Supplement

Efficient Synthesis of Pharmaceutically Relevant Prochiral Heterocyclic Aminoketones

Ágnes Lakó, László Poppe, Ricardo Mendonça

General
All chemicals were purchased from Acros Organics (Queluz, Portugal), Aldrich (St. Louis, Missouri, United States), Alfa Aesar (Haverhill, Massachussets, United States), Merck (Darmstadt, Germany) and Eurisotop (Saint-Aubin, France) and were used as received.

All reactions were monitored by TLC and the pre-coated TLC plates (Silica gel 60 F\textsubscript{254}) were visualized by exposure to ultraviolet light and/or ninhydrin stain.

General procedures
To a solution of morpholine (1000 µL, 11.6 mmol) in MTBE (10 mL) was added chloroacetone (0.5 equiv.) at room temperature. The reaction was stirred for 48 hours, then filtered and solvent was removed under reduced pressure. The residue was treated with MTBE and the precipitate was filtered, then the solvent was removed under reduced pressure to afford the crude mixture as a yellow liquid (Scheme S1).

To a solution of 4a-i (1000 µL) in MTBE (10 mL) was added potassium carbonate (1.5 equiv.) and chloroacetone (1.1 equiv.) at room temperature. The reaction was refluxed until completion (followed by TLC DCM:MeOH 9:1+0.1 % NH\textsubscript{4}OH), then filtered and the solvent and excess of chloroacetone removed under reduced pressure (10 mbar) by keeping the water bath at 70 °C. The residue was treated with MTBE and the precipitate was removed by filtration. The solvent was removed under reduced pressure to afford 6a-i (Scheme S2).

To a solution of 4a-i (1000 µL) in MTBE (10 mL) was added potassium carbonate (3 equiv.) and chloroacetone (2.1 equiv.) was added and the reaction was refluxed until completion (followed by TLC DCM:MeOH 9:1+0.1 % NH\textsubscript{4}OH). The mixture was filtered and the solvent evaporated to yield a yellow oil that was treated with MTBE. After filtration the solvent was evaporated to yield the crude mixture of 6j and 4j (Scheme S4).

Piperazine (1000 mg, 11.6 mmol) was dissolved in MTBE (10 mL) at reflux temperature, then chloroacetone (0.5 equiv.) was added and the reaction was refluxed until completion (followed by TLC DCM:MeOH 9:1+0.1 % NH\textsubscript{4}OH). The precipitation was filtered off, and the solvent evaporated to yield a yellow oil that was treated with MTBE. After filtration the solvent was evaporated to yield the crude mixture of 6j and 4j (Scheme S4).

Piperazine (1000 mg, 11.6 mmol) was dissolved in MTBE (10 mL) at reflux temperature, then potassium carbonate (3 equiv.) and chloroacetone (2.1 equiv.) was added and the reaction was refluxed until completion (followed by TLC DCM:MeOH 9:1+0.1 % NH\textsubscript{4}OH). The mixture was filtered and...
the solvent and excess chloroacetone removed under reduced pressure (10 mbar) by keeping the water bath at 70 °C to yield 6k (Scheme S5).

The solution of 6a-g in MTBE was treated with 4N HCl in dioxane (1.05 equiv.) under nitrogen atmosphere. The forming crystals were triturated and filtered under N₂ atm. to afford 7a-g. If the hydrochloride was not forming properly, the MTBE was evaporated and the residue was taken up in EtOH, then the hydrochloride was recrystallized by addition of MTBE (Scheme S6).

The solution of 6h,i,k in MTBE was treated with 4N HCl in dioxane (2.05 equiv.) under nitrogen atmosphere. The forming crystals were triturated and filtered under N₂ atm. to afford 7h,i,k (Scheme S7).

The solution of 6j in MTBE was treated with 4N HCl in dioxane (1.05 equiv.) under nitrogen atmosphere. The forming crystals were triturated and filtered under N₂ atm. to afford 7j (Scheme S8).

Regeneration of 4i
The filter cake of the respective preparation of 6i with external base was dissolved in aqueous 1N NaOH solution (20 mL, pH > 10) and extracted with ethyl acetate. The organic phases were combined and dried on sodium sulfate. The solvent was evaporated to yield 4i as a colorless liquid.

