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Abstract
In previous papers of this work methodologies have been es-

tablished i) to predict the molecular weight distribution (MWD)
of living polymerisation processes in various reactor configura-
tions, ii) and – in a reversed calculation process – to design re-
actor parameters and feed profiles for a single CSTR or a tubu-
lar reactor to meet a target MWD.

In this paper a model of a series of continuous stirred tank re-
actors (CSTRs) with various initiator and monomer feed strate-
gies have been used to establish i) the possible MWD shapes
with constant feed, ii) the MWD with the lowest possible poly-
dispersity index, and iii) a methodology to design multimodal
MWDs with a continuous steady state process.

Both the MWD prediction and the design methodologies use
a simplified, very fast, direct algorithm, well suited for control
purposes.
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1 Introduction
It is evident that polymer properties are related to the full

molecular weight distribution (MWD). However, in most indus-
trial processes, the average chain length or molecular weight is
used to characterize the product. It has been shown that even
the second moment of the MWD carries information not avail-
able from the reactor temperature profile or monomer conver-
sion, and this information can be vital to control parameter tun-
ing or product characterization [6].

In practice, the full MWD envelope of a polymer is rarely es-
tablished, since precise calculations require an excessive com-
putational power. Approximation methods provide a trade-off
between calculation efficiency and accuracy, and have always
been central to this field of research. It has been previously es-
tablished that

1 The MWD from a living polymerisation process carried out
in various reactor configurations with constant or unsteady
feed profiles can be very well approximated with a simpli-
fied, very fast, direct algorithm, the method of monodisperse
growth (Gosden et al, 1995). The effect of unsteady feeds as
well as the reactor residence time distribution is taken into ac-
count precisely. The burden of the precise MWD calculations
is eased off by simplifying the multi-step chain growth to a
single-step (monodisperse) process.

2 The calculation methodology can be readily reversed. Based
on the reversed calculation sequence, a design algorithm has
been established in order to predict reactor parameters and
feed profiles to meet a target MWD [2,9]. The concept of the
design process is shown in Fig. 1.

3 The shape of possible MWDs with a single CSTR is restricted
to the Schulz-Flory distribution. On the long run, if the prod-
uct is collected, any unsteady feed profiles – if applied pe-
riodically – produce a Schulz-Flory distribution [2]. Conse-
quently, there is not much scope left for MWD design with a
single CSTR.

4 No such theoretical restrictions apply to a process utilizing
a tubular reactor, a wide range of MWD shapes are feasible
[2, 7]
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Fig. 1. MWD design methodology
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In practice, however, a series of CSTRs are preferred to a
tubular reactor for the ease of handling, control and for higher
throughput rates (Farkas and Meszéna, 2008) [3]. In this pa-
per an MWD design methodology has been established using a
series of CSTRs with various monomer and initiator feed strate-
gies. It is shown that

1 The method established converges to the theoretically pos-
sible lowest dispersity MWD, if the number of stages is in-
creased.

2 The minimal dispersity for a given reactor configuration can
be predicted.

3 Multimodal MWDs are possible to design if several initia-
tor input points and, consequently, different residence times
of growing chains are used. The derivation of initiator input
positions and input profiles is presented.

4 The number of stages can be used as a design parameter, if
desired.

2 Method
2.1 MWD prediction for a steady state CSTR cascade
In the example shown four stages have been used. The

method is generic and not restricted to a particular number of
stages used. Notations used are shown in Fig. 2.

The steady state product of the first reactor has a Schulz Flory
MWD:

P̄1 ( j) =
Iin

Da1
·

(
Da1

Da1 + 1

) j

(1)

where Iin is the inlet initiator concentration and Da1 is the first
stage Damkohler number:

Da1 = kp,1 M1,inτ

The output of the first stage is fed to the second one. The product
MWD from the second stage can be approximated with method
of mondisperse growth [9] :

P̄2 ( j) =

tend∫
t ′=t0

P̄1
(

j − µ
(
tend − t ′

))
︸                               ︷︷                               ︸

q(t ′)

1
τ2

e−
tend −t ′

τ2 dt ′︸              ︷︷              ︸
E(t−t ′)

Central to the method is the simplification that in the time frame
t’ to tend every chain is extended with the same µ(tend − t ′)
length, out of which the fraction given by the internal age distri-
bution

E(t − t ′) =
1
τ2

e−
tend −t ′

τ2

stays in the reactor till tend . Consequently, the amount of chains
of length j is an integral of these fractions over the time period
t0 to tend in question.

