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Abstract
Overdispersion is a widely discussed phenomenon in case of

binomial and Poisson distributed data. We analysed multino-
mial data with varying multinomial parameters as a part of at-
tribute gauge study. In this situation overdispersion is expected
to occur. However in case of nonrepeated observations it is not
present. We investigated and proved the “lack” of overdisper-
sion in case of binomial and multinomial variables if there are
no repeated observations. The explanation is a “compensation
effect”, which only occurs in case of binomial and multinomial
variables and does not occur for Poisson distributed data.
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1 Introduction
The most frequent design in medical statistics is the clinical

trial. A part of the patients selected for study is exposed to a
treatment, to which some of them react, others do not. The other
part of patients is exposed to the control (what may be another
treatment or lack of treatment), and again some of them react,
others do not. The typical question is if the proportion of react-
ing patients to the treatment significantly differs from that to the
control. In hypothesis test context the question is if the binomial
parameter of the treated population is equal to that of the con-
trol population. Agresti [1] hints that neither the results of the
treated patients nor the results of the control patients are from bi-
nomial populations. The reason obviously is that e.g. the treated
patients are not homogeneous, the distribution of outcomes is a
mixture of binomial distributions. This would lead to the well-
known phenomenon of overdispersion. Many literature sources
deal with the diagnostics and modelling of overdispersion such
as Hinde ,J. and Demetrio, C.G.B. [2], Cox, D. R. [3], Ganio, L.
M. and Schaffer D. W. [4] and Barron, D. N. [5].

A multinomial example is the attribute examination of prod-
uct items. A part of these items is conforming, another part is
non-conforming, the outcome of the assignment is that the item
is accepted or rejected. This outcome is fourfold: a good item
is either accepted or rejected, the same possibilities hold for a
bad item. Again the outcomes (items and decisions) do not stem
from a single multinomial distribution, one has to face overdis-
persion here as well.

2 How we got surprised (the research topic)
Our research topic is the analysis of attribute measurement

systems (Gauge R&R).
When using a single limit attribute measurement system,

there are two different decision categories: we can reject or ac-
cept the measured item. Though the decision is categorical there
is often a continuous variable in the background. The probabil-
ity of acceptance depends on this continuous variable (reference
value). E.g. the geometric size of a part must be above the spec-
ification limit in order to be conforming. Another example for
an attribute type decision is the sensory evaluation of ampoules.
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In practice the operator investigates the ampoules visually and
decides if there are any solid particles in them. If there are solid
particles, the ampoule is not useable.

In both examples there is a continuous characteristic behind
the attribute type decision. The geometric size can be mea-
sured with a coordinate measurement machine, but in practice
this kind of measurement would be too expensive and time con-
suming for performing it on shop floor. Thus they use a simple
go/no-go gauge instead. In the ampoule example the continuous
characteristic behind the decision is the size of the solid particles
in the ampoule. If they are large enough they can be observed
by human eye. In the following the continuous characteristic
behind the decision is referred as size or reference value.

The probability of accepting a part depends on the reference
value. The “very big parts” will be nearly always accepted, the
“very small parts” will be nearly always rejected. There is a
reference value interval (grey zone), in which the probability of
acceptance strongly depends on the reference value. The con-
nection between the probability of acceptance and the reference
value is called gauge performance curve. Its mathematical form
is assumed to be given by Eq. (1).

p(x) =
exp(α + βx)

1 + exp(α + βx)
(1)

x : reference value
p: probability of acceptance
α, β: model parameters

The graphical form of the gauge performance curve is pre-
sented in Fig. 1. The different curves belong to different α and
β model parameters. The figure demonstrates that the position
and shape (or slope) of the curve depends on α and β. This
connection is discussed detailed by Vágo and Kemény [6].
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Fig. 1. Gauge Performance Curve

The reference value (x) differs from part to part. There are
two sources of variation in the outcome: the difference between
items and the random fluctuation of the result of the trial on a
specific item. The two sources together result in an excess vari-
ation as compared with the variation obtained for identical items
having parameters of marginal distributions. The phenomenon
is termed overdispersion. It is expected that the marginal distri-
bution of outcomes (accept/reject) may not be binomial, that is

the variance may not be given by the parameter obtained from
the expected value.

Our purpose was to characterize the measurement system,
more specifically to quantify the probability of wrong decision.
These are that an accepted part is bad or a rejected part is good.

In the typical design of attribute gauge study (Automotive In-
dustry Action Group’s measurement systems analysis (AIAG
MSA) Manual [7]) several (n: say 50) items are selected in a
random way from a large population of products, each of them
is rated several (k) times. The outcomes of these ratings form
the four categories of the distribution, they are summarized in a
2x2 table (Table 1).