Characterization of compounds
All melting points (mp) were determined on TA Instruments DSC250 calorimeter and are uncorrected. NMR spectra (Fig. S1–Fig. S36) were obtained with a Bruker Fourier 300 spectrometer, or a Magritec Spinsolve Benchtop NMR spectrometer at room temperature. Proton NMR spectra were recorded at 43 or 300 MHz, 13C NMR spectra were recorded at 75 MHz. Chemical shifts are given in ppm units, (1H NMR in DMSO-d_6: δ 2.50 ppm, or D$_2$O: δ = 4.79; 13C NMR in DMSO-d_6: δ = 39.5). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Spin-spin coupling constants (J) were given in Hz units. Infrared spectra (IR) of solid samples were recorded on a Nicolet Avatar 360 Fourier Transform Infrared spectrometer, of oils spectra were recorded on a Shimadzu IRAffinity-1 FTIR spectrometer. High-resolution mass spectra (HRMS) were recorded on an AB Sciex TripleTOF® 6600 System mass spectrometer.
Fig. S1 1H NMR of 1-morpholinopropan-2-one (6a)

Fig. S2 13C NMR of 1-morpholinopropan-2-one (6a)
Fig. S3 1H NMR of 1-thiomorpholinopropan-2-one (6b)

Fig. S4 13C NMR of 1-thiomorpholinopropan-2-one (6b)
Fig. S5 1H NMR of 1-(4-methylpiperidin-1-yl)propan-2-one (6c)

Fig. S6 13C NMR of 1-(4-methylpiperidin-1-yl)propan-2-one (6c)
Fig. S7 1H NMR of 1-(4-benzylpiperidin-1-yl)propan-2-one (6d)

Fig. S8 13C NMR of 1-(4-benzylpiperidin-1-yl)propan-2-one (6d)
Fig. S9 ¹H NMR of 1-(2-oxopropyl)piperidine-4-carboxylate (6e)

Fig. S10 ¹³C NMR of 1-(2-oxopropyl)piperidine-4-carboxylate (6e)
Fig. S11 1H NMR of 1-(pyrrolidin-1-yl)propan-2-one (6f)

Fig. S12 13C NMR of 1-(pyrrolidin-1-yl)propan-2-one (6f)
Fig. S13 1H NMR of 1-(azepan-1-yl)propan-2-one (6g)

Fig. S14 13C NMR of 1-(azepan-1-yl)propan-2-one (6g)
Fig. S15 1H NMR of 1-(4-methylpiperazin-1-yl)propan-2-one (6h)

Fig. S16 13C NMR of 1-(4-methylpiperazin-1-yl)propan-2-one (6h)
Fig. S17 ¹H NMR of 1-(4-phenylpiperazin-1-yl)propan-2-one (6i)

Fig. S18 ¹³C NMR of 1-(4-phenylpiperazin-1-yl)propan-2-one (6i)
Fig. S19 1H NMR of 1,1’-(piperazine-1,4-diyl)bis(propan-2-one) (6k)

Fig. S20 13C NMR of 1,1’-(piperazine-1,4-diyl)bis(propan-2-one) (6k)
Fig. S21 1H NMR of 1-morpholinopropan-2-one hydrochloride (7a)

Fig. S22 13C NMR of 1-morpholinopropan-2-one hydrochloride (7a)
Fig. S23 1H NMR of 1-thiomorpholinopropan-2-one hydrochloride (7b)

Fig. S24 13C NMR of 1-thiomorpholinopropan-2-one hydrochloride (7b)
Fig. S25 1H NMR of 1-(4-methylpiperidin-1-yl)propan-2-one hydrochloride (7c)

Fig. S26 13C NMR of 1-(4-methylpiperidin-1-yl)propan-2-one hydrochloride (7c)
Fig. S27 1H NMR of 1-(azepan-1-yl)propan-2-one hydrochloride (7g)

Fig. S28 13C NMR of 1-(azepan-1-yl)propan-2-one hydrochloride (7g)
Fig. S29 1H NMR of 1-(4-methylpiperazin-1-yl)propan-2-one hydrochloride (7h)

