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Abstract

Crude oil deposits as light/heavy form all over the world. With the continued depletion of the conventional crude and reserves trending 

heavier, the interest to maximise heavy oil recovery continues to emerge in importance. Ordinarily, the traditional oil recovery stages 

leave behind a large amount of heavy oil trapped in porous reservoir structure, making the imperative of additional or enhanced 

oil recovery (EOR) technologies. Besides, the integration of downhole in-situ upgrading along with oil recovery techniques not only 

improves the efficiency of production but also the quality of the produced oil, avoiding several surface handling costs and processing 

challenges. In this review, we present an outline of chemical agents underpinning these enabling technologies with a focus on the 

current approaches, new formulations and future directions.
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1 Introduction
The world is caught up in the ever-increasing need for 
energy and reliance on fossil sources. In this scenario, 
the US accounted for 17.34 % of the world's 2015 total pri-
mary energy consumption [1], with projections of the con-
tinued predominance of petroleum and other liquids over 
other renewable energy resources. In 2019, petrol and dis-
tillate fuel oil's share of the total transportation energy con-
sumption reached a record 84 % [2]. The predominance of 
proved heavy oil reserves, energy demand, and potential 
to yield as many hydrocarbons (HCs) as conventional oil 
resources ignite interest in heavy oil production [3].

Globally, oil reserves are mainly unconventional, in the 
form of heavy oil, extra-heavy oil, oil sand, tar sands, oil 
shale or bitumen [4], reaching up to six times the proven 
reserves of the conventional oil [5]. Basically, the term heavy 
oil has been variously defined by organisations such as the 
Alberta Energy Resources Conservation Board (AERCB), 
American Petroleum Institute (API), Canadian Centre for 
Energy (CCE), the United Nations Institute for Training and 
Research (UNITAR)/World Petroleum Congress (WPC), 
and the US Geological Survey (USGS) based on API gravity 

(which is specific gravity related) and viscosity, as displayed 
in Table 1. The UNITAR definition has been the most widely 
used over the decades.  Even though sufficient for many pur-
poses, this definition will not be complete without the men-
tion of the high content of asphaltenes, waxes, carbon resi-
due and an excessive amount of metals (V, Ni, Cu, Fe), and 
non-metals (N, and usually > 2 % S) in the heavy crude oil.

Various methods have been developed for the recov-
ery and upgrading of such unconventional feedstocks [10]. 
The traditional primary recovery (which is based on the 
reservoir pressure) and the secondary (water or gas flood-
ing) process (Fig. 1) can recover only 25–50 % of the orig-
inal oil in place (OOIP) [11, 12]. A tertiary process called 

Table 1 Selected definitions of heavy crude oil at 15 °C.

Source API (o) Viscosity (mPa.s) References

CCE > 10 < 105 [6]

AERCB 10 to 19 102 to 105 [7]

API < 22.3 > 10 [6]

USGS < 22 > 102 [8]

UNITAR/WPC 10 to 20 102 to 105 [9]
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the enhanced oil recovery (EOR) is necessary due to poor 
quality and production efficiency [13]. 

The EOR techniques (and their global usage) can be ther-
mal (10 %), chemical (67 %), gaseous (10 %), and miscella-
neous (3 %) [14]. In the chemical EOR, chemical agents are 
applied to improve sweep efficiency without any influence 
on the chemical properties of the oil, while in the thermal 
upgrading methods, catalysts have the potential to not only 
assist recovery but the overall quality of the oil for use. To 
overcome refining, logistical and cost challenges, interest 
has been geared towards combining heavy crude oil recov-
ery with upgrading, and this has led to the emergence of 
new chemical formulations [15]. In this review, we under-
take to present an update on the approaches to the exploita-
tion of catalysts and chemical additives in chemical and 
thermal EOR and in-situ heavy oil upgrading.

