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Abstract

In this study, La and Mg doped, and co-doped ZnO nanoparticles were prepared using the sol-gel method. The prepared samples were 

characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy 

(EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physisorption techniques. The 

XRD results indicated that the prepared nanoparticles can be well adopted by the hexagonal wurtzite structure crystal and there are no 

second impurity peaks. Studies of the FESEM, EDX and TEM have shown that the samples have uniform spherical-like morphology with a 

homogenous distribution. The incorporation of La and Mg into the ZnO lattice had no effect on the morphology of the nanoparticles, but 

a reduction in the size of the grains (≈ 14 nm to ≈ 7 nm) was observed due to the insertion of these ions. The results of N2 physisorption 

indicated that there was an increase in BET surface area and pore volume for doped and co-doped samples. The results of DRS showed 

an increase in band gap energy and a blue shift at the absorption edge for doped and co-doped samples. The photocatalytic activity of 

the prepared catalysts was evaluated in the removal of RhB under UVA irradiation. The results showed that Mg5%-La5%/ZnO had the 

highest photoactivity (91.18 %) among all samples. 
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1 Introduction
The vast consumption of water in various industries, partic-
ularly in color production, leads to remarkable wastewater 
which can pollute the environment. Hence, for preventing 
water pollution, it is necessary to remove organic com-
pounds before they are discharged into wastewater [1-8]. 
Since 1 to 20 % of the overall produced dyes are released 
into the environment [2, 8, 9], this procedure is considered 
as a notable concern and an international problem for human 
beings [10]. Due to the production of toxic metabolites [2], 
especially aromatic amines [9], these pollutants are regarded 
as poisonous [5, 9, 11, 12], resistant to biological treatment [2, 
5, 11], stable in environment [2] and carcinogenic [12, 13]. 
The presence of organic materials in wastewater consumes 
dissolved oxygen [2, 7], reduces the process of photosynthe-
sis, and decreases the solubility of gases [7, 12]. Adsorption, 
ultrafiltration, reverse osmosis, coagulation, sedimentation, 

and ozone treatment are assumed as traditional treatment 
methods which have disadvantages such as high costs, pro-
duction of toxic sludge, ineffective degradation and low 
mineralization of organic dyes, nondestructive decoloriza-
tion, producing secondary pollution and high treatment time 
[2, 5, 7, 12-16]. New development in water treatment has led 
to the technology of Advanced Oxidation Processes (AOPs) 
which are widely used for mineralizing toxic pollutants and 
a variety of recalcitrant organics in wastewaters [2, 3, 7, 8, 
16-20]. Given different AOPs, heterogeneous photocatal-
ysis is regarded as an effective and promising technique 
[4, 12, 13].

 In the heterogeneous photocatalysis, a semiconductor 
photocatalyst is excited by UV irradiation which forms 
electron-hole pairs. Hydroxyl radicals and reactive oxygen 
species (ROS) with high oxidation potential are produced 
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subsequent reactions. These species are mainly responsible 
for oxidizing organic pollutants, especially aromatic rings.

Notable instances of photocatalysts are ZnO, TiO2, 
Zn2SnO4, WO3, V2O5, CdS, Cu2O, W2O5, Fe2O3, ZnS, ZrO2, 
CeO2 and etc. [1, 13, 19, 21, 22]. Significant merits of ZnO 
are as follows: i) heterogeneous photocatalyst [9, 23-35], ii) 
more efficiency than TiO2 under UV light [1, 7, 20, 22, 35, 
36], iii) high transformation of organic component [37], 
iv) high activity in removing organic contaminants [23], 
v) high luminescent activity [35], vi) high activity surface 
due to large number of active sites [1] and vii) absorp-
tion of an extensive range of UV spectrum [22]. However, 
ZnO has low quantum efficiency due to high recombina-
tion electron-hole pairs [5, 7]. With respect to UV irradia-
tion on ZnO surface, charge separation should be very fast 
after the generation of electron-hole pairs for delaying the 
recombination process [9]. The recombination rate of the 
electron-hole pairs can be reduced by coupling with other 
metal oxides [38-41] and also by doping and co-doping of 
metal and nonmetal ions into the photocatalyst lattice [4, 
19, 22, 26, 29, 30, 34-36, 42-53]. The sol-gel method is a 
very versatile process for homogeneous doping or co-dop-
ing of ions into the ZnO lattice [54, 55]. 

