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Abstract

In this paper operation of a batch/continuous processing sys-

tem connected by an intermediate storage is considered. The

filling process is supposed to be random and the output pro-

cess is deterministic, consequently the process in the storage is a

stochastic process. We investigate the problem of determination

of necessary initial amount of material to avoid emptying of the

storage. We define a function which is able to handle together

the probability and expected time to shortage. We set up an inte-

gral equation for it, and in a special case of density functions of

inter-arrival times we transform to an integro-differential equa-

tion. We provide analytical formula for the solution. We com-

pare the analytical solution to the results arising from Monte-

Carlo simulations. In some cases we use only the form of the

analytical solution but coefficients are determined by parameter

fitting. Finally we use the computed functions to determine the

necessary initial amount of material to a given reliability level.

Keywords

processing system · intermediate storage · stochastic opera-

tion · reliability

Acknowledgement

This work was presented at the Conference of Chemical En-

gineering, Veszprém, 2012.

Éva Orbán-Mihálykó

Department of Mathematics, University of Pannonia, H-8200 Veszprém,

Egyetem Street 10, Hungary

e-mail: orbane@almos.uni-pannon.hu

Csaba Mihálykó

Department of Mathematics, University of Pannonia, H-8200 Veszprém,

Egyetem Street 10, Hungary

Introduction

Intermediate storage is often used in chemical industry, phar-

maceutical factories, food logistic or in case of environmental

investments. The material produced by a factory is collected in

a storage which operates as a buffer. The material is withdrawn

from this buffer and usually is processed by further industrial

operations. The reason for buffering is the different character-

istics of producing and processing or provide appropriate spare

amount in case of faults. One of the main goals of investigations

is to determine the necessary initial amount of material.

The operation of intermediate storages is rather stochastic

than deterministic [1–3]. One can realize stochastic features in

producing both in time and in amount of material. In this paper

we investigate a stochastic model, when the filling process is a

batch process and the withdrawing process is a continuous one.

Such processes were previously investigated in [4, 5].

The characteristics of the random behaviour of the produc-

ing process are difficult to determine. The distribution function

or the density function of the random variables are impossi-

ble to determine exactly on the basis of data, consequently it

is worth applying such distribution functions which are close to

the distribution functions in real world. Such type of distribution

functions are those which have probability density function sat-

isfying a linear differential equation with constant coefficients.

Their linear combinations are probability density functions as

well and this set is dense in the set of all density functions hav-

ing support [0,∞). In this paper we turn our attention to the case

of these probability density functions.

We introduce an auxiliary function which is able to handle

both the probability and the time to shortage of material in a

unified way and we set up an integral equation for it. After

transforming this equation into an integro-differential equation

we present its analytical solution. We compare the results for

probability and time of emptying based on these analytical solu-

tions and the results coming from Monte-Carlo simulations. The

form of the analytical solution provides opportunities for deter-

mining the constant values by parameter fitting. We present that

parameter fitting provides good approximation of the analytical

results. Finally we apply our results for solving the problem of
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finding the necessary initial amount of material to a given relia-

bility level.

The investigated model, problem formulation, notation

and assumptions

The material filled into the intermediate storage is produced

by a production system. The fillings happen at random time

points and the amount of filled material is random as well. The

process begins at time 0 and the ith filling is at time
i∑

k=1

tk,

i = 1, 2, . . . . The inter-arrival time between the (i-1)th and ith

filling is ti. We suppose that ti, i = 1, 2, . . . are independent,

identically distributed nonnegative continuous random variables

with distribution function F(t), density function f(t), their com-

mon expected value is µ f . Let N(t) be the number of fillings in

the interval [0, t], that is

N(t) =


0 if t < t1

i if
i∑

k=1

tk ≤ t <
i+1∑
k=1

tk
. (1)

The amount of material filled into the buffer during the ith fill-

ing (i = 1, 2, . . . ) are described by independent, identically dis-

tributed nonnegative continuous random variables with distri-

bution function G(y), density function g(y), expected value µg.

The filled amount of material is denoted by Yi,i = 1, 2, . . . .