After substituting the initial MWD for P̄1 and changing the
parameter of integration from time to chain length

µ = Da(t ′ − t0) (2)

integration can be carried out analytically (Da is constant in the
steady state) and the MWD from the second stage is

P̄2 ( j) =

j∫
µ=0

Iin

Da1
·

(
Da1

Da1 + 1

) j−µ 1
Da2

e−
µ

Da2 dµ

It is noted that chain length is treated in this work as a continuous
variable [9].

Since Da >> 1 in practical processes the approximation
ln(x) ≈ −1 + x can be applied to result

P̄2 ( j) =
Iin

Da1 · Da2

(
Da1

Da1 + 1

) j

j∫
µ=0

e
µ

1+Da1 · e−
µ

Da2 dµ =
P̄1 ( j)
Da2

j∫
µ=0

e
µ

Da1+1 · e−
µ

Da2 dµ

After integration the number chain length distribution (NCLD)
from the second stage is MWD design in a series of CSTRs

P̄2 ( j) =
(1 + Da1) P̄1 ( j)
Da1 + 1 − Da2

·

(
1 − e

− j · Da1+1−Da2
(1+Da1)Da2

)
if Da1 + 1 , Da2

P̄2 ( j) =
j P̄1( j)
Da2

, if Da1 + 1 = Da2
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Fig. 2. CSTR cascade model with four stages

Similarly, the MWD from the third stage is

P̄3 ( j) =

j∫
µ=0

P̄2 ( j − µ) 1
Da3

e−
µ

Da3 dµ =

j∫
µ=0

(1+Da1)
Da1+1−Da2

Iin
Da1

(
Da1

Da1+1

) j−µ

(
1 − e

−( j−µ)·
Da1+1−Da2
(1+Da1)Da2

)
1

Da3
e−

µ
Da3 dµ.

With approximation ln(x) ≈ −1 + x :

P̄3 ( j) =

j∫
µ=0

(1 + Da1)

Da1 + 1 − Da2

Iin

Da1 Da3
e

−( j−µ)
Da1+1

(
e−

µ
Da3 − e

−( j−µ)·
Da1+1−Da2
(1+Da1)Da2

−
µ

Da3

)
dµ

and notations:

A =
1

Da1 + 1
−

1
Da3

, B =
1

Da2
−

1
Da3

,

C =
1

Da2
−

1
Da1 + 1

the integral defining the MWD is simplified to

P̄3 ( j) =

j∫
µ=0

Iin

Da1 Da2 Da3
·

1
C

e
− j

Da1+1
(

eAµ
− e− jC eBµ

)
dµ

After integration the MWD from the third stage is

P̄3 ( j) =
1

Da2 Da3
·

1
C

P̄1( j)·(
1
A

eAj
−

1
B

e(B−C) j
−

1
A

+
1
B

e− jC
)

Similarly, the MWD from the fourth stage is

P̄4 ( j) =

j∫
µ=0

P̄3 ( j − µ)
1

Da4
e−

µ
Da4 dµ =

j∫
µ=0

Iin

Da1 Da2 Da3
·

1
C

e
−( j−µ)
Da1+1

(
1
A

eA( j−µ)
−

−
1
B

e(B−C)( j−µ)
−

1
A

+
1
B

e−( j−µ)C
)

1
Da4

e−
µ

Da4 dµ

With notation D =
1

Da1+1 −
1

Da4
and after integration the MWD

from the fourth stage is

P̄4 ( j) =
1

Da2 Da3 Da4
·

1
C

P̄1( j)·((
B − A

AB (D − A)
−

1
AD

+
1

B (C + D)