 Behnajady et al. [56], noted a superior photocatalytic 
activity for Mg-doped TiO2 in comparison with un-doped 
TiO2 for the degradation of C.I. Acid Red 27. The high-
est photocatalytic activity of Mg-doped TiO2 in compar-
ison with other M-doped TiO2 catalysts (M=Fe, Co, Ce, 
Cr, Mn, Ni and Ag ions), was defined by Feng et al. for the 
degradation of Rhodamine B in an aqueous solution [57]. 
Wang et al. [58], informed an improved photocatalytic 
activity for Ag/ZnO-SnO2 photocatalyst in compared with 
pure ZnO-SnO2 in degradation MO. In recent years, some 
studies have been done on preparing co-doped ZnO such 
as, Al-Sn/ZnO, Li-Mg/ZnO, Gd-ZnO:Al, Al-Na/ZnO, 
Mn-Co/ZnO, N-Li/ZnO, Li-Mg/ZnO, Eu-Er/ZnO, Ni-Cu/
ZnO, Al-Li/ZnO, Al-N/ZnO, Cu-V/ZnO, Ag-S/ZnO, 
Ga-N/ZnO, Al-N/ZnO, Mg-Ga/ZnO, Y-Cd/ZnO, Cd-Al/
ZnO, N-In/ZnO and Al-Ga/ZnO [59-61].

 In line with the purpose of the present study for enhanc-
ing ZnO photocatalytic activity [4, 14, 19, 22], ZnO, Mg/
ZnO, La/ZnO and Mg-La/ZnO nanoparticles were syn-
thesized by sol-gel method. To the best of our knowledge, 
there is no report concerning the co-doping of ZnO with 
Mg and La. The structural properties of the prepared cata-
lyst were characterized by using X-ray diffraction (XRD), 
scanning electron microscopy (SEM), transmission elec-
tron microscopy (TEM), UV-Vis diffuse reflectance 

spectroscopy (DRS) and specific surface area and porosity 
analysis (BET & BJH). The catalytic activity of nanoparti-
cles was investigated with regard to removing Rhodamine 
B (RhB) under ultraviolet light (UVA).

2 Experimental 
2.1 Materials
Zinc acetate di-hydrate (Zn(CH3COO)2.2H2O, Merck), 
Lanthanum nitrate hexa-hydrate (La(NO3)3.6H2O, Merck), 
Magnesium nitrate hexa-hydrate (Mg(NO3)2.6H2O, 
Merck) were used as sources of Zn, La and Mg, respec-
tively. Oxalic acid di-hydrate and ethanol (99.99 %) were 
also purchased from Merck and used without further puri-
fication. Rhodamine B (Merck) was used as model con-
taminant for the photocatalytic activity experiments. 
Double distilled water was used in all experiments. 

2.2 Synthesis of nanoparticles using sol-gel method
Bimetallic Mg-La/ZnO, monometallic Mg/ZnO and La/
ZnO and pure ZnO were prepared by using sol-gel method. 
For the co-doped ZnO nanoparticles with 5-6 wt.% Mg 
and 4-5 wt. % La, at first zinc acetate di-hydrate was 
slowly dissolved in 100 mL ethanol at 60 °C (with thermal 
controlling) and ongoing stirring for 30 min until homoge-
neous solution was obtained. Then, appropriate amounts 
of Mg(NO3)2 and La(NO3)3 dissolved in 20 mL ethanol at 
60 °C were used which were continuously stirred for 30 
min until homogeneous solution was obtained and was 
added drop by drop to the ethanolic solution of zinc ace-
tate (where temperature was controlled). The oxalic acid, 
dissolved in ethanol (40 mL) at 60 °C, was added drop by 
drop to the ethanolic solution. The mixture was stirred for 
2 h. The obtained white colloidal semi-gel dried at 90 °C 
for 12 h in the oven (E24-Sherwood Co). The dried xerogel 
was calcinated at 400 °C for 2 h in the electric Furnace 
(ALF-18-iran, Atbin Co). It was powdered by mortar. 
Doped Mg/ZnO and La/ZnO nanoparticles with 1-6 wt. % 
and bare ZnO were also prepared by the similar procedure 
[4, 26, 35, 62, 63].