We suppose that the filling process N(t) and filled material Yi,

i = 1, 2, . . . are independent as well. The withdrawal process

is continuous and withdrawal happens at constant rate c. This

means that the material withdrawn from the buffer from time

0 to time t equals ct. Our main question is how many initial

amount of material should be in the intermediate storage at time

0 in order to avoid the shortage (i.e. emptying the storage) in a

large time interval.

To solve this problem we investigate the change of material

in the intermediate storage in the function of time. If the initial

amount of material is x (0≤x), then the amount of material being

in the storage is

V(t) = x +

N(t)∑
i=1

Yi − ct. (2)

In order to avoid the shortage of material, the inequality 0≤V(t)

has to be satisfied in the interval 0≤t≤T, if the process is inves-

tigated in the time interval [0,T], or for any 0≤t, if the process

is analyzed in unbounded time interval. V(t) is random for any

fixed value of t, therefore V(t) is a stochastic process as a func-

tion of time. If the inequality 0≤V(t) does not hold for any value

of t, we can define the time to shortage which is the ‘first’ time

point when V(t)<0 holds, that is

TV (x) =

 inf {t ≥ 0 : V(t) < 0} , if there exists 0 ≤ t : V(t) < 0

∞, if V(t) ≥ 0 for any 0 ≤ t

(3)

Let us define the probability of the shortage as well. Let ψ be

the function describing reliability, that is

Ψ(x) = P


 0 ≤ x +

N(t)∑
i=1

Yi − ct ∀t : 0 ≤ t


 . (4)

The probability of shortage equals 1 − Ψ(x).

One realization of the stochastic process can be seen in Fig. 1.

Inter-arrival times and filled material are exponentially dis-

tributed random variables with parameters µ f = 2.5 and µg=4,

respectively. The initial amount of material is 5 and the con-

stant rate of withdrawal equals 2. The decreasing linear lines

show the withdrawal of material and the jumps represent fill-

ings. Shortage of material means that V(t) is below zero. In the

case presented in Fig. 1 it happens first at about 8.9 unit of time.

Actually let us define the function φ(x, δ)for 0≤ x and 0≤ δ as

follows:

φ(x, δ) = E(e−δTV (x) · 1TV (x)<∞), (5)

where E denotes the expectation of the random variable being

in parenthesis, 1A is the characteristic random variable of event

A and x is the initial amount of material. This function is often

used in different risk models in insurance mathematics and was

introduced by Gerber and Shiu in 1998 [6]. In economic con-

text δ is a discounting factor. Returning to our model, one can

realize that φ(x, δ) is the Laplace transform of the finite shortage

time’s density function and δ denotes the variable of the Laplace

transform.

One can easily check, that

ψ(x) = 1 − φ(x, 0), (6)

E(TV (x) · 1TV (x)<∞) =
−∂φ(x, δ)

∂δ

∣∣∣∣∣
δ=0

. (7)

If the function φ(x, δ) is given, then on the basis of (6) and (7) the

probability of the shortage and the expected time to shortage can

be computed. Consequently, the function φ(x, δ) is appropriate

for handling the probability and expected time to shortage in a

unified way. Therefore we will investigate the function φ(x, δ)

in the next sections.

Integral equation for the investigated function

First we mention that investigation and determination of the

function φ(x, δ) requires many complicated and sophisticated

mathematical tools, therefore we will publish the details in a

mathematical journal in the immediate future. Actually we state

only the necessary theorems.

The function φ(x, δ) is continuous in both variables, and the

inequalities 0 ≤ φ(x, δ) ≤ 1 hold. It is decreasing in x and δ

as well. Furthermore it can be seen thatφ(0, δ) = 1. Based on

renewal argumentation one can prove

Theorem 1 [7] For any value 0 ≤x and 0≤ δ, φ(x, δ) satisfies
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Figure 1 A realization of the stochastic process in the function of time 

Comparing it to the results arising from Monte-Carlo simulation we get very good 
coincidences. The plotted points are simulated results while the continuous function is 
given by (35). Simulations were executed to T=3000 N=10000 times. 
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Figure 2 Probability of shortage of material in the function of initial amount of material 
(- analytical result, * simulated results) 
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Fig. 1. A realization of the stochastic process in the function of time

the following integral equation:

φ(x, δ) =

∞∫
0

x
c∫

0

e−δtφ(x + y − ct, δ) f (t)g(y)dtdy +

∞∫
x
c

e−δ
x
c f (t)dt.