)
eDj

−

1
A (D − A)

eAj
+

1
B (D − A)

e(B−C) j
+

1
AD

−
1

B (C + D)
e− jC

)

The monomer feed, M1,in necessary to the desired chain growth
can be derived as

M1,in = M1,0 + Iin + kp · M1,0 · τ1 · Iin

=
Da1

kpτ1
+ (1 + Da1) · Iin (3)

Due to the assumption of instantaneous initiation, no initiator is
present in the product stream of the first reactor. Total polymer
concentration is equal to the initiator input. The monomer feed
concentration to the second stage, M2,in can be derived as

M2,in = M2,0 − M1,0 + kp · M2,0 · τ2 · Iin

=
Da2

kpτ2
+ Da2 · Iin −

Da1

kpτ1
(4)

Similarly, for any stage n (n > 1) the monomer feed concentra-
tion to stage n, Mn,in is given by

Mn,in = Mn,0 − Mn−1,0 + kp · Mn,0 · τn · Iin

=
Dan

kpτn
+ Dan · Iin −

Dan−1

kpτn−1
(5)

It is practical to assume that the necessary monomer concentra-
tions just derived are maintained by sequential monomer addi-
tion to every stage. Consequently, the overall volumetric flow
rate is increasing, the polymer concentration is decreasing stage
by stage. The MWD formulas with volume correction are

P̄2 ( j) =
W1

W1 + W2,M

(1 + Da1) P̄1 ( j)
Da1 + 1 − Da2

·(
1 − e

− j · Da1+1−Da2
(1+Da1)Da2

)
(6)
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Fig. 3. MWD predictions for 4-stage CSTR cas-
cade. Case A) Stage by stage Damköhler numbers
are constant
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Fig. 4. MWD predictions for 4-stage CSTR cas-
cade. Case B) Stage by stage Damköhler numbers are
increasing
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P̄3 ( j) =
W1

W1 + W2,M + W3,M

1
Da2 Da3

·
1
C

P̄1( j)(
1
A

eAj
−

1
B

e(B−C) j
−

1
A

+
1
B

e− jC
)

(7)

P̄4 ( j) =
W1

W1 + W2,M + W3,M + +W4,M

1
Da2 Da3 Da4

·

1
C

P̄1( j) ·

((
B − A

AB (D − A)
−

1
AD

+
1

B (C + D)

)
eDj

−
1

A ((D − A))
eAj

+
1

B (D − A)
e(B−C) j

+
1

AD

−
1

B (C + D)
e− jC

)
(8)

A similar volume correction has to be applied to the monomer

input concentrations

Mn,in =
Wn

Wmon(
Mn,0 − Mn−1,0 ·

Wn−1

Wn
+ kp · Mn,0 · τn · Iin ·

W1

Wn
=

Dan

kpτn
+ Dan ·

W1

Wn
· Iin −

Dan−1Wn−1

kpτn−1Wn

)
where Wmon is the volumetric flow rate of the additional
monomer feed stream.

2.2 MWD design with a CSTR cascade
The calculation methodology can be readily reversed. Based

on the reversed calculation sequence, a design algorithm has
been established in order to predict reactor parameters and feed
profiles to meet a target MWD [2, 9]. The concept of the design
process is shown in Fig. 1.
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Fig. 5. MWD predictions for 4-stage CSTR cas-
cade. Case c) Stage by stage Damköhler numbers are
increasing

Fig. 6. Component distribution fits for target GPC
peaks
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The MWD design process is intended to use no other product
information apart from the GPC chromatogram of the desired
product.

The design parameters to be determined are the number of
stages needed, initiator and monomer input concentrations and
the Damkohler numbers stage by stage. The Damkohler number
lumps together the volumetric flow rate, the reactor temperature
and the average residence time which can be specified at a later
step of the design process based on practical considerations.

In practice, the number of stages is fixed and, if the feasible
MWDs are very far from the desired ones, additional stages will
be considered and the design process will be repeated.