2.3 Photocatalytic experiments
All experiments regarding photocatalytic degradation 
were carried out in a batch 100 mL volume quartz pho-
toreactor with a 35 × 2.5 cm dimension which was fixed 
parallel to UVA light source. During the reaction, oxy-
gen gas was entered from the bottom of the photoreac-
tor. UV-A (Hitachi, F15T8/BL, 15 W, λmax = 370 nm) was 
the irradiation source. During the photocatalytic reaction, 
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evaporation could be neglected because the solution tem-
perature did not increase significantly. For photocatalytic 
RhB degradation through ZnO nanoparticle (bare, doped 
and co-doped), 50 mL of aqueous RhB solution with fixed 
weight of catalyst (20 mg) was sonicated for 15 min in 
ultrasonic bath (Sonica-2200ETH, Italy, 260W, 40 kHz in 
dimension of 24×14×10 cm). The aqueous RhB solution 
(10 mg L-1) including the photocatalyst was transferred to 
the batch quartz photoreactor and bubbled with an oxy-
gen flow to keep the suspension homogeneous (flow rate 
= 0.5 mL min-1) for 15 min in the darkness. The reaction 
was initiated by turning on the UVA lamp and 5 mL sus-
pension solution was taken at a certain irradiation time 
(21 min); then, the nanoparticles were separated by centri-
fuge (Kokusan H-11n). RhB Concentration was analyzed 
by UV-Vis spectrophotometer (Biowave-S2100, WPA) at 
λmax = 554 nm. [4, 19, 26]. 

2.4 Characterization methods
The crystalline phase and average crystallite size of the 
synthesized ZnO (bare, doped and co-doped) nanoparti-
cles were characterized using XRD technique via analyt-
ical-X'pert Pro-X-ray diffractometer. XRD patterns were 
recorded using Cu kα irradiation (λ = 0.154 nm) operator 
at 40 kV and 100 mA in the diffraction range (2θ) between 
10 to 80º. The average crystallite size, i.e. D (nm), of the 
obtained nanoparticles was calculated by Scherrer's equa-
tion [64]. The morphology and size of particles were deter-
mined by FESEM technique (MIRA3-TE-SCAN Co). 
FESEM was equipped with an energy dispersive X-ray 
spectroscopy (EDX) system for analyzing the chemi-
cal composition of nanoparticles. The morphology and 
average size of the nanoparticles were analyzed by TEM 
(EM10C-100kV-Zeiss, Germany). The optical band gap 
energy of nanoparticles was obtained by UV-Vis diffuse 
reflectance spectroscopy (DRS, UV-2550, Shimadzu, 
Japan). The results of the DRS were converted to the Tauc 
equation. The optical band gap of nanoparticles can be cal-
culated by Tauc equation (Eq. (1)).

α ν νh A h Eg n= −( )     (1)

where Eg refers to the optical band gap; h denotes Planck's 
constant; ν refers to the frequency of incident photons; A 
stands for a constant which is called the band tailing param-
eter; α refers to the absorption coefficient α π λ=( )4 k ; k 
is the absorption index or absorbance; λ denotes the wave-
length in nm) and n refers to the index which depends on 
the type of transition and may have values such as 3/2, 

1/2, 2 and 3 corresponding to direct forbidden, direct 
allowed, indirect allowed and indirect forbidden transi-
tions, respectively. 