2 Chemical enhanced recovery methods
Chemical enhanced oil recovery (CEOR) can improve 
recoveries from thin or deep oil reserves injection, espe-
cially where thermal methods cannot be applied. Based 
on the use of a single chemical agent, a mono-chemical 
CEOR may be alkaline (A), surfactant (S), polymer (P), 
solvent, CO2-based method, but a combination of two or 
more versions of these methods (AS, ASP etc.) have been 
commercially more successful. One important feature of 
all CEOR methods is that increase in oil is caused only 
via physical mechanism, necessitating the need for costlier 
handling and refining in order to produce lighter fractions. 

2.1 Alkaline flooding
Alkaline flooding (A) is a relatively simple, cheaper, 
and more readily understood of all EOR processes. Lye/

NaOH and/or sodium salts (Na2CO3, NaBO2, and sodium 
orthosilicate), injected into the reservoir, react with naph-
thenic acids to form a natural surfactant which drastically 
reduces the interfacial tension (IFT) at the oil-water inter-
face. The efficiency of the process depends on concentra-
tion, alkali type, and whether it was used singly or with 
other substances. Polyphosphate, NH4OH, and Na2CO3 are 
less efficient than NaOH, whereas Ca(OH)2 and Mg(OH)2 
do not significantly lower IFT [16]. Naphthenic acids are 
the major components of the total acid content of crude 
oil. Although they are popular corrodents in oil refiner-
ies, the water-soluble, low molecular weight-naphthenic 
acids (C8-C12) can readily form industrially-desirable 
sodium naphthenate as shown in chemical Scheme 1. 

2.2 Surfactant flooding
Surfactant composes of lipophobic site to which a lipo-
philic site is attached. It may be anionic, cationic, non-
ionic or zwitterionic, depending upon the charge of 
its polar group. It is water-soluble if containing < C12 
hydrocarbon (HC) chains attached to the lipophilic site. 
The anionic ones account for more than 70 % of the sur-
factant market and can be used mostly with the cationic 
ones as wettability agents [17]. They work by generating 
form or emulsion in water which reduces surface tension. 
However, at neutral pH these reservoirs tend to be nega-
tively charged, favouring the adsorption of anionic sur-
factants. Variants with large hydrophobes, low retention, 
and compatibility with specific crude and conditions are 
therefore desirable [18]. A list of selected surfactants used 
in CEOR is given in Table 2.

A prominent disadvantage of surfactant flooding (S) is 
that it is capital intensive, requires laborious operation test 
cycles [24] and uses mostly environmentally unfriendly 
surfactants [25]. These reasons caused a decline in surfac-
tant injection from nearly 10 % (in the 1970s and the 80s) 
to 0.5 % in the 90s [26], and renewed interest in environ-
mentally benign EOR chemicals [27].

2.3 Polymer flooding
Polymer flooding (P) is the most widely applied EOR for 
more than five decades. The first successful application on 
heavy-oil was the Canadian Pelikan Lake reservoir [28]. 

Fig. 1 Schematic diagram showing steam flooding

Scheme 1 Esterification of crude oil-based naphthenic acids to useful 
naphthenates
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Basically, it involves the improvement of water injection 
profile, and reducing viscous fingering and water permeabil-
ity relative to oil [29]. The traditional Xanthan (Scheme 2) 
is not as popular as the more soluble and cheaper, partially 
hydrolysed polyacrylamide (HPAM) (Scheme 3) [30]. Even 
though the HPAM is less tolerant to salinity, susceptible 

to alkaline hydrolysis and degradation at > 70 °C, unlike 
Xanthan, it does not require a stabiliser against microbial 
degradation [31].

Polymer flooding produces lower additional oil, and due 
to cost and mechanical consideration of injection pressure, 
they are of little benefit for heavy oils with higher viscos-
ities. The modification of the hydrophobicity of HPAM is 
among potential solutions to these problems [32]. A hydro-
phobically-modified terpolymer for example, can reduce 
viscosity at high salinity and temperature conditions, with 
the ability to dry up within 2 h [33].