Tab. 1. Outcome Categories

Accept Reject

Good Part N1 N2

Bad Part N3 N4

N1, N2, N3, N4 denote the number of occurrences in the ap-
propriate cell. E.g. it happened N1 times that a good part re-
ceived “accept” decision. Thus the sum of cell counts (N1, N2,
N3, N4) is equal to the total number of decisions (k∗n). In Table
1 cells #2 and #3 represent the wrong decisions. Again as items
are different, excess variation is expected as compared with the
multinomial distribution.

When the variance of estimators is calculated the covariance
matrix of N̄ = (N1, N2, N3, N4) is of interest. Simulation stud-
ies were performed in order to quantify the covariance matrix
with different k number of repeated ratings, compared with the
covariance matrix of a single multinomial distribution with av-
erage parameters. It was surprisingly found that if k=1 (single
rating of all sampled items) there was no excess variation, that
is no overdispersion was found.

Mathematical reasoning and proofs are given in the forthcom-
ing sections.

3 Overdispersion at the binomial and at the Poisson
case
The typical example in textbooks is the coin tossing.
If yi denotes the outcome of the i-th experiment (1 in case of

occurrence, 0 otherwise), and µ is the probability of the event
(success, e.g. head), the expected value and variance of num-

ber of successes (number of heads obtained) (y =

n∑
i

yi ) in n

experiments are

E (y) = nµ

Var (y) = nµ (1 − µ)

In some situations the items on which the experiments are per-
formed are not identical. E.g. when the effect of a medical treat-
ment is investigated, the patients are not the same, the product
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items qualified are not the same, etc. The corresponding picture
is tossing coins taken from a population of different coins (Box,
Hunter and Hunter [8]). (When we make a new experiment a
new sample is taken from the coins.) In these cases there are
two sources of variation: the random fluctuation of the binomial
parameters of coins and the random fluctuation of the result of
the trial on a specific item. The two sources together result in
an excess variation as compared with the variation obtained for
identical items termed overdispersion.

According to the theorem of total variance the resulting vari-
ance is expressed as ([1, p 8],):

Var (y) = E [Var (y |µµµ)] + Var [E (y |µµµ)] (2)

where µµµ is the vector of size n of binomial parameters.
Two cases will be distinguished: all n items in the sample are

checked once or with k repetitions.

3.1 All Items are checked once
The picture is that a sample is taken from different (biased)

coins and the coins are tossed, once each.
The first term
The yi outcomes at µi binomial parameters are independent,

thus

Var (y |µµµ) =

n∑
i

Var (yi |µi ) =

n∑
i

µi (1 − µi )

The µi binomial parameters come from the same population:

E [Var (y |µµµ)] = E

[ n∑
i

µi (1 − µi )

]
=

= n [E (µ)] [1 − E (µ)] − n Var (µ)

The first product would be the variance if all elements were iden-
tical characterized with E (µ) binomial parameter.

The second term

E (y |µµµ) = E

( n∑
i

yi |µi

)
=

n∑
i

µi

Var [E (y |µµµ)] = Var

( n∑
i

µi

)
= n Var (µ)

The sum of the two terms:

Var (y) =

= n [E (µ)] [1 − E (µ)] − n Var (µ) + n Var (µ)

= n [E (µ)] [1 − E (µ)]

The surprising result is that if a random sample of elements is
taken with replacement or from an infinite population, and all
exposed once, there is no overdispersion.

Agresti ([1, pp. 493-493]), used this phenomenon implicitly
when modelling binary matched pairs. Here the items within
each group have different binomial parameters. However, the
marginals of each group are considered as binomial with bino-
mial parameter equal to the expected value of the binomial pa-
rameters within the group.

It is worth remarking the special case when both the popu-
lation and the sample contain the same n elements. The corre-
sponding picture is tossing each different coin once. In a new ex-
periment the same coins are tossed. In this case the only source
of variation is the random fluctuation of the result of the trial on
a specific item.

In this case the second term of Eq. (2) is missing as the items
are fixed, thus their binomial parameter is not random. The first
term:

E [Var (y |µµµ)] =

n∑
i

µi (1 − µi )

= nµ̄ (1 − µ̄) − n Var (µ)

where Var (µ) =
1
n

n∑
i

(µi − µ̄)2 is the variance of the finite

population. The conclusion is that there is underdispersion, as
described by Box et al. ([8, pp. 135-137]), as compared to the
variance of a sample of n identical elements having the same
E (µ) parameter.

The phenomenon discussed in fact is a compensation effect:
the first term of the total variance expression shows underdis-
persion. The second term gives the overdispersion, and this may
compensate or over-compensate the underdispersion.