The band gaps of insulators/semiconductors are catego-
rized into allowed direct and indirect band gaps. Hence, 
the value of n should be 0.5 in equation [1] for allowed 
direct band gap. The average band gap can be derived by 
plotting Tauc's graphs between α νh( )2

 versus photon 
energy hν( )  and by extrapolating the linear portion of the 
spectra to the hν axis [65-70]. The wavelength of absorp-
tion edge (λ) was obtained from equation Eg =1239 8. .λ  
[22, 47, 63]. N2 adsorption and desorption experiments 
were carried out at 77 K using the BET analyzer (Belsorp 
Mini) so as to measure specific surface area and pore size 
distribution based on BET (Brunauer-Emmett-Teller) and 
BJH (Barret-Joyner-Halender) methods.

3 Results and discussion
3.1 XRD structural studies
The XRD patterns of the nanoparticles ZnO, Mg5%/ZnO, 
La4%/ZnO, Mg5%-La5%/ZnO and Mg6%-La4%/ZnO are 
depicted in Fig. 1. All peaks can be well adopted by the 
hexagonal wurtzite structure crystal according to the stan-
dard XRD pattern of ZnO (JCPDS 36-1451) [71]. It appears 
from the XRD analysis that there are no second impurity 
peaks corresponding to MgO and La2O3. The absence of 
characteristic reflections related to the Mg and La in the 
XRD pattern of Mg and/or La/ZnO (doped and co-doped) 
samples may be attributed to the low loading quantity and 
appropriate incorporation of La and Mg ions in the ZnO 
lattice [22]. The 2θ value for (101) diffraction peak (ZnO 
main peak) in the XRD patterns of ZnO, Mg5%/ZnO, 
La4%/ZnO, Mg5%-La5%/ZnO and Mg6%-La4%/ZnO are 
36.343º, 36.265º, 36.343º, 36.369º and 36.447º, respectively. 
The ionic radius of Mg ions (0.72 Å) is close to the Zn ions 
(0.74 Å) but the radius of the La ions (1.03 Å) is larger than 
that of Zn ions. The shift in the 2θ values and the broad-
ening of the diffraction peaks indicate that the doped ions 
are successfully incorporated into the ZnO lattice. Due to 
the notable difference between La and Zn ionic radiuses, 
it is difficult for La to substitute Zn and La ions are incor-
porated only in the interstitial sites of the ZnO lattice [72]. 
Nevertheless, Mg might be able to substitute Zn because 
of the same ionic radius. The average crystallite size of the 
nanoparticles was measured from X-ray line broadening 
of the (101) diffraction peak by means of Debye-Scherrer’s 
equation. The results, given in Table 1, obviously indicate 
the reduction of ZnO crystalline size by doping La and 
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Mg. The reduction in crystallite size is mainly attributed 
to the presence La-O-ZnO and Mg-O-ZnO on the surface 
of the doped ZnO, which excludes the growth of crystalline 
grains [26]. In addition, the doping and co-doping of Mg2+ 

and La3+ ions lead to oxygen vacancies in the ZnO crystal-
line structure; consequently, its crystallite size decreases. 
Due to different La and Mg positions in the ZnO lattice, 
the impact of Mg doping on the crystallite size was more 
significant and effective than that of La doping. The micro-
strain (ε) can be calculated using in Eq. (2) [29].

ε β θ= cos 4      (2)

As shown in Table 1, there is a slight change in micro-
strain values. That is, the increased micro-strain in 
nanoparticles changes the diffraction peak broadening 
which results in a reduction of particle size and a little 
shift in the XRD peaks. However, it should be pointed out 
that the line broadening may be due to the size or micro-
strain or the interaction between both of them [29]. The 
cell parameters of prepared samples in Table 1 indicates 
that the lattice parameter (a) of co-doped nanoparticles 
are slightly higher than other samples. 

