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Abstract

A detailed two-dimensional population balance model of con-

tinuous cooling crystallization, involving nucleation, growth of

the two characteristic crystal facets and binary breakage along

the length of needle-shape crystals is presented and analysed.

The population balance equation is reduced into a moment

equation model of the joint moments of crystal size variables.

The dynamic behaviour of the crystallizer and the effects of ki-

netic and process parameters on the characteristics of crystal

size distribution are studied by simulation. The observations

and analysis have revealed that there exist strong interactions

between the breakage and the product properties.
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Introduction

Crystallization is an important unit operation of chemical

and process industries and it is a suitable method of formula-

tion of solid particles, separation and purification of chemical

components. There exist special demands in industrial practice

for well-designed crystalline products which require developing

more precise operation methods. Batch cooling crystallization is

an often used method in industry, especially in the pharmaceu-

tical industry hence well designed and operated batch processes

seem to have great advantage in producing appropriately tailored

crystalline products. Naturally, the detailed knowledge of these

processes provides an elementary requirement for success.

Crystallization is a complex process which contains many

basic processes such as primary and secondary nucleation and

growth of crystals, but crystal breakage and agglomeration can

often be observed in crystallizers. The breakage of crystals may

play especially important role in solution crystallization when

crystals are characterized by non-isometric crystal habits. The

high aspect ratio crystals, i.e. needle-shape or rod-like crys-

tals which often are met in the pharmaceutical industry, pos-

sess, among others, such habits therefore investigation of the

breakage process of those crystals seems to be of fundamental

importance.

Biscans [1] studied the breakage of mono sodium glutamate

crystals; Bao et al. [2] presented a model of L-threonine crys-

tals describing their growth and binary breakage. Population

balance models were applied by Sato et al. [3] and Grof et al.

[4] to characterise the breakage phenomenon of high aspect ratio

crystals. Ma and Wang [5] determined the facet growth kinetics

of L-glutamic acid crystals using in-process image analysis.

2D population balance models were applied by Ma et al. [6]

for simulation of crystallization of KDP crystals, and by Puel

et al. [7] for batch crystallization of a rod-like organic product.

Briesen [8] developed a modified moment method for reducing

a 2D population balance model of crystallization while Borsos

[9], Lakatos [10], and Borsos and Lakatos [11] applied a 2D

moment method to investigate the problem.

The aim of this work is to present and analyse a detailed 2D

population balance for a continuous cooling crystallization of
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high aspect ratio crystals with their possible fragmentation by

using the standard moment method. The two dimensional popu-

lation balance equation which is suitable to model non-isometric

crystal habits such as high aspect ratio crystals is extended with

breakage terms and completed with the mass and energy balance

equations. Then it is converted into a set of moment equations

for the joint moments of the crystal sizes. The results of this

process are compared with the system without breakage by us-

ing numerical simulators which were developed in Matlab envi-

ronment.

Population balance model

Crystals with needle-like habits can be characterised by two

size dimensions L1 and L2, which are sufficient to compute the

volumes of crystals, required to develop the mass and heat bal-

ance equations for crystallizers [10].

In this case the crystal population is described by the 2D pop-

ulation density function (L1,L2,t) → n(L1,L2,t) by means of

which n(L1,L2,t) dL1dL2 expresses the number of crystals from

the size domain (L1,L1+dL1) × (L2,L2+dL2) in a unit volume of

suspension at time t.

Let us now assume that:

• The working volume of the crystallizer is constant;

• All new crystals are formed at a nominal size L1,n ≈ L2,n ≈

L3,n ≈ Ln ≥0, so that we can assume: Ln ≈0;

• Crystal agglomeration is negligible.