It is clear that there are limitations, especially on the mini-
mal possible dispersity of the MWD if a low number of stages
are used in the cascade. A batch process is more desirable for a
very low dispersity MWD. However, complex, multi-peak dis-
tributions are well fitted for our design algorithm.

The target overall MWD is treated as a linear combination
of several distributions of predefined type. The components are

identified by the position and dispersity index of the individual
peaks of the overall MWD. The shortest chains are produced in
the last stage, the longest ones go through all the stages. Con-
sequently, the design process starts with the last stage of the
cascade and proceeds towards to first one.

The average residence times and the relative magnitude of the
Damkohler numbers per stage can be derived from the dispersity
indices of the component distributions. The minimal dispersity
index in a four stage reactor cascade is 1.25 [3], consequently, if
the dispersity index of the target MWD is lower than this limit,
identical (i.e. overlapping) component distributions will give the
best compromise.

As a general rule, if the individual peaks are well resolved,
i.e. their dispersity index is relatively low, the stage Damkohler
numbers have to be as close to each other as possible in order to
produce a low dispersity peak.

The stage Damkohler numbers are derived from the peak po-
sition of the component distributions. The peak position has
been calculated from the root of the first derivative of the com-
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Fig. 7. Predicted initiator input profiles with vari-
ous number of stages.

Fig. 8. Predicted initiator input profile with feasi-
bility correction for a 4-stage CSTR.

Fig. 9. Predicted stage by stage monomer input
profiles for a 4-stage CSTR.

ponent distribution with respect to chain length.
The component distribution is a GPC, i.e. the function to fit is

the (above defined) number chain length distribution weighted
with chain length squared. Peak position is derived as

dG PCn ( j)
d j

=
d Pn ( j) · j2

d j
= 0

Carrying out differentiation for the above defined distributions

stage by stage:

j =
−2

ln
(

Da1
Da1+1

) n = 1 (9)

(
2 −

j
Da1 + 1

)
e−

j
Da1+1 −

(
2 −

j
Da2

)
e−

j
Da2 = 0 n = 2

(10)
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((
1 −

A
B

)
· eAj

−
C
B

· e−C j
)

j +

(
2 + ln

(
Da1

Da1 + 1

)
j
)

((
1
A

−
1
B

)
· eAj

−
1
A

+
1
B

· e−C j
)

= 0 n = 3 (11)

((
B − A

AB(D − A)
−

1
AD

+
1

B(C + D)

)
eDj

−
B − A

AB(D − A)
eAj

+

+
1

AD
−

1
B(C + D)

e− jC
) (

2 + j ln
(

Da1

Da1 + 1

))
+

+

((
B − A

AB(D − A)
−

1
AD

+
1

B(C + D)

)
DeDj

−
B − A

B(D − A)
eAj

+
C

B(C + D)
e− jC

)
j = 0 n = 4

(12)

It is evident that the number of stages in the cascade has to be
greater or equal to the number of peaks in the GPC. Each peak
needs a separate initiator input to a certain stage. However, if
more stages are available than peaks, several assignments are
possible for initiator inputs.

As it has been already mentioned, the process parameters are
calculated working from the last stage towards the first one. If
there are m peaks in the GPC and n stages are available (n >=

m), theoretically, there are n-m+1 possibilities to assign stages
to the first peak (shortest chains) of the GPC, i.e. the sets [n],
[n-1, n], [n-2, n-1, n] . . . [n-m+1, n-m+2, . . . n] are feasible
choices. The corresponding monomer input concentration and
Damkohler number can be obtained by solving Equations (3-5).
The initiator input concentration can be derived from the GPC
peak area.

Repeating the procedure for the second and further peaks of
the GPC, the results can be summarised in a tree graph or a table,
listing all possible stage assignments to peaks. An example for
2 peaks and 4 stages is shown in Table 1.

Tab. 1. Possible cascade stage assignments to GPC peaks. Bimodal target
GPC, 4-stage CSTR.