All items are checked k times
The picture is that a sample is taken from different (biased)

coins and the sampled coins are tossed, k times each, with result
yi j .

The first term of the total variance expression is

Var (y |µµµ) =

n∑
i

k∑
j

Var
(
yi j |µi

)
= k

n∑
i

µi (1 − µi )

E [Var (y |µµµ)] = kn [E (µ)] [1 − E (µ)] − kn Var (µ)

The second term

E (y |µµµ) = E

 n∑
i

k∑
j

yi j |µi

 = k
n∑
i

µi

Var [E (y |µµµ)] = Var

(
k

n∑
i

µi

)
= k2n Var (µ)

The sum of the two terms

Var (y) = n [E (µ)] [1 − E (µ)] + k (k − 1) n Var (µ)

The result is that overdispersion occurs only when exposition of
items is repeated (k >1). This situation may not be typical in
most fields of application (including biomedical experiments)
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but it occurs in case of the attribute gauge R&R study. The
typical experiment in that area consists of repeated ratings of
different product items by several operators.

In the special case when both the population and the sample
contain n elements (the binomial parameters are not random) the
variance is given with Eq (3):

E [Var (y |µµµ)] =

n∑
i

k∑
j

µi (1 − µi ) =

= knµ̄ (1 − µ̄) − kn Var (µ) (3)

In case of Poisson distribution similar situation can not occur, as
there the first term of the total variance does not have a negative
part. (λ denotes the Poisson parameter.)

Var (y |λλλ) =

n∑
i

k∑
j

Var
(
yi j |λi

)
= k

n∑
i

λi

E [Var (y |λλλ)] = kn [E (λ)]

The second term

E (y |λ) = E

 n∑
i

k∑
j

yi j |λi

 = k
n∑
i

λi

Var [E (y |λλλ)] = Var

(
k

n∑
i

λi

)
= k2n Var (λ)

The sum of the two terms

Var (y) = kn ([E (λ)] + k Var (λ))

If the Poisson parameter is not constant the variance also ex-
ceeds that in the homogenous case.

4 Overdispersion at the multinomial case
In some other experimental situations there are more than two

outcome categories.
An example of our interest is the attribute gauge R&R study

where several (e.g. 50) product items are rated by several opera-
tors several times. The result of the study is the number of good
items classified as good, the number of good items classified as
bad etc, altogether 4 categories.

The result is analogous to the binomial case: there is no
overdispersion if the rating is not repeated. Moreover, the
pooled outcome probabilities are the population averages of the
outcome probabilities of individual items, so the outcome fre-
quencies follow multinomial distribution with these averaged
probabilities. In the special case of binary outcomes the result-
ing distribution is binomial.

In the following we calculate the covariance matrix of the fre-
quencies YYY T

= (Y1, ...Ym)T of an experiment repeated k times
with mpossible outcome categories conducted on N objects se-
lected independently and with replacement. We can suppose
without loss of generality that n = 1, for the objects are se-
lected independently. In the general case the covariance matrix

is multiplied by n. Denote µµµT
= (µ1, ..., µm)T the individual

outcome probabilities of a randomly selected object. We have

Cov(YYY ) = E(Cov(YYY |µµµ)) + Cov(E(YYY |µµµ)).

The conditional distribution of YYY |µµµ is multinomial with or-
der k and parameter µµµ, so E(YYY |µµµ) = kµµµ and Cov(YYY |µµµ) =

k{diag(µµµ) − µµµµµµT
}. Here diag(µµµ)is a diagonal matrix with µµµ

in its diagonal. From this we have

Cov(YYY ) =

= k(diag(E(µµµ)) − E(µµµµµµT )) + k2 Cov(µµµ).

Here Cov(µµµ) = E(µµµµµµT ) − E(µµµ)E(µµµ)T , thus we obtain

Cov(YYY ) = k(k − 1) Cov(µµµ)

+k(diag(E(µµµ) − E(µµµ)E(µµµ)T )).

In the general case when n can be greater than 1 we have

Cov(YYY ) = nk(k − 1) Cov(µµµ)

+nk(diag(E(µµµ) − E(µµµ)E(µµµ)T ))

The second term in the right hand side is the covariance ma-
trix of a multinomial distribution with order nk and parameter
E(µµµ), hence the first term represents the extra variation due to
the variance of the individual outcome probabilities µµµ.

5 Conclusion
Both for binomial and multinomial cases it has been proven

that overdispersion occurs only if repeated ratings are performed
on the same items. In other words the marginal distribution is
binomial or multinomial, if there is no repeated rating, in spite
of the fact that the conditional distributions are different from
item to item.

The same phenomenon does not occur at Poisson distribution,
as here the expression of variance is of different nature (it does
not have negative part).
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