The kinetic processes can be described by the following equa-

tions. The primary nucleation rate is given as

Bp = ε kp0 exp

(
−

Ep

RT

)
exp

(
−

ke

ln2 S

)
(1)

where S = c/cs denotes the supersaturation ratio, c and cs de-

note, respectively, the solute and equilibrium saturation concen-

trations, and ε stands for the volumetric ratio of solution. More-

over, ki0 is kinetic constant of primary nucleation; Ep is the ac-

tivation energy, R is the gas constant, T means the temperature

and ke is a parameter of primary nucleation. The rate of sec-

ondary nucleation is

Bb = kb0 exp

(
−

Eb

RT

)
σbµ

j

1,2 (2)

whereσ=(c−cs)/cs is the relative supersaturation and µ1,2 stands

for the third order joint moment.

The size independent growth rate is given by the following

equation:

Gi = kgi0 exp

(
−

Egi

RT

)
σg1 (3)

where i=1,2 and the kinetic coefficients are constant.

Then the population balance equation contains breakage parts

and there are two important equations of those, as the selection

function

S 1
br (L1, L2) = kbreakL

β
1
L
γ
2

(4)

where β and γ are the constant exponents of sizes.

The second function characterizing a breakage event which

is termed breakage function provides the fragment sizes of the

broken particle. In this case the following form is applied

b1
br (L1, λ1) b2

br (L2, λ2) = 2δ
(
L1 −

λ1

2

)
δ (L2 − λ2) (5)

where δ is delta function and λ means the sizes of mother crys-

tals.

These two equations present that the crystals can break up

along the two different sizes, but in this study we assumed that

γ=0 which means that breakage occurs only along the length of

crystals.

Then the population balance equation with breakage could be

given as the follows.

∂n (L1, L2, t)

∂t
+
∂ [G1n (L1, L2, t)]

∂L1

+
∂ [G2n (L1, L2, t)]

∂L2

=

1

τ
[nin (L1, L2, t) − n (L1, L2, t)]

−kbreak

Lm∫
0

Lm∫
0

δ
(
λ1 −

L1

2

)
δ (λ2 − L2) L

β
1
n (L1, L2, t) dλ1dλ2

+kbreak

Lm∫
0

Lm∫
0

2δ
(
L1 −

λ1

2

)
δ (L2 − λ2) λ

β
1
n (λ1, λ2, t) dλ1dλ2

(6)

where n is population density function and τ is the mean resi-

dence time.

Here are the initial and boundary conditions

n (L1, L2, t = 0) = n0 (L1, L2) (7)

lim
L1 → 0

L2 → 0

[G1n (L1, L2, t) + G2n (L1, L2, t)] =

epBp (L1, L2, t) + ebBb (L1, L2, t) (8.a)

lim
L1 → ∞

L2 → ∞

n (L1, L2, t) = 0 (8.b)

where ep and eb are binary existence variables by means of

which an appropriate combination of the primary and secondary

nucleation rates can be given.

Moment method

The properties of crystalline particles in the crystallization

process and behaviour of the crystallizer are determined by the

population balance model but the numerical solution of Eq.(6) is

a complex procedure. As it was mentioned earlier, the moment

method is able to calculate the properties of the crystallization

process. This method is widely used in modelling of disperse

systems. Developing the mass and heat balance equations for

the crystallizer requires an expression for the total mass of crys-

tal population. It has to be expressed by means of the volume of
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a single crystal computed by means of their two identified sizes

L1 and L2.

The partial volume of crystals in the suspension is given as

1 − ε (t) =

∫∫
L

L1L2
2n (L1, L2, t) dL1dL2 = µ1,2 (9)

where vc(t) = L1L2
2

denotes the volume of single crystals.