Assigned stages to Assigned stages to Initiator input

1st peak 2nd peak to stages

4 1, 2, 3, 4 1, 4

3, 4 1, 2, 3, 4 1, 3

2, 3, 4 1, 2, 3, 4 1, 2

Since both the derivation of the process parameters for each
of the choices and the prediction of the final GPC is a relatively
easy task, all the cases can be evaluated and compared, and the
case best fitting the target MWD can be selected.

2.3 MWD prediction and design with an unsteady CSTR
cascade
Central to our methodology is the idea that the approximated

MWD should be calculated with an explicit formula instead of
solving a large set of equations. The main simplification has
been the assumption of monodisperse growth.

For design calculations in a CSTR cascade, in order to easily
invert the MWD prediction formula, the assumption of steady
state operation has been used in the previous sections. Alterna-
tively, if both the stage by stage average residence times and the
Damkohler numbers are uniform, explicit and invertible MWD
prediction and design formulas can be derived for unsteady op-
eration of a CSTR cascade.

The overall residence time distribution (RTD) of an n-stage
CSTR cascade with uniform stage by stage average residence
times is [8]:

E (tend − t) =
nn

(n − 1)!
·

(
tend − t
τcascade

)n−1

e−n·
tend −t

τcascade · (13)

where τcascade is the overall average residence time:

τcascade = n · τ

Since initiation is assumed to be instantaneous, and the disper-
sion caused by chain propagation is neglected, the polydisper-
sity index of the MWD is defined by the variance of the resi-
dence time distribution function [5]. The variance of the RTD in
terms of reduced time is [8]:

Dn − 1 = σ 2 (tr ) =

∞∫
0

(tr − 1)2 E (tr ) dtr =
1
n where tr =

t
τcascade

Dn = 1 +
1
n

(14)

As it is known, the behaviour of the CSTR cascade tends to that
of the plug flow reactor as n is increased.

The NCLD of the product from the cascade is derived by sub-
stituting Equation (8) into the general NCLD prediction formula
of the method of monodisperse growth [9]:

Pj (tend) =

tend∫
t=t0

δ [ j − (µ(tend) − µ(t))] ·

·
nn

(n − 1)!
·

(
tend − t
τkaszkad

)n−1

e
−n·

tend −t
τkaszkad · ·

Iin(t)
τkaszkad

dt

The integration is carried out in a manner similar to that in Sec-
tion 2.1. After integration the instantaneous NCLD is given as
an explicit function of the input initiator profile:

Pj (t) =
nn

(n − 1)!
·

(
j + 1

n · Da

)n−1

e−·
j−1
Da ·

1
τkaszkad · kp M0

· Iin

(
t −

j − 1
kp M0

)
Consequently, the time-averaged NCLD is a function of the in-
tegral of the initiator input profile. It is emphasized that only a
single integration is needed to calculate a full distribution in any
detail.

Pj (tend) =
1

tend
·

1
n · Da

·
nn

(n − 1)!
·

(
j + 1

n · Da

)n−1

e−
j−1
Da ·

tend−( j−1)/(kp M0)∫
t=0

Iin (t)dt (15)
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The inversion procedure of Eq. (10), in order to derive the MWD
design formula, is exactly the same as detailed earlier [9] apart
from set of different factors coming from the RTD:

Iin

(
tend −

j − 1
kp M0

)
= τkaszkadkp M0 ·

(n − 1) !
nn

∂ F j (tend)

∂ j

where

F j (t) = ( jmax − 1) ·

(
j + 1

n · Da

)1−n

· e
j−1
Da · P j (t)

The stage by stage monomer input profiles, needed to maintain
a constant monomer level, are derived from the monomer com-
ponent balance equations. For stage 1:

M1,in (t) = M0 + Iin (t) + kp · M0 · P1 (t) (16)

where

P1 (t) =

t∫
θ=0

Iin (θ) · e−
t−θ
τ dθ

For the rest of the stages, i.e. for n > 1:

Mn,in (t) = kp · M0 · Pn (t) = kp · M0

t∫
θ=0

Pn−1 (θ) · e−
t−θ
τ dθ

(17)

3 Results and Discussion
3.1 MWD prediction for a steady state CSTR cascade
The simplified MWD prediction method of monodisperse

growth has been used in several examples. The cases form
a study to demonstrate the effect of the distribution of chain
growth in the various stages on the dispersity index, Dn . As
it has been shown, average chain growth is defined by the
Damköhler number.