3.2 FESEM and EDS studies
FESEM is considered to be a useful technique in studying 
the structural characterization and morphology of nanopar-
ticles. It has information about the growth mechanism, 
shape and size of the particles [29]. Fig. 2 (a)-(e) illustrates 
FESEM images and the surface morphology of bare, doped 
and co-doped Mg, La/ZnO nanoparticles. It shows that the 
samples have a uniform spherical-like morphology with a 
homogenous distribution. Indeed, FESEM images obviously 
demonstrate that the doping and co-doping of Mg2+ and 
La3+ have no impact on the morphology of ZnO nanopar-
ticles; nevertheless, it shows that the size of the grains has 
decreased, especially in the co-doped sample. In addition to 
FESEM, EDS analysis was conducted for investigating the 
chemical composition of nanoparticles. The results of the 
EDS analysis are depicted in the Fig. 3(a)-(e) and Table 2. 
EDS spectra of bare ZnO have only two elements, namely 
Zn and O which indicates that ZnO sample is pure. In addi-
tion, doped and co-doped nanoparticles were formed only 
from Zn, Mg, La and O elements and the purity of the 

Table 1 Crystallits size, cell parameters and micro-strain of ZnO, Mg, La doped and co-doped nanoparticles.

Nanoparticle 2θ
(deg)

FWHM (β)
(rad)

Crystallite 
size (nm)

Micro-strain
(ε)×10−3

Cell parameters

a = b (Å) c (Å)

ZnO 36.343 0.0101 14.28 2.4 3.2200 5.2000

Mg5%/ZnO 36.265 0.0199 7.25 4.7 3.2190 5.1490

La4%/ZnO 36.343 0.0134 10.79 3.2 3.2190 5.1490

Mg5%-La5%/ZnO 36.369 0.0194 7.45 4.6 3.2490 5.2050

Mg6%-La4%/ZnO 36.447 0.0197 7.33 4.7 3.2500 5.2070

Fig. 1 XRD patterns of (a) ZnO, (b) Mg5%/ZnO, (c) La4%/ZnO, (d) 
Mg5%-La5%/ZnO, and (e) Mg6%-La4%/ZnO nanoparticles.
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nanoparticles was confirmed. The quantitative analysis of 
the compositional elements such as Zn, O, Mg and La in the 
prepared nanoparticles is shown in Table 2. The EDX anal-
ysis confirms the presence of Mg and La in ZnO and also 
indicates good compatibility with the experimental concen-
tration used for the synthesis of nanoparticles.

3.3 TEM images
The shape and size of the particles and their distribu-
tion for the prepared nanoparticles are depicted in TEM 
images (Fig. 4(a)-(e)). TEM images of all samples indicate 

some agglomeration along with individual particles. 
According to these images, all prepared photocatalysts 
have regular distributions and spherical morphology. The 
size obtained from XRD differs from those of TEM tech-
niques. Whereas the grain size, in TEM, is measured as 
the distance between visible grain boundaries, the extent 
of the crystalline region which coherently diffracts X-rays 
is measured as the grain size in XRD. Consequently, it 
can be argued that XRD leads to smaller size in compar-
ison with other methods such as TEM and SEM [63]. The 
particle size distributions based on TEM images for all 

Fig. 2 (a)-(e): FESEM images for (a) ZnO, (b) Mg5%/ZnO, (c) La4%/ZnO, (d) Mg5%-La5%/ZnO and (e) Mg6%-La4%/ZnO

Table 2 The quantitative analysis of the compositional elements present in the bare, Mg and La 
doped and co-doped ZnO nanoparticles.

Percentage of the element 

Samples La/Zn
ratio%

Mg/Zn
ratio%

Atomic %La/Zn
ratio%

Mg/Zn
ratio%

Weight %

LaMgOZnLaMgOZn

------------50.8549.15------------20.2079.80ZnO

---5.84---1.9963.9334.08---4.98---3.2930.6266.09Mg5%/ZnO

3.55---1.15---66.4932.363.91---2.44---35.0962.47La4%/ZnO

4.715.741.822.2257.3138.655.135.162.993.0135.6858.32Mg5%-La5%/ZnO

4.216.391.522.3160.0536.124.465.932.523.3537.6756.46Mg6%-La4%/ZnO
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samples are shown in Fig. 5. The histograms indicate that 
the average particle size of ZnO, Mg5%/ZnO, La4%/ZnO, 
Mg5%-La5%/ZnO and Mg6%-La4%/ZnO is about 28.55, 
17.62, 23.71, 16.06 and 13.38 nm, respectively. These val-
ues were obtained from 569, 540, 618, 490 and 567 parti-
cles, respectively. The results reveal that the particle size 
of nanoparticles is reduced as a result of doping Mg and La 
into the ZnO lattice.