(8)

This equation has a unique bounded and continuous solution

for any 0< δ. Moreover this solution is exponentially bounded,

namely

φ(x, δ) ≤ e−δ
x
c . (9)

Therefore φ(x, δ) → 0, if x → ∞ for any 0< δ. If δ=0 then the

solution of Eq.(8) is not unique. If condition

c <
µg

µ f

(10)

is satisfied then it can be proved that φ(x, 0) → 0 supposing

x → ∞. This boundary condition assures that the solution of

(8) is the function given by (??). As φ(0, 0) = 1 holds, for any

0 < α < 1 there exists a value x for which

φ(x, 0) = 1 − ψ(x) = 1 − α. (11)

This value x is the necessary initial amount of material to the

reliability level 1 − α. Consequently, determination of function

φ(x, δ)is important for solving our problem.

We note that condition (10) expresses that the material filled

into the storage is more than the material withdrawn from the

buffer, in average.

We note that if condition

µg

µ f

≤ c (12)

is satisfied, then, applying probabilistic argumentation, one can

prove that φ(x, 0) ≡ 1.

Case of density functions satisfying linear differential

equation

Explicit solution for the integral equation (8) can not be pro-

vided generally hence we restrict ourselves to a special set of

density functions f (t). In order to be widespread applicable, this

set of density functions should be dense in the set of all density

functions continuous on [0,∞). This means that the continu-

ous density functions can be well approximated by the elements

of this set. We investigate the case when the density function

of the inter-arrival times satisfies a linear differential equation

with constant coefficients subject to some general initial condi-

tions. This set of density functions is dense in the set of contin-

uous density functions [8] and is investigated in risk models as

well [9]. Furthermore, it contains such famous distributions as

Coxian distributions, Kn-type distributions, Erlang(n) distribu-

tions, combination of exponential distributions. For this type of

random variables we transform the integral equation (8) into an

integro-differential equation and we provide its analytical solu-

tion. It can be proved that the solution of the integro-differential

equation set up by the help of the approximate density function

is close to the solution belonging to the real density function

(which was approximated).

We also suppose that g(y) is a continuous function.

First we summarize what is known about a density function

that satisfies a linear differential equation with constant coeffi-

cients. Let

p(z) =

n∑
i=0

aiz
i (13)

be a polynomial with coefficients an = 1, a0 , 0. Assume that

the density function f (t) satisfies the linear differential equation

p(
d

dt
)( f )(t) =

n∑
i=0

ai f (i)(t) ≡ 0 (14)

subject to initial conditions

f ( j)(0) = A j, j = 0, 1, 2, . . . , n − 1. (15)

From the theory of the differential equations we know the fol-

lowing: if the number of different roots of the polynomial p(z)is

m, the different roots are denoted by ρi, and the multiplicity of

the root ρi is si, then the solution of the linear differential equa-

tion is

f (t) =

m∑
i=1

si∑
j=1

bi jt
j−1eρit (16)

where bi j are appropriate real numbers. f (t) is a density func-

tion, therefore in the case Re(ρi) ≥ 0 bi j = 0 hold for all

j = 1, 2, , . . . , ki. After some computations we can see that

∞∫
0

f (t) = 1 (17)

holds if and only if

n∑
i=1

aiAi−1 = a0. (18)
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Theorem 2 [7] Let p(z) =
n∑

i=0

aiz
i, with an = 1, a0 , 0, and

suppose that the density function f (t) satisfies Eq. (13) subject

to initial conditions (14). Then, with the notation

q0(z) ≡ 0, qi(z) =

i−1∑
k=0

Akzi−1−k

i = 1, 2, . . . , n, and q(z) =

n∑
i=0

ai · qi(z), (19)