Fig. S30 13C NMR of 1-(4-methylpiperazin-1-yl)propan-2-one hydrochloride (7h)
Fig. S31 1H NMR of 1-(4-phenylpiperazin-1-yl)propan-2-one hydrochloride (7i)

Fig. S32 13C NMR of 1-(4-phenylpiperazin-1-yl)propan-2-one hydrochloride (7i)
Fig. S33 1H NMR of 4-(2-oxopropyl)piperazin-1-ium hydrochloride (7j)

Fig. S34 13C NMR of 4-(2-oxopropyl)piperazin-1-ium hydrochloride (7j)
Fig. S35 1H NMR of 1,1'-(piperazine-1,4-diyl)bis(propan-2-one) hydrochloride (7k)

Fig. S36 13C NMR of 1,1'-(piperazine-1,4-diyl)bis(propan-2-one) hydrochloride (7k)
Yellow oil. **TLC** \((R) \) 0.69 (DCM:MeOH 9:1+0.1 % NH\(_2\)OH); \(^1\)H NMR \((\delta, 300 \text{ MHz}, \text{DMSO-d}_6)\) 3.61 – 3.52 (m, 4H), 3.16 (s, 2H), 2.43 – 2.33 (m, 4H), 2.07 (s, 3H); \(^1^3\)C NMR \((75 \text{ MHz}, \text{DMSO-d}_6)\) \(\delta\) 207.08, 68.10, 66.57, 53.56, 28.01; IR \((\text{cm}^{-1})\): 3441, 2965, 2920, 2858, 2816, 1722, 1714, 1651, 1456, 1356, 1298, 1244, 1152, 1115, 1070, 1015, 869; HRMS (ESI+) \([M+H]^+\) \(\text{C}_{13}\text{H}_{17}\text{NO}\) calcd. 232.1701, found: 232.1730 (Scheme S12).

Orange oil. **TLC** \((R) \) 0.67 (DCM:MeOH 9:1+0.1 % NH\(_2\)OH); \(^1\)H NMR \((\delta, 300 \text{ MHz}, \text{DMSO-d}_6)\) 4.06 (q, \(J = 7.1 \text{ Hz}, 2\)H), 3.11 (s, 2H), 2.81 – 2.64 (m, 2H), 2.34 – 2.17 (m, 1H), 2.14 – 1.99 (m, 2H), 2.06 (s, 3H), 1.85 – 1.68 (m, 2H), 1.67 – 1.46 (m, 2H), 1.17 (t, \(J = 7.1 \text{ Hz}, 3\)H); \(^1^3\)C NMR \((75 \text{ MHz}, \text{DMSO-d}_6)\) 207.59, 174.74, 68.29, 60.22, 52.82, 40.32, 28.39, 27.87, 14.53; IR \((\text{cm}^{-1})\): 2943, 2806, 1732, 1715, 1645, 1447, 1393, 1356, 1287, 1162, 1182, 1115, 1049, 1028, 868; HRMS (ESI+) \([M+H]^+\) \(\text{C}_{14}\text{H}_{20}\text{NO}\) calcd. 214.1443, found: 214.1462 (Scheme S13).

Brown oil. **TLC** \((R) \) 0.58 (DCM:MeOH 9:1+0.1 % NH\(_2\)OH); \(^1\)H NMR \((\delta, 300 \text{ MHz}, \text{DMSO-d}_6)\) 3.29 (s, 2H), 2.47 (t, \(J = 2.6 \text{ Hz}, 4\)H), 2.07 (s, 3H), 1.72 – 1.63 (m, 4H); \(^1^3\)C NMR \((75 \text{ MHz}, \text{DMSO-d}_6)\) 206.82, 65.44, 53.55, 27.53, 23.36; IR \((\text{cm}^{-1})\): 3478, 2967, 2803, 1722, 1715, 1651, 1607, 1549, 1524, 1504, 1462, 1352, 1150; HRMS (ESI+) \([M+H]^+\) \(\text{C}_{15}\text{H}_{34}\text{NO}\) calcd. 128.1075, found: 128.1080 (Scheme S14).