Three Cases are reported. In Case A stage by stage Damköh-
ler numbers are (nearly) identical, the 0.001% differences are
due to numerical reasons. In Case B the Damköhler numbers
increase, in Case C they decrease with Da, as it is shown in Ta-
ble 2. In all Cases the desired overall average chain length, µn

is identical (Daoverall = 2000).

Tab. 2. Stage by stage Damköhler numbers

Stage-1 Stage-2 Stage-3 Stage-4

Case A 500.001 500.002 500.003 500.004

B 200 400 600 800

C 800 600 400 200

All calculations have been checked against and in the Figures
the computed distributions are shown together with the results
of a reference MDW calculation method, i.e. MWDs obtained
with the commercial Predici package (Wulkow, 1993; Wulkow,
1996). The differences are negligible, the curves are identical in
all cases.

Tab. 3. MWD prediction for a 4-stage CSTR cascade.

Parameter Common value in all cases

W1 0,1 [ l/s]

V1= V2= V3= V4 40 [ l ]

W2,Mon= W3,Mon= W4,Mon 0,001 [ l/s ]

kp 20 [ l/mol/s ]

Iin 0,001 [ mol/l ]

The flow rates, concentrations and other particular parameters
used in Cases A, B, C are summarized in Tables 3 and 4. It has
been assumed that all stages have equal volume, Vn , and the
reaction is isothermal.

The resulting MWDs are shown in Figs. 3-5. It can be seen
that the predictions from Eqs. (1,6-8) are identical to the ref-
erence curves. It is remarkable, since Eqs. (1,6-8) are explicit
formulas, while the reference method requires the solution of a
large set of equations.

The average chain length and the dispersity index of the
MDWs are shown in Table 5 for all the above Cases. The dif-
ferences between the method of monodisperse growth and the
reference results (Predici) are less than 1% in all Cases.

3.2 MWD design with a CSTR cascade
The method described in Section 2.2 has been applied to a bi-

modal target GPC (Fig. 6) with peak positions of j = 4480 és a j
= 14200 in terms of chain length. Consequently, two component
distributions are needed.

The target GPC is to be produced in a 4-stage CSTR cascade.
For the assignment calculations of the second initiator feed to
the possible stages, it is assumed that the Damkohler numbers
of stages assigned to a peak are identical, since this is the best
strategy for a low dispersity component distribution.

In order to fit the position of the first peak of the GPC with a
component distribution Equations (9-12) have been solved for
stage Damkohler numbers. The solution has been calculated
with the Solver Add-in of MS Excel and the results are shown
in Fig. 6 and Table 6.

Assigning x stages to the first peak, 4-x stage Damkohler
numbers remain to fit the second peak. For cases (4-x) > 1
identical stage Damkohler numbers have been used in order to
obtain a lower dispersity component distribution. The results are
shown in Fig. 6 and Table 7. For fitting the second component
distribution the previously fixed Damkohler numbers are used
as constraints (shown in gray in Table 7).

It can be seen in Fig. 6 that four stages give the best fit (lowest
dispersity), however, the maximum number of stages that can be
assigned to the first peak of the target GPC is 3 (stages 2, 3, 4).