function φ(x, δ) satisfies the following integro-differential equa-

tion

p(δI + c
d

dx
)φ(x, δ) =

∞∫
0

q(δI + c
d

dx
)φ(x + y, δ)g(y)dy (20)

subject to appropriate initial conditions, where I denotes the

identity operator. The initial conditions can be determined by

substituting 0 into the equations obtained after taking deriva-

tives of Eq.(8), but their determination can be difficult. We note

that if Ak = 0 for k = 0, 1, 2, . . . , n − 2 and a0 = An−1 , 0, then

the initial conditions are

∂ jφ(x, δ)

∂x j

∣∣∣∣∣∣
x=0

=

(
−
δ

c

) j

, j = 0, 1, . . . , n − 1. (21)

Actually we present the solution of Eq. (20) in the following

theorem:

Theorem 3 [7] Suppose that the density function f (t) satisfies

Eq. (14) with an = 1, a0 , 0 subject to the initial conditions

(15). If the polynomial p has roots with nonnegative real parts

as well, it can be simplified to a polynomial of lower degree and

f satisfies the linear differential equation defined by the reduced

polynomial as well. Consequently, we can assume that all the

roots of the polynomial p(z) have negative real parts. Then

φ(x, δ) =

r∑
i=1

ni(δ)−1∑
j=0

ci j(δ)x jeki(δ)x (22)

where the coefficients ci j(δ) are appropriate real numbers and

ki(δ) are the roots of

p(δ + cν) = q(δ + cν) ·

∞∫
0

eν yg(y)dy (23)

with multiplicity ni(δ) for i = 1, 2, . . . , r, where
r∑

i=1

ni(δ) = n.

Especially, if all the roots of Eq.(23) has multiplicity 1, then

φ(x, δ) =

n∑
i=1

ci(δ)e
ki(δ)x. (24)

Consequently,

φ(x, 0) =

n∑
i=1

ci(0)eki(0)x, (25)

and

E(TV (x) · 1TV (x)<∞) = −

∂
n∑

i=1

ci(δ)e
ki(δ)x

∂δ

∣∣∣∣∣∣∣∣∣∣∣
δ=0

=

−

n∑
i=1

(c′i(0) + k′i (0) · x · ci(0)) · eki(0)x, (26)

where

k′i (0) =

q′(cki(0))
∞∫
0

eki(0)yg(y)dy − p′(cki(0))

cp′(cki(0)) − cq′(cki(0)) − q(cki(0))
∞∫
0

eki(0)yg(y)dy

.

(27)

Application of analytical results and comparison to the

results arising from Monte-Carlo simulation

In this section we present how to determine analytically the

probability of shortage on the basis of the previously presented

equations. In order to be able to compare the exact solution

and simulation results, furthermore for the sake of simplicity of

computations first we suppose that ti, (i=1,2,. . . ) are Erlang(2)

distributed with parameter λ, that is f (t) = λ2te−λt, and Yi are

exponentially distributed with parameter λy = 1/µg. We note

that µ f = 2/λ.

Now, with p(z) =(z+λ)2, f(t) satisfies Eq.(14) subject to the

initial conditions A0=0, A1 = λ2. After some computation we

get

q(z) =

2∑
i=0

aiqi(z) = λ2, (28)

∞∫
0

eν yg(y)dy =
λy

λy − ν
. (29)

Eq.(23) looks like

(δ + cν + λ)2 = λ2
λy

λy − ν
. (30)

The roots of Eq. (30) can be determined analytically. If δ=0 then

two of them is negative and one is zero. The negative ones are

k1,2(0) =

λy −
2λ
c
±

√(
λy −

2λ
c

)2
+ 4

(
2λyλ

c
−

(
λ
c

)2
)

2
. (31)

Both these roots have multiplicity 1, therefore from (25)

φ(x, 0) =

2∑
i=1

ci(0)eki(0)x. (32)

The coefficients c1(0) and c2(0) can be easily determined apply-

ing (21) for j = 0, 1 and substituting x = 0:

c1(0) + c2(0) = 1, (33)

and

c1(0)k1(0) + c2(0)k2(0) = 0. (34)
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If we would like to determine the expectation of the time to

shortage we need the derivative of ci(δ) and ki(δ) at δ = 0, i=1,2,

as well. k′
i
(0), i=1,2 can be determined from (27). c′

i
(0) can be

calculated as follows: take the derivatives of (21) with respect

to δ and substitute x = 0and δ = 0. After that we get a linear

system of equation for c′
i
(0) (i=1,2) to solve.