Orange oil. **TLC** \((R) \) 0.80 (DCM:MeOH 9:1+0.1 % NH\(_2\)OH); \(^1\)H NMR \((\delta, 300 \text{ MHz}, \text{DMSO-d}_6)\) 3.29 (s, 2H), 2.59 (t, \(J = 5.2 \text{ Hz}, 4\)H), 2.05 (s, 3H), 1.63 – 1.49 (m, 8H); \(^1^3\)C NMR \((75 \text{ MHz}, \text{DMSO-d}_6)\) 208.31, 67.96, 55.11, 28.20, 27.30, 26.65; IR \((\text{cm}^{-1})\): 2926, 2853, 1721, 1713, 1672, 1454, 1352, 1238, 1180, 1138, 1092, 964; HRMS (ESI+) \([M+H]^+\) \(\text{C}_{13}\text{H}_{18}\text{NO}\) calcd. 156.1388, found: 156.1408 (Scheme S15).

Scheme S9 1-morpholinopropan-2-one (6a)

Scheme S10 1-thiomorpholinopropan-2-one (6b)

Scheme S11 1-(4-methylpiperidin-1-yl)propan-2-one (6c)

Scheme S12 1-(4-benzylpiperidin-1-yl)propan-2-one (6d)

Scheme S13 1-(2-oxopropyl)piperidine-4-carboxylate (6e)

Scheme S14 1-(pyrrolidin-1-yl)propan-2-one (6f)

Scheme S15 1-(azepan-1-yl)propan-2-one (6g)
Orange oil. TLC (R_f) 0.56 (DCM:MeOH 9:1+0.1 % NH₂OH); ¹H NMR (δ, 300 MHz, DMSO-d₆) 3.12 (s, 4H), 3.08 (s, 4H), 2.22 (s, 3H), 1.97 (d, J = 14.8 Hz, 2H), 1.76 (br, 1H), 1.57 (t, J = 13.3 Hz, 2H), 1.03 (d, J = 6.4 Hz, 3H); ¹³C NMR (δ, 75 MHz, Deuterium Oxide) 202.33, 63.78, 54.03, 26.83, 23.96; IR (cm⁻¹): 3428, 2946, 2848, 2645, 2539, 1725, 1395, 1340, 1188, 933, 625; HRMS (ESI⁺) [M+H] C₁₈H₃₅NOS calcd. 160.0796, found: 160.0785 (Scheme S20).

White solid. Mp: 185 °C; ¹H NMR (δ, 300 MHz, Deuterium Oxide) 4.30 (s, 2H), 3.49 (s, 4H), 2.96 (s, 4H), 2.22 (s, 3H); ¹³C NMR (δ, 75 MHz, Deuterium Oxide) 201.95, 63.96, 54.72, 26.83, 23.96; IR (cm⁻¹): 3428, 2946, 2848, 2645, 2539, 1725, 1395, 1340, 1188, 933, 625; HRMS (ESI⁺) [M+H] C₁₈H₃₅NOS calcd. 160.0796, found: 160.0785 (Scheme S20).

Yellow solid. Mp: 167 °C; ¹H NMR (δ, 300 MHz, Deuterium Oxide) 4.33 (s, 2H), 3.56 (d, J = 12.5 Hz, 2H), 3.33 (br, 1H), 3.08 (t, J = 13.1 Hz, 2H), 2.32 (s, 3H), 1.97 (d, J = 14.8 Hz, 2H), 1.76 (br, 1H), 1.57 (t, J = 13.3 Hz, 2H), 1.03 (d, J = 6.4 Hz, 3H); ¹³C NMR (δ, 75 MHz, Deuterium Oxide) 202.33, 63.78, 54.03, 30.71, 27.72, 26.79, 20.18; IR (cm⁻¹): 3446, 2957, 2663, 1729, 1639, 1394, 1365, 1188, 1064, 952; HRMS (ESI⁺) [M+H] C₁₈H₃₅NOS calcd. 156.1388, found: 156.1384 (Scheme S21).