2.4 Combined methods
Combined chemical flooding methods gives the benefi-
cial effect of two or more classes of chemicals in CEOR. 
Whereas the technical feasibility of alkaline-surfac-
tant flooding (AS) is still being assessed in laboratories 
and results are promising [34], surfactant-polymer flood-
ing (SP) has demonstrated outstanding performance at 
low temperatures (70 to 120 °C) [35]. However, one of the 
disadvantages of SP flooding is rapid sediment accumu-
lation, forming multi-modal pores in conglomerate reser-
voirs [36]. Alkaline-surfactant-polymer flooding (ASP) 
will reduce the adsorption of expensive surfactants and 

Scheme 2 Structural formula of traditional Xanthan

Scheme 3 Structural formula of partially hydrolysed polyacrylamide

Table 2 Selected surfactant groups used in the oil recovery fields.

Surfactant 
family Description Advantage Disadvantage References

1. Alkyl aryl 
sulphonates

A C9-C30 alkyl benzene 
sulphonate. 

1. Stability and ability to be tailored 
based on reservoir conditions.
2. Availability of raw materials.

1. Unstable at high salinity.
2. Non-biodegradable.
3. Only the unconventional types (such 
as those derived from alpha-olefin) can 
recover highly waxy heavy oil.

[19, 20]

2. Sodium alkyl 
sulphate (SDS)

Anionic surfactants with 
formula ROSO3Na, where 
R = hydrocarbon chain such 
as dodecyl, octyl or lauryl

1. One of the most commonly 
manufactured surfactant.
2. Synergy with hydrophobic modified 
silica for increased temperature 
tolerance.

1. Toxic and non-biodegradable. 
2. Insoluble in water at high 
temperature.

[21]

3. Alkyl-olefin 
sulphonates 
(AOS)

R-CH=CH(CH2)nSO3Na, 
where R = C10 to C20 , usually 
C14-C20 alkene, alkane or 
substituted alkane.

1. One of the most commonly 
manufactured surfactant.
2. Used as foaming agent.
3. Stability at steam temperatures.

4. Linear alkyl 
benzene (LAB) 
sulphonates 

Organic compounds with 
the formula PhCnH2n+1, 
where n = 10 to 16.

1. Perform better with crudes having 
C7 to C10
2. Ecotoxicity

5. Alkyl 
propoxy 
sulphates

Usually in the form of 
R(PO)OSO3Na, where PO = 
propylene oxide and R is an 
etheryl moiety with > C12.

1. Show good performance.
2. Have large hydrophobes.
3. Suitable for tight carbonate reservoirs
Up to 40 % additional recovery.

1. Commercial product not adequately 
available.
2. Not suitable for high temperature 
application

[22]

6. Alpha olefin 
sulphates

ROSO3Na, where R is an 
olefinic chain within the 
range of C14-C16.

1. Superior over many surfactants 
including LAB sulphonates.
2. Industrial products are available.
3. Readily biodegradable.

Not suitable for high-temperature 
application [23]
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expand the sweep efficiency [37] but as the concentration 
of Ca2+ and Mg2+ exceeds 10ths of mg/L, scaling takes 
place as shown in chemical Eq. (1). This problem can be 
mitigated by prior water-treatment, or by adopting surfac-
tant-polymer flooding (SP), which in addition can prevent 
strong emulsification, and alkali corrosion [38]. For all sur-
factant-based methods however, the scarcity of highly-per-
forming industrial surfactants, unsound pilot tests, and 
high technical risk has been a limiting factor [39].