3.4 BET surface area analysis 
Figs. 6(a) and 6(b) depict the N2 adsorption-desorption 
isotherms and the pore size distribution for the prepared 
samples, respectively. According to IUPAC classification, 
N2 adsorption-desorption isotherms of the nanoparticles 
show a type III isotherm which indicates the presence of 
the mesoporous and macroporous structure [73-76].

The results regarding BET surface area and total pore 
volume in Table 3 indicate increased surface area and pore 
volume for the doped and co-doped samples. In the sol-gel 
technique, crystal growth was suppressed by the addition 

of La and Mg dopants. Hence, as acknowledged by XRD 
results, crystallite size decreases; consequently, surface 
area increases. Moreover, higher surface area values for 
the doped samples may be attributed to the removal of 
nitrate from the ZnO lattice during calcination at 400 °C 
and the thermal decomposition of La and Mg precursors 
[10]. Thus, increasing the porosity of the surface enhances 
the surface area [10].

3.5 DRS studies
UV-Vis DRS of nanoparticles are depicted in Fig. 7. 
The absorption edge of Mg5%/ZnO, La4%/ZnO, and 
Mg6%-La4%/ZnO are slightly blue shift when compared 
with bare ZnO nanoparticles. Tauc equation [65, 66] was 
applied for calculating Eg and absorption edge (Fig. 8). The 
band gap and absorption edge values for nanoparticles are 
given in Table 4. ZnO band gap value was enhanced by the 
doping and co-doping of La and Mg elements. The results 
reveal that doping with Mg lead to 0.072 eV enhancement 
in the band gap energy. The resulting 0.039 eV difference 

Fig.3 (a)-(e) EDS spectra of (a) bare ZnO, (b) Mg5%/ZnO, (c) La4%/ZnO, (d) Mg5%-La5%/ZnO, and (e) Mg6%-La4%/ZnO

Table 3 Surface area and pore characterization achieved by the BET and BJH methods.

Photocatalyst BET Surface area 
(m2 g-1)

Total Pore Volume
(cm3 g-1)

Mean Pore Diameter
(nm)

rp. Peak (Area)
(nm)

ZnO 45.183 0.2728 24.148 14.44

Mg5%/ZnO 72.087 0.5159 28.628 5.35

La4%/ZnO 46.104 0.3130 27.159 12.2

Mg5%-La5%/ZnO 63.621 0.4678 29.409 5.35

Mg6%-La4%/ZnO 54.774 0.3859 28.178 5.35
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in bang gap by La doping may be attributed to the decrease 
in the particle size. According to XRD and TEM results, 
there is a noticeable decrease in the particle size of doped 
and co-doped nanoparticles. As the particle size decreases, 
the energy levels discrete and, eventually, the band gap 
energy increases. The increasing in the band gap energy 
and blue shift in the absorption edge by doping of La and 
Mg ions may be attributed to the Burstein-Moss effect. 
This effect is caused by the transition energy in degener-
ate nanoparticles according to the partial field conduction 
band [36, 77]. Furthermore, shift to lower wavelength or 
higher energy, blue shift, is due to decreasing the grain 
size [63]. The blue shift can be attributed to the quan-
tum size effect in nanoparticles [29, 77], distortion of host 
lattice and defect generation [29]. Gopalakrishnan and 
Muthukumaran [29], found that increasing ZnO band gap 
with Ni doping may be due to sp-d spin exchange interac-
tion between band electrons and localized spin of the tran-
sition metal ions. Osei-Bonsu Oppong et al. [78] argued 
that, since d-d transition is superior to sp-d transition, La 
doping in ZnO lattice enhances band gap energy. When 

the band gap in the nanoparticles enlarges, the separation 
of the photo-induced electron-hole pairs occurs better [22].