Faint-yellow solid. Mp: 191 °C; ¹H NMR (δ, 300 MHz, Deuterium Oxide) 4.44 (s, 2H), 4.06 (br, 4H), 3.46 (br, 4H), 2.33 (s, 3H); ¹³C NMR (δ, 75 MHz, Deuterium Oxide) 201.86, 63.56, 63.32, 52.32, 26.74; IR (cm⁻¹): 3418, 2938, 2816, 1722, 1715, 1697, 1651, 1462, 1427, 1385, 1360, 1296, 1238, 1161, 1016, 978, 825; HRMS (ESI⁺) [M+H] C₁₈H₃₅NOS calcd. 199.1470, found: 199.1470 (Scheme S18).

Scheme S16 1-(4-methylpiperazin-1-yl)propan-2-one (6h)

Scheme S17 1-(4-phenylpiperazin-1-yl)propan-2-one (6i)

Scheme S18 1,1’-(piperazine-1,4-diyl)bis(propan-2-one) (6k)
Faint-yellow solid. **Mp**: 197 °C; **1H NMR** (δ, 300 MHz, *Deuterium Oxide*) 4.43 (s, 2H), 3.70 (br, 10H), 3.08 (s, 3H), 2.32 (s, 3H); **13C NMR** (δ, 75 MHz, *Deuterium Oxide*) 202.33, 63.28, 50.16, 49.29, 42.89, 26.87; **IR** (cm⁻¹): 3446, 2992, 2806, 2694, 2610, 2430, 1731, 1635, 1474, 1436, 1410, 1371, 1288, 1188, 1034, 985, 656, 591; **HRMS** (ESI+) \([M+H]^+\) \(C_{8}H_{17}N_{2}O\) calcd. 157.1341, found: 157.1328 (Scheme S23).

Faint-yellow solid. **Mp**: 198 °C; **1H NMR** (δ, 300 MHz, *Deuterium Oxide*) 7.51 (d, \(J = 7.7\) Hz, 1H), 7.52 – 7.27 (m, 1H), 7.33 – 7.17 (m, 3H), 4.49 (s, 2H), 3.77 – 3.53 (m, 11H), 2.33 (s, 3H); **13C NMR** (δ, 75 MHz, *Deuterium Oxide*) 202.30, 146.82, 130.37, 125.13, 118.77, 66.94, 51.98, 48.28, 27.25; **IR** (cm⁻¹): 3429, 3015, 2966, 2849, 2360, 2332, 1733, 1597, 1495, 1446, 1231, 1364, 1271, 1186, 762, 695, 540; **HRMS** (ESI+) \([M+H]^+\) \(C_{13}H_{19}N_{2}O\) calcd. 219.1497, found: 219.1497 (Scheme S24).

Faint-yellow solid. **Mp**: 116 °C; **1H NMR** (δ, 300 MHz, *Deuterium Oxide*) 3.67 (s, 2H), 3.35 (t, \(J = 5.3\) Hz, 4H), 2.87 (t, \(J = 5.3\) Hz, 4H), 2.20 (s, 3H); **13C NMR** (δ, 75 MHz, *Deuterium Oxide*) 208.83, 65.26, 48.79, 42.75, 27.02; **HRMS** (ESI+) \([M+H]^+\) \(C_{7}H_{15}N_{2}O\) calcd. 143.1184, found: 143.1167 (Scheme S25).

Faint-yellow solid. **Mp**: 232 °C; **1H NMR** (δ, 300 MHz, *Deuterium Oxide*) 4.49 (s, 4H), 3.74 (s, 8H), 2.33 (s, 6H); **13C NMR** (δ, 75 MHz, *Deuterium Oxide*) 201.97, 63.17, 49.00, 26.70; **IR** (cm⁻¹): 3444, 3026, 2917, 2394, 1732, 1490, 1458, 1436, 1367, 1345, 1184, 1110, 1006, 545; **HRMS** (ESI+) \([M+H]^+\) \(C_{10}H_{19}N_{2}O_{2}\) calcd. 199.1447, found: 199.1426 (Scheme S26).

Scheme S23 1-(4-methylpiperazin-1-yl)propan-2-one hydrochloride (7h)

Scheme S24 1-(4-phenylpiperazin-1-yl)propan-2-one hydrochloride (7i)

Scheme S25 4-(2-oxopropyl)piperazin-1-ium hydrochloride (7j)

Scheme S26 1,1'-(piperazine-1,4-diyl)bis(propan-2-one) hydrochloride (7k)