Na CO Ca Na CaCO
2 3

2

3
2+ → ++ +  (1)

In the organic alkali-surfactant-polymer flooding 
(OASP), an organic alkali (OA) is applied to enhance sweep 
efficiency. A coreflooding study showed that a combina-
tion of ethanolamine as OA and SLPS can achieve > 20 % 
increase in recovery [40], which is as a result of increased 
oil-in-water emulsification [41]. Recovery depends upon 
the properties of the oil, fluids, and formation interfaces 
such as wettability, contact angle, capillary forces, vis-
cosity, and interfacial tension (IFT) [42]. Basically, inter-
actions between reservoir minerals and surfactant/poly-
mer may occur depending on the geology of the reservoir 
rocks, and this can affect interfacial properties such as 
surface charge and wettability. For certain additives, these 
interactions are not fully understood [43]. Consequently, 
the criteria for the application of a particular EOR is for-
mation-dependent. On the whole, due to the high chemical 
consumption of the fractured carbonates at majority of the 
world's largest reservoirs [44] the application of AP and 
ASP is limited to sandstone reservoirs [45].

2.5 Synergy with new formulations
An array of chemical agents such as urea, terpolymers, 
binary mixtures, and monomers, has been examined for 
possible synergy with EOR chemicals [46–48]. Notably, 
the synergy between nano-sized crosslinked polymeric 
particles with low salinity water can lead to ultra-low inter-
facial tensions and huge (> 62 %) oil recovery [49]. In a 
study, the combination of poly(vinyl alcohol)-rhamonolipid 
and NaOH−rhamonolipid−PVA in saline EOR medium 
was found to significantly reduce the surface tension and 
IFT [50]. Similarly, a polyacrylates/amorphous carbon 
thin film composite recovered 19.2 % of residual oil sat-
uration [51]. Some binary surfactant mixtures (such as 
polyoxyethylene ether carboxylate blended with a quater-
nary ammonium chloride) [52] as well as non-traditional 
CEOR chemical agents (such as nanopyroxenes) can also 
cooperatively and significantly improve oil recovery [53]. 

Experimental results showed that a binary mixture of 
cocamidopropyl hydroxysultaine and alcohol propoxy sul-
phate can outperform mixtures of zwitterionic, and anionic 
surfactants, with good oil displacement (63–75 %) and sur-
factant retention (0.08 mg/g) [54]. 

Certain ethoxylated nonionic surfactants (Scheme 4) 
have been proposed for limiting or even overcoming the 
retention of anionic sulphate or sulphonate surfactants, in 
carbonate and clayey reservoirs [55], where m is the num-
ber of propylene oxide units (0 to 20), n is the number of 
ethylene oxide units usually greater than 20. Moreover, 
nonionic amines (compound Scheme 5; "A" = is alkylene, 
R = either H or alkyl, and x can be zero) with good chemi-
cal stability, thermal stability, low adsorption, high salinity 
tolerance, and a wide pH range, have been described [56]. 
Lastly, an efficient ASP injection of an extended sulphate 
surfactant of alkoxyated, alkyl propoxylated, or their 
combination and a co-surfactant (alkyl benzene sulpho-
nate, internal olefin sulphonate, or their combination) has 
been reported [57]. Much as in the ASP, silica nanopar-
ticles having a hydrophobic chain can reduce adsorption 
and IFT, and recover up to 15.74 % oil [58, 59].

3 Thermal enhanced recovery methods
3.1 Overview of the methods
Over the past few decades, thermal methods accounted 
for nearly 70 % of the world's EOR [60, 61]. Five ther-
mal EORs are widely recognised, namely, the cyclic 
steam stimulation (CSS), steam-assisted gradient drain-
age (SAGD), steam and hot water flooding, steam/sol-
vent hybrid system which all involve fluid injection, and 
in-situ combustion (ISC) or fire flooding. A schematic dis-
play of EOR methods is shown in Fig. 2. Newer injection 
approaches include the high pressure air injection (HPAI) 
(for deep, high pressure light oil reservoirs) and the use of 
an in-situ generated syngas (H2 and CO). The steam-as-
sisted gradient drainage (SAGD) injects steam into the 

Scheme 4 Desorbing agents for enhanced oil recovery in carbonate or 
clayey reservoirs

Scheme 5 Potent nonionic amines for exploitation in ASP. Substituents 
A and R, and subscript x as described in the text
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heavy oil or bitumen reservoir via two horizontal wells, 
except in the vapour extraction (VAPEX) variant, which 
injects vaporized solvents. Cyclic steam stimulation (CSS) 
is also commonly used steam injection for the recovery of 
high viscosity oils. A successful steam EOR needs at least 
20 % porosity of the reservoir rock, at least 100 mD per-
meability, 40 % heavy oil saturation, at least 800 bbl per 
acre-ft of oil content, reservoir depth of < 3000 feet, and 
thickness of at least 30 ft [62].