In Fig. 2 we present the exact probability of shortage in the

case of Erlang(2) distributed inter-arrival times with parameter

λ = 1 (µ f = 2) and exponentially distributed amount of ma-

terial with λy = 0.4 (µg = 2.5), furthermore c=1. The negative

roots of Eq. (23) were k1(0) = −0.1367 and k2(0) = −1.4633

(see (31)). From (32), the function describing probability of

emptying is

φ(x, 0) = 1.1030e−0.1367x − 0.1030e−1.4633xe−1.4633x. (35)

Comparing it to the results arising from Monte-Carlo simulation

we get very good coincidences. The plotted points are simulated

results while the continuous function is given by (35). Simula-

tions were executed to T=3000 N=10000 times. 

 

 

 

 

 

 

 

 

 

 

Figure 2 Probability of shortage of material in the function of initial amount of material 
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Fig. 2. Probability of shortage of material in the function of initial amount

of material (- analytical result, * simulated results)

To determine the expected time of emptying we need the

derivatives. Applying (27) and solving the mentioned sys-

tem of equations we get k′
1
(0) = −5.1106, k′

2
(0) = −0.8894,

c′
1
(0) = 3.4263, c′

2
(0) = −3.4263. That means

E(TV (x)1TV (x)<∞) = (−3.4263 + 5.6370x) e−0.1367x+

(3.4263 − 0.0916x) e−1.4633x. (36)

The function describing the expected time of emptying is pre-

sented in Fig. 3. The parameters were the same as previously.

The simulation was repeated N=10000 times. One can realize

that the results coming from simulations and arising from the

analytical formula are close to each others.

Determination of coefficients ki(0) is based on Eq. (23) but

ci(0) depend on the explicit form of initial conditions. In such

cases when the initial conditions are difficult to compute, we
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can fit a curve of form (22) to simulated results of probabilities

with known values ki(0) and unknown values ci(0). Applying

the least square method for determining c
f

1
(0) and c

f

2
(0) we get

c
f

1
(0)=1.1016 and c

f

2
(0)= -0.1016, and the most difference be-

tween the fitted curve φ f (x, 0) and the exact one φ(x, 0) is 1.2

10−3. The difference is presented in Fig. 4. Parameters of the

simulation were the same as previously.

After determining c
f

1
(0) and c

f

2
(0) by least square method,

we computed the derivatives of them. We compared the ex-

act form of E(TV (x)1TV (x)<∞ and the formula using fitted coef-

ficients E f (TV (x)1TV (x)<∞). We realized that their difference is

sufficiently small. The maximal difference was 0.018, which

shows that the determination of unknown parameters by least

square method applying the function type given by (26) is an

appropriate method for approximation. Consequently, analyt-

ical result is very useful because it serves the form the fitted

function and we have to apply least square method to determine

the coefficients.

curve  and the exact one )0,x(fφ )0,x(φ  is 1.2 10-3. The difference is presented in Fig.4. 

Parameters of the simulation were the same as previously. 
After determining cf

1(0) and cf
2(0) by least square method, we computed the derivatives 

of them. We compared the exact form of  and the formula using fitted 

coefficients ( ).We realized that their difference is sufficiently small. 

