ (MPa0.5) S (-)

1 10 45 12.237 0.033

2 10 40 12.700 0.107

3 15 40 13.575 0.024

4 20 45 13.987 0.012

5 15 35 13.949 0.078

6 20 45 14.028 0.000

7 15 35 13.926 0.088

8 10 35 12.017 0.559

9 15 45 12.068 0.466

10 10 35 12.016 0.517

11 15 45 12.083 0.416

12 15 40 12.538 0.477

13 20 35 13.819 0.456

14 20 40 13.427 0.416

Table 5 Parameter estimates and its standard errors

Methanol Ethanol

Estimate Standard
error Estimate Standard

error

Intercept 5.20 1.23 6.06 0.165

p 0.0460 0.0187 0.0643 0.00266

T -0.0312 0.00823 -0.0389 0.00166

δ -0.334 0.0932 -0.400 0.0120
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method by operating parameters, namely pressure, tem-
perature and Hansen solubility parameter. The model 
shows that HSP has the highest effect on selectivity. We 
have no knowledge about other study in the literature 
which focuses on the modelling of the GASF method pro-
cess especially not one that includes the Hansen solubil-
ity parameter. This quite simple model can easily be used 
to predict the selectivity of the process at given operat-
ing conditions. Also it can be used to find the optimal 
operating parameters where the selectivity is the highest. 
Furthermore it was demonstrated that optimal design is 
a remarkable tool in researches with constrained design 
space like the supercritical antisolvent method. The design 

does not only reduce the number of experiments required 
to build a certain model but also reduces the uncertainty 
of the model estimates.
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