It can be seen in Fig. 6 that the polydispersity of all the calcu-
lated distributions are bigger than that of the target (Dn = 1.05).
It has been shown previously that the minimal feasible polydis-
persity for a 4-stage CSTR is 1.25, see Equation (9). Distribu-
tions matching the polydispersity of the target GPC are feasible
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Tab. 4. MWD prediction for a 4-stage CSTR cascade. Stage by stage Damköhler numbers are A) constant, B) increasing, C) decreasing

A

Da1 500 Da2 500,01 Da3 500,02 Da4 500,03

Tau1 400 s Tau2 363,64 Tau3 333,33 Tau4 307,69

Mo1 0,0625 mol/l Mo2 0,0688 Mo3 0,0750 Mo4 0,0813

Min1 5,6350 mol/l Min2 5,1314 Min3 5,1440 Min4 5,1566

W1 0,1 l/s W2 0,11 W3 0,12 W4 0,13

B

Da1 200 Da2 400 Da3 600 Da4 800

Tau1 400 sec Tau2 363,64 Tau3 333,33 Tau4 307,69

Mo1 0,025 mol/l Mo2 0,055 Mo3 0,09 Mo4 0,13

Min1 2,2600 mol/l Min2 4,3550 Min3 6,4750 Min4 8,6100

W1 0,1 l/s W2 0,11 W3 0,12 W4 0,13

C

Da1 800 Da2 600 Da3 400 Da4 200

Tau1 400 s Tau2 363,64 Tau3 333,33 Tau4 307,69

Mo1 0,1 mol/l Mo2 0,0825 Mo3 0,06 Mo4 0,0325

Min1 9,0100 mol/l Min2 5,9075 Min3 3,8125 Min4 1,7025

W1 0,1 l/s W2 0,11 W3 0,12 W4 0,13

Tab. 5. Parameters of MWD predictions for a 4-stage CSTR cascade. Stage
by stage chain lengths and dispersity indices

Stage-1 Stage-2 Stage-3 Stage-4

Case A

Da 500.001 500.002 500.003 500.004

Dn 2,00398 1,499956 1,33317 1,24953

Dn,Predici 2,00155 1,49834 1,33285 1,24999

µn 499,50 1000,00 1500,97 2001,74

µn,Pr edici 498,312 1000,642 1500,731 2000,82

B

Da 200 400 600 800

Dn 2,00995 1,55446 1,38839 1,29819

Dn,Predici 1,99872 1,55434 1,38932 1,30008

µn 199,51 598,52 1200,97 2015,03

µn,Pr edici 199,92 600,85 1200,89 2000,96

C

Da 800 600 400 200

Dn 2,00013 1,50767 1,35528 1,29717

Dn,Predici 2,00246 1,50948 1,35815 1,30017

µn 799,28 1399,42 1799,49 1999,11

µn,Pr edici 796,61 1400,76 1800,89 2000,87

Tab. 6. Stage by stage Damkohler numbers for a component distribution fit-
ted to the first peak of the target GPC

Peak 1

fitted with

Stage 1 Stage 2 Stage 3 Stage 4

a.) 4 stages 896 896 896 896

b.) 3 stages - 1120 1120 1120

c.) 2 stages - - 1493 1493

d.) 1 stage - - - 2240

in cascades with 20 or more stages only.
It is obvious that the choice of the best overall fit is a trade-off

between the fits of the individual peaks. If no other factors are
taken into account apart from the dispersity index, case c) seems
to be the best fit, i.e. introducing the second initiator input to the
third stage.

Tab. 7. Stage by stage Damkohler numbers. Fits to both peaks of the target
GPC.

Peak 1

fitted with

Stage 1 Stage 2 Stage 3 Stage 4

b.) 3 stages 7049 1120 1120 1120
c.) 2 stages 4102 4102 1493 1493
d.) 1 stages 3038 3038 3038 2240

The resulting predicted GPC is shown in Fig. 10 together with
the target. The predicted curve is an envelope for the target GPC
due to the low number of stages used. In a real situation the de-
sign procedure should be repeated with the maximum number
of stages desired. Alternatively, the predicted GPC could be cal-
culated for various number of stages, and the predicted overall
GPCs could be compared in order to select the number of stages
needed.

Having been obtained the stage by stage Damkohler numbers,
the monomer input concentration is derived as a function of av-
erage residence time in stage and reaction rate constant. The
initiator input concentrations are derived from target GPC peak
areas. The derived parameters for the chosen case c) are shown
in Table 8.