3.6 Photocatalytic Activity
The main purpose of the study is to examine the photocat-
alytic activity of the prepared nanoparticles. The photo-
catalytic activity of the bare, doped and co-doped samples 
in the removal of RhB under UVA irradiation has been 
shown in Table 5. Blank tests results indicated that the 
removal percent of RhB by UVA alone (photolysis) and 
adsorption on nanoparticles was negligible.

The results, given in Table 5, obviously reveal that, as 
Mg doping increases up to 5 wt. %, RhB removal percent 
increases significantly. The photocatalytic activity of semi-
conductor nanoparticles is proportional with their band 
gap energy. That is, higher band gap energy corresponds 
with stronger electron-hole pairs which, consequently, 
lead to higher photocatalytic activity [4]. According to 
DRS results, Mg-doped ZnO has a larger band gap than 
bare ZnO, which may account for the higher photocata-
lytic activity of doped samples. Moreover, the increased 
Mg dopant leads to more crystal deficiency. Crystal defi-
ciency retards recombination of the electron-hole pair 
and leads to improved photocatalytic activity [4]. Xue et 
al. [79], reported that most Mg ions were substituted in the 
Zn sites of ZnO, which resulted in an increase not only in 
ZnO band gap, but also in the quality of ZnO crystalline. 

Prabu and Johnson [80] argued that the formation of 
intrinsic defects in the ZnS lattice is due to the incorpora-
tion of Mg2+. 

However, Mg content values greater than 5 wt. % 
decreased the photocatalytic activity of ZnO nanoparti-
cles. Such a reduction is attributed to the aggregation of 
Mg dopant and the reduction of homogeneous distribution 
of dopant in the ZnO lattice [81]. As shown in Table 5, 
it is observed that photocatalytic activity significantly 
enhanced along with La doping up to 4 wt. %. La3+ due to 
existence of a partially filled orbital effectively scavenges 
photoinduced electrons and produces unstable La2+ [82]. 

Fig. 4 (a)-(e) TEM images for (a) ZnO, (b) Mg5%/ZnO, (c) La4%/ZnO, 
(d) Mg5%-La5%/ZnO, and (e) Mg6%-La4%/ZnO nanoparticles.

Table 4 Band gap energy and absorption edge for the prepared 
nanoparticles.

Photocatalyst Eg (eV) λ (nm)

ZnO 3.111 398.52

Mg5%/ZnO 3.183 389.51

La4%/ZnO 3.150 393.59

Mg6%-La4%/ZnO 3.175 390.49
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Fig. 5 Histograms of particles size distribution of (a) ZnO, (b) Mg5%/ZnO, (c) La4%/ZnO, (d) Mg5%-La5%/ZnO, and (e) Mg6%-La4%/ZnO 
nanoparticles.

Fig. 6 Adsorption-desorption isotherm (a) and BJH diagrams (b) for prepared nanoparticles.
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In air-equilibrated system, electron discharges into the 
dissolved oxygen to form the O2

−°  and °OH  as follows:

O e OCB2 2
+ →− −°

,      (3)

O H e HOCB2 2
+ + →+ − °

,     (4)

O H e H OCB2 2 2
2 2+ + →+ −

.    (5)

In addition, HO2
°  and O2

−°  react with each other to pro-
duce 2 2H O  according to Eq. (6):

HO O H H O O
2 2 2 2 2

° °+ + → +− +
.    (6)

The produced H O2 2  in Eqs. (5), (6) reacts with photoin-
duced electrons which lead to the production of hydroxyl 
radicals (Eq. (7)). Hydroxyl radicals can effectively partici-
pate non-selectively in the degradation of target molecules. 