The ISC method uses vertical producer wells except in 
the toe-to-heal air injection (THAI) variant which consists 
of a combination of direct or staggered vertical injection 
(into which air is injected at 600 to 700 °C) and horizon-
tal producer wells [63]. Today, due to huge cost limitation 
and requirement of special operation conditions, only a 
few ISC operate. At present, a catalytic version of classi-
cal THAI known as the toe-to-heal air injection CAtalytic 
upgrading PRocess In-situ (THAI CAPRI) has been suc-
cessfully performed [64].

3.2 In-situ catalytic upgrading
Heavy oil upgrading refers to the fractionation or chem-
ical treatment of heavy oils that produces permanent 
changes in the physicochemical properties of these mate-
rials [9]. Considerable research interest has been geared 
into the use of catalysts and additives to upgrade heavy 
oil en route thermal recovery by the conventional SAGD, 
VAPEX, THAI, and CSS technologies. The THAI CAPRI 
was introduced in 1998 to avoid surface upgrading and 
mitigate the environmental impact of the heavy oil com-
ponents. Primarily, the decision to upgrade depends 
partly on the physical properties of the oil and the cost of 

upgrading [65]. Because the main essence of upgrading 
is to increase sulphur-free, nitrogen-free and metal-free 
distillates, as well as H/C ratio which typically stands 
at 1.5 [66], typical surface-based approaches for heavy 
oil upgrading involve carbon rejection (such as coking, 
thermal cracking, visbreaking), hydrogen addition (with 
slurry, fixed-bed, moving-bed, ebullated reactor), or their 
combination [5, 67]. The traditional thermal conversion of 
heavy oil involves either pyrolysis, cracking (which may 
be catalytic or thermal-only), or hydrocracking to yield 
valuable distillates components [68]. The key reactions in 
upgrading have been detailed previously [6, 69].

In subsurface upgrading (SSU) the reservoir is made to 
act as a refinery, to liberate lighter products. Revolutionary, 
non-catalytic SSUs such as the Shell's in-situ upgrad-
ing process (IUP) and the NSolv, widely referred to as 
game-changers, have been successfully pilot-tested in the 
last decade. Each of these technologies has the capacity 
to produce above 100,000 bbls of lighter oil. The NSolv 
is based on the downhole injection of alkanes into SAGD 
well while in the Shell's IUP downhole electric heaters ini-
tiate the conversion of heavy oils in subsurface [9]. Even 
though these methods outside the scope of this paper, being 
non-catalytic and metal-free, is a lofty beauty to reflect.

In-situ upgrading differs markedly from chemical EOR in 
that it causes structural changes in the crude, leading to the 
production of higher quality and recovery factor of the OOIP, 
and leaving behind coke in the subsurface. In addition, the 
reservoir mimics a gigantic refining vessel and the production 
may be carbon-neutral if upgrading is coupled with nuclear or 
renewable energy generation systems [6]. However, despite 
these advantages over CEOR, the in-situ upgrading technol-
ogy is energy-demanding, relatively poorly controllable, has 
less mixing efficiency, poses more environmental challenge 
and has limitations on the use of metals [9]. 