The maximal difference was 0.018, which shows that the determination of unknown 
parameters by least square method applying the function type given by (26) is an 
appropriate method for approximation. Consequently, analytical result is very useful 
because it serves the form the fitted function and we have to apply least square method to 
determine the constant values. 
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Figure 4 Differences between the exact probabilities )0,x(φ  and values of the fitted 
function  )0,x(fφ

 

Finally we present an example when the initial conditions (21) for j=1 are not given 
explicitly. We compute the roots of Eq.(23) exactly then we determine the coefficients by 
fitting parameters by least square methods. Let  

t2
2

t1
1 e

3
2e

3
1)t(f λ−λ− λ+λ= ,     (37) 

linear combination of exponential probability density functions. Let Yi exponentially 
distributed random variable. Now (14) holds with . Applying 

(19), we get 

2121
2 x)(x)x(p λλ+λ+λ+=

2121 x)2(
3
1)x(q λλ+λ+λ=  and (23) looks 

Fig. 4. Differences between the exact probabilities φ(x, 0) and values of the

fitted function φ f (x, 0)
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Finally we present an example when the initial conditions

(21) for j = 1 are not given explicitly. We compute the roots

of Eq. (23) exactly then we determine the coefficients by fitting

parameters by least square methods. Let

f (t) =
1

3
λ1e−λ1t +

2

3
λ2e−λ2t, (37)

linear combination of exponential probability density functions.

Let Yi exponentially distributed random variable. Now (14)

holds with p(z) = z2 + (λ1 + λ2)z + λ1λ2. Applying (19), we

get q(z) = 1
3
(λ1 + 2λ2)z + λ1λ2 and (23) looks

(δ + cν)2 + (λ1 + λ2)(δ + cν) + λ1λ2 =

(
1

3
(λ1 + 2λ2)(δ + cν) + λ1λ2) ·

λy

λy − ν
(38)

Two roots of (38) can be given analytically at δ = 0 as follows:

k1,2(0) =
λy −

λ1+λ2

c
±

√(
λy −

λ1+λ2

c

)2
− 4 ·

(
λ1·λ2

c2 − λy
2λ1+λ2

3c

)
2

,

(39)

They are negative numbers if (10) holds. We note that there is

a third root as well, namely zero. Now (25) can be applied with

n=2 and

φ(x, 0) = c1(0)ek1(0)x + c2(0)ek2(0)x. (40)Actually, coefficients  and can be determined easily by least square method. )0(c1 )0(c2
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Fig. 5. Comparison of the fitted curve and the simulation results in the case

of linear combination of exponential probability density functions (- fitted func-

tion given by (37), * simulated result)

Actually, coefficients c1(0) and c2(0) can be determined easily

by least square method.

Fig. 5 shows the simulation results and the fitted curve in the

case of parameters λ1 = 1/6, λ2 = 2/3, µg = 5,c=5. The roots of

(38) are k1(0) = −0.0804 and k2(0) = −0.5530. The simulation

was executed N=1000 times to T=1000. The fitted coefficients

are c
f

1
(0) = 0.7485 and c

f

2
(0) = 0.2518. The fitted function

looks

φ f (x, 0) = 0.7485e−0.0804x + 0.2518e−0.5530x, (41)

and it is very close to the points computed by Monte-Carlo sim-

ulation.

Returning to the problem how much initial amount of material

is needed to the reliability level 1−α, according to (11) we have

to solve the equation 0.7485e-0.0804 x + 0.2518e−0.5530x = α. It

can be executed numerically. In case of α = 0.1 we get x ≈ 25.0,

in case of α = 0.05 we get x ≈ 33.65, and in case of α = 0.01

we get x ≈ 53.62.

Summary

Operation of a batch/continuous processing system connected

by an intermediate storage is investigated. The input process is

supposed to be a random process and the output occurs at con-

stant volumetric rate. The probability and the expected time to

shortage are handled by the help of the Laplace transform of

the density function of finite shortage time. Integral equation is

set up for it, transformed and solved in special cases. The an-

alytical solution is compared to the solution coming from sim-

ulation supporting the applicability of Monte-Carlo simulation.

The form of the analytical solution gives possibility for param-

eter fitting and finding the solution numerically. Finally we use

the computed functions to solve the physical problem, i.e. to

determine the necessary initial amount of material to a given re-

liability level.
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