In this 2D case, the infinite system of moment equations takes

the form

dµ0,0

dt
=

1

τ

(
µ0,0,in − µ0,0

)
+ epBp + ebBb + kbreak (ε) µβ,m (10.a)

dµk,m

dt
=

1

τ

(
µk,m,in − µk,m

)
+ kG1µk−1,m + mG2µk,m−1+(

1

2k−1
− 1

)
kbreak (ε) µk+β,m

k,m = 0, 1, 2, 3..., k + m > 0

(10.b)

which can be simply closed when β=0 or β=1 and extended this

model with the mass and energy balances. The mass balance

equation of solute has the form

dc

dt
=
εin

τε
(cin − c) −

(ρc − c)

ε
RV (11)

where RV denotes the rate of change of the total volume of crys-

tals in a unit volume of suspension. Then the mass balance of

solvent is the following

dcsv

dt
=
εin

τε
(csvin − csv) +

csv

ε
RV . (12)

The energy balance equation for the crystal suspension is

dT

dt
=

Θin

τΘ
(Tin − T ) −

UaV

Θ
(T − Th) +

(−∆Hc)

Θ
ρcRV (13)

where Θ=ε(Csvcsv + Ccc)+(1-ε)Ccρ, U is the heat transfer coef-

ficient, aV denotes the surface of heat transfer, (-∆Hc) stands for

the heat of crystallization, while Cc and Csv are the specific heat

of solute and solvent.

The energy balance of cooling medium takes the form

dT

dt
=

1

τh

(Thin − Th) + βh(T − Th) (14)

The equation system of the Eq. (10)-Eq. (14) is a closed differen-

tial equation system. Thus it is suitable model to make dynamic

calculations on the crystallizer.

Simulation and results

Numerical solution of the set of ordinary differential equa-

tions was carried out in MATLAB environment. The basic val-

ues of the process parameters are presented in Table 1 while the

basic values of kinetic parameters of nucleation, crystal growth

and breakage used in simulation are listed in the Table 2 [3].

The breakage events depend on the parameter kbreak [12]. In

this study, the system was investigated by using a simulator with

Tab. 1. Basic values of process parameters used in simulation

V=1.0 10−3m3 τ=103 s

Tin=90 oC Th=20 ˚C

τh=6· 102 s βh=2.0· 10−2

UaV =5.0· 105 ϕin=3.0· 106

Tab. 2. Basic values of kinetic parameters used in simulation

kb0 =2.0· 107 # m−3s−1 kp0 =1.6· 1018 # m−3s−1 g1 =1.5

kg2 =1.0· 10−3 m s−1 kg1 =1.0· 10−4 m s−1 g2 =1.75

b =2.0 ke =1.0 ∆Hc=-44.5 J kg−1

Eb =1.5· 104 Eg =3· 104 Ep =1· 104

a1=-9.7629e-5 a0 =0.2087 a2 =9.3027e-5

β=1 j =1.5

two different rates of this parameter. In the first case kbreak=0

was assumed which means that there is no breakage during the

process and in the other case we assumed kbreak=40. That means

an intensive breakage rate.

Fig. 1 presents the temporal evolutions of temperatures of the

crystalline suspension and cooling medium. There are peaks

on the diagrams which mean that nucleation heats up the sys-

tem. On the applied initial level of saturation ratio the nucleation

starts instantly which is the reason of large increase of heat.

Fig. 2 presents the temporal evolutions of the solute and the

solubility concentrations. At the beginning, the differences be-

tween the two values of concentrations are significant and then

it decreases, but the state of the crystallizer becomes always su-

persaturated.
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Figure 1. Temperature profile in the suspension and in the cooling medium 
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Figure 2. Evolution in time of the solute- and solubility concentration 

 

Figure 3 and Figure 4 present the temporal evolutions of the two mean sizes 1L  and 2L .  

The breakage process in this case causes decrease of the steady state mean crystal length slightly while the 
steady state mean width of crystals increases when breakage occurs. The reason of this phenomenon is that the 
breakage process is size dependent with parameter β=1.  

Fig. 1. Temperature profile in the suspension and in the cooling medium

Fig. 3 and Fig. 4 present the temporal evolutions of the two

mean sizes 〈L1〉 and 〈L2〉.

The breakage process in this case causes decrease of the

steady state mean crystal length slightly while the steady state

mean width of crystals increases when breakage occurs. The

reason of this phenomenon is that the breakage process is size

dependent with parameter β=1.