H O H e H O OHCB2 2 2
+ + → ++ − °

.
   (7) 

 Jia et al. [77], found that La doping produces surface 
defects and a space charge layer in the surface of La-doped 
ZnO samples, which hinders recombination of photoin-
duced electron - hole pairs. However, when the La amount 
exceeds 4 wt. %, the photocatalytic activity is notably 
reduced which is attributed to the aggregation of La2O3 
and to the negative impact of surface charge layer [77]. 
Covering ZnO surface from light absorption at higher dop-
ing values is another reason for decreasing photocatalytic 
activity [65]. Tayade et al. [83], maintained that ions with an 
ionic radius higher than the host element occupy the inter-
stitial positions; however, ions with an ionic radius near 
the host element occupy the substitutional positions. Also, 
they found that the occupation of interstitial positions is 
more effective in the photocatalytic activity than the occu-
pation of the substitutional positions. In the present study, 
La3+ ions have an ionic radius which is greater than that of 
the host element (Zn2+); nevertheless, Mg2+ ions have an 
ionic radius which is close to that of Zn2+ ions. Therefore, 
La3+ and Mg2+ ions are expected to occupy interstitial and 
substitutional positions in ZnO lattice, respectively. That 
is why La-doped ZnO has higher photocatalytic activ-
ity up to 4 % (La optimum percent) than Mg-doped ZnO. 
According to the results given in Table 5, co-doped Mg-La/
ZnO has higher photocatalytic activity than mono-doped 
and bare ZnO. The higher photocatalytic activity of the 
co-doped Mg-La/ZnO may be due to different sites of La3+ 
and Mg2+ ions in ZnO lattice so that La3+ in the intersti-
tial positions and Mg2+ in the substitutional positions. On 
the other hand, Mg doping increases band gap and ZnO 
surface area. Consequently, the increased band gap has a 
critical impact on photocatalytic activity. Firstly, a cata-
lyst with a wide band gap absorbs less light. Due to the 

Table 5 The photocatalytic removal percent of RhB in the presence of 
various catalysts.

Photocatalyst
Metal loading (wt. %) Removal 

percentMg La

bare ZnO 0 0 55.40

Mg/ZnO 1 0 58.83

Mg/ZnO 2 0 60.10

Mg/ZnO 3 0 63.07

Mg/ZnO 4 0 65.07

Mg/ZnO 5 0 83.18

Mg/ZnO 6 0 81.96

La/ZnO 0 1 77.77

La/ZnO 0 2 81.96

La/ZnO 0 3 83.87

La/ZnO 0 4 85.18

La/ZnO 0 5 75.38

La/ZnO 0 6 71.89

Mg-La/ZnO 5 5 91.18

Mg-La/ZnO 6 4 89.18

Fig. 7 The DRS-UV-Vis spectra for the prepared nanoparticles.
Fig. 8 Tauc plot and band gap energy estimation for the prepared 

nanoparticles.
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emission wavelength of the lamp (365 nm), the reduced 
light absorption is not important in this study. According 
to Table 4, all catalysts can absorb wavelengths less than 
390 nm. Secondly, a wider band gap corresponds with bet-
ter separation and also with stronger photoinduced elec-
tron-hole pairs. Thus, it can be argued that a wider band 
gap improves photocatalytic activity. Increasing the spe-
cific surface area with Mg doping is another important fac-
tor for higher photocatalytic activity. A higher specific sur-
face area enhances RhB adsorption and active sites, which, 
consequently, have notable positive impacts on photocat-
alytic activity. In addition, La with partially filled orbital 
and a space charge layer in the surface scavenges photoin-
duced electrons and enhances photocatalytic activity.

4 Conclusion
In this study, Mg and La doped and co-doped ZnO 
nanoparticles were successfully prepared by the sol-gel 
method. The XRD results of nanoparticles did not show 

the presence of separate metal oxide diffraction peaks 
for Mg and La phases due to the proper incorporation of 
doped ions. The FESEM, EDX and TEM results confirmed 
that all the prepared nanoparticles had a uniform spher-
ical-like morphology with a homogenous distribution; 
however, the grain size of the nanoparticles decreased due 
to the doping and co-doping processes. The DRS results 
indicated a significant increase in Eg for Mg and La doped 
and co-doped ZnO nanoparticles. N2 adsorption-desorp-
tion results indicated an increase in BET surface area and 
pore volume for doped and co-doped ZnO nanoparticles. 
Mg5%-La5%/ZnO had the highest capability for photo-
catalytic RhB removal in comparison with mono-doped 
and bare ZnO. 
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