3.3 MWD design with an unsteady CSTR cascade
MWD design calculations have been carried out for the bi-

modal GPC example of Section 3.2 using assumptions detailed
in Section 2.3, i.e. i) single (unsteady) production process, ii)
uniform stage by stage average residence times and Damkohler
numbers.

The predicted initiator input profiles are shown in Fig. 7 for
several total number of stages. In the same graph, on a reversed
linear chain length scale according to Eq. (2) the target GPC is
shown in NCLD format.
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Fig. 10. Target and predicted GPCs
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Fig. 11. GPC expected from predicted input pro-

files.

Fig. 12. Expected GPCs from predicted input
profiles for various total number of stages.

Note that the narrow second peak of the MWD (on the left)
“translates” into profiles with an infeasible section in the 1600-
2100 sec range. Here the number of polymer molecules should
be decreased in order to produce the required MWD which is not
possible with the reaction scheme assumed. In practice, how-
ever, a “killing agent” could be applied. This strategy is not
considered in this work and is going to be published elsewhere.

The infeasible concentration ranges have been substituted with
the feasibility limit, i.e. zero initiator concentration.

In can be seen in Fig. 7 that the length of the infeasible range
is decreasing as the number of stages is increasing.

For short chains the feasibility limit depends on the highest
safe and possible initiator concentration. In practice, a decreased
average residence time in the last stage(s) might help. This strat-
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Tab. 8. Predicted parameters of a 4-stage CSTR to produce a target GPC

Parameter Stage 1 Stage 2 Stage 3 Stage 4

Dai 4102 4102 1493 1493

Taui , sec 500 444 267 250

Iini , mol/l 2,75E-06 2,80E-06

Moi , mol/l 0,41015 0,46142 0,27991 0,29857

Min,i , mol/l 3,37146 0,96180 0,02356 0,67401

Vi , l 40 40 40 40

Stage inp flow rate

Win,I , l/sec 0,08 0,09 0,15 0,16

Monomer input flow rate

WMon,I , l/sec 0,01 0,01 0,06 0,01

egy is briefly addressed at the end of this section.
For the sake of comparison the predicted initiator input of the

4-stage CSTR cascade has been analyzed. Assumptions for the
feasibility limits of the initiator concentration have been:

1 max. initiator concentration is one thousands of the monomer
concentration: 5.10−4 mol/l

2 min. initiator concentration is three orders of magnitude less
than max.: 5.10−7 mol/l

The corrected initiator input profile is shown in Fig. 8.
From the corrected initiator profile the necessary monomer

input is derived using Equations (16-17) and shown in Fig. 9.
Using the predicted input profiles the product MWD has been
calculated with both the method of monodisperse growth and
our reference method (Predici) and are shown in Fig. 11.

The GPC expected from the predicted input profiles is nearly
identical to the reference calculations (Predici). However, sig-
nificant deviations from the target GPC can be seen for the short
chain region due to the relatively low upper feasibility limit of
the initiator input concentration.

Repeating the design procedure with several different number
of stages, the expected GPCs are shown in Fig. 12.

It can be seen that 5 stages allow for a better result, but 6 and
higher number of stages tend to produce a too narrow first peak.
The 1 stage result is good in terms of the high amount of short
chains, however, the two peaks overlap much more significantly.
The same effects can be identified in Fig. 7 for the predicted
initiator profiles.

The shape of the predicted GPC can be “trimmed” in several
ways. On of the possibilities is to lower the average residence
time in order to produce more short chains and, at the same time
increase the monomer concentration for the long chain region to
maintain chain length there, see curve in Fig. 12 noted “Optimal
design”. However, this will shift the position of the first peak
towards the shorter chains region, and increase the peak overlap
at the same time, too.

In general it is demonstrated that varying the average resi-
dence time, the initiator input profile and the total number of
stages the best fit can be found as a compromise. Given some

sort of object function to define a “good fit” of the target and
predicted GPCs, the best parameter set can be derived with an
optimization procedure.
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