Fig. 5 presents evolutions in time of the zero order moment
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Figure 3. Evolution of the mean length (L1) in time 
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Figure 4. Evolution of the mean width (L2) in time 

 
Figure 5 presents evolutions in time of the zero order moment µ00 and illustrates how the total number of 

particles depends on the breakage rate. Naturally, the breakage process produces more particles in steady state 
compared with that without breakage but this increase becomes significant only when the nucleation process is 
terminated. The maxima in these time diagrams arise because of the differences of the characteristic times of 
crystal production and crystallizer, i.e. its mean residence time.  

The third order joint moment µ12 relates to the total volume of solid particles. Thus Figure 6 shows that the 
total crystal volume does not differ in the observed cases since breakage of crystals does not influence the total 
volume and total mass of the crystalline product. 
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Figure 4. Evolution of the mean width (L2) in time 
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Fig. 4. Evolution of the mean width (L2) in time

µ00 and illustrates how the total number of particles depends

on the breakage rate. Naturally, the breakage process produces

more particles in steady state compared with that without break-

age but this increase becomes significant only when the nucle-

ation process is terminated. The maxima in these time diagrams

arise because of the differences of the characteristic times of

crystal production and crystallizer, i.e. its mean residence time.

The third order joint moment µ12 relates to the total volume of

solid particles. Thus Fig. 6 shows that the total crystal volume

does not differ in the observed cases since breakage of crystals

does not influence the total volume and total mass of the crys-

talline product.
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Figure 5. Evolution of the zero order moment μ0,0 in time 
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Figure 6. Temporal evolution of the third order moment μ1,2 of the crystalline product 

 
Conclusions 
 
A detailed two-dimensional population balance model was presented for describing continuous cooling 
crystallization of needle-shape crystals with fragmentation. The model contains nucleation, growth and breakage 
of crystals. The closed set of moment equations of the joint moments of the crystal size variables with the mass 
and energy balance equations made possible of computing the dynamic properties of the crystallizer.  

The numerical analysis revealed that there exist strong interactions between the nucleation, growth and 
breakage processes of needle-shape crystals and made an opportunity to study the behaviour of a crystallization 
system with non-regular properties such as high aspect ratio crystals. 
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product

Conclusions

A detailed two-dimensional population balance model was

presented for describing continuous cooling crystallization of

needle-shape crystals with fragmentation. The model contains

nucleation, growth and breakage of crystals. The closed set of

moment equations of the joint moments of the crystal size vari-

ables with the mass and energy balance equations made possible

of computing the dynamic properties of the crystallizer.

The numerical analysis revealed that there exist strong inter-

actions between the nucleation, growth and breakage processes

of needle-shape crystals and made an opportunity to study the

behaviour of a crystallization system with non-regular proper-

ties such as high aspect ratio crystals.
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Symbols

b exponent of secondary nucleation rate

B nucleation rate # m−3s−1

c concentration of solute, kgm−3

cs equilibrium saturation concentration, kg m−3

Ei activation energy (i = b, p, g), kJ kmol−1

g exponent of crystal growth rate

G crystal growth rate, ms−1

j exponent of secondary nucleation rate

kbreak rate coefficient of breakage, 1 m−(2+β)s−1

ke parameter of primary nucleation rate

kg rate coefficient of crystal growth, m s−1

kp rate coefficient of primary nucleation, # m−3s−1

kb rate coefficient of secondary nucleation, # m−3s−1

kV volume shape factor

L linear size of crystals, m

n population density function, # m−5

R gas constant

S supersaturation ratio, c/cs

T temperature, ˚C, K

Greek letters:

ß breakage parameter

ßh eq. 14.

ε volumetric ratio of solution

µk,m (k,m)th order joint moment

ρ density, kgm−3

τ mean residence time, s

τh mean residence time of the cooling medium, s

σ relative supersaturation

Subscripts:

0 initial value

1 length coordinate of crystals, m

2 width coordinate of crystals, m

in inlet value

p primary nucleation

b secondary nucleation

h cooling medium
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