3.3 Supports in surface upgrading
The most suitable catalysts for oil upgrading are those 
containing active sites that can effectively break the 
C–C, C–S, C–O, C-N, and other related bonds in resins 
and asphaltenes [70, 71]. Ultrafine particles of unsup-
ported metals such as base (Mo, W, Ni, V, Co, Cr, Zn 
etc.) or noble (Pb, Rh, Pt, etc.) are good cracking cata-
lysts due to their dispersibility and flow within the heavy 
oil, and interaction with large molecules. For example, 
submicronic NiWMo particles can enhance the hydro-
cracking of heavy oil and inhibit coke production and 
desulphurisation [72]. However, supports are crucial for 

Fig. 2 Chemical and thermal enhanced recovery methods
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effective hydrodesulpharisation (HDS), hydrodemetalli-
sation (HDM), hydrodenitrogenation (HDN), and hydro-
conversion. In fact, ultradispersed, unsupported NiO (< 
50 nm), MoO3 (< 100 nm), and Fe2O3 (50 nm), can improve 
the viscosity, inhibit coking, and produce better upgraded 
oil (21° API, 108 mPa.s) than thermal cracking (24°, 53.5 
mPa.s) when operated initially at 450 °C, 50 bar initial 
H2 pressure for 50 min, then at 425 °C for 60 min [73]. 
This moderate level of upgrade is attributed to the lack 
of support.

Supported metal catalysts especially the transition metal 
oxides and sulphides have the capacity to suppress coking 
and yield high surface conversion of heavy oil and extra-
heavy oil (37–49 %) [74, 75]. Supports can contribute to the 
activity or selectivity of the catalysts. Silica or alumina sup-
ported Ni and Mo are usually (but not always) good upgrad-
ing catalysts [76]. For example, MgO-supported Ni and 
Cu can convert 90 % of mixed acid hydrocarbon solution, 
but SiO2 and Al2O3 produced no conversion [77]. The cata-
lysts may perform better in a mix with heated sand than the 
heated catalyst alone [78] and perform remarkably at lower 
steam-oil ratio [79], suitable catalyst concentration, acidity, 
and pore geometry [80]. Certain supported catalysts such as 
NiMo/Al2O3, are highly efficient for the upgrading of pre-
treated oil [81] while others such as supported haematite, can 
perform better when applied under supercritical water con-
ditions [82] entailing challenges for large-scale operation. 

Zeolites usually are popular active, sulphur-resistant 
hydrogenation and surface upgrading catalysts but they are 
susceptible to active site poisoning and coke deposition espe-
cially with feedstocks containing residues [83]. Different 
zeolite catalysts can give a different distribution of upgrade 
products [84]. In a preliminary study to upgrade Omani 
heavy oil under microwave heating at 250 °C and autogenous 
pressure, combinations of 500 µm, 5 wt% NiCoMo on zeo-
lite supports (NH4-Zeolite-Y, H-zeolite-Y, NH4-Mordenite, 
NH4-Zeolite-Y) converted decalin, a model light oil, to sev-
eral lighter ring-opening products [85]. Commercial ter-
nary and multi-element supported catalysts (such as MoCoP/
Al2O3 or MoWNiCoP/Al2O3) have also been outstanding in 
upgrading heavy oil to useful distillates [86]. 

To avoid sulphur poisoning noble metals should be 
used in environments containing below 10 mgS/g [23]. 
Generally, Pd stands out among several noble metals for 
efficiency in hydrocracking (HC) and hydrodesulpharisa-
tion (HDS) [87]. Noble metals have also been successful 
when loaded on natural supports such as clay and metaka-
olin [75]. In fact, traces of Rh-Pd on high porous saponite 
containing exchangeable Co exhibit a significant enhance-
ment of the catalytic activity over Rh alone [88].

3.4 Hydrogen donors 
Practically, the traditional hydrogen addition and car-
bon rejection have limitations when used singly in heavy 
oil surface upgrading [89, 90]. Even though successful 
upgrading can be performed under an inert atmosphere 
(He or N2), hydrogen donors are crucial to provide the 
needed H/C ratio and avoid coking. In actual fact, heavy 
crude oil reactivity and hydrogen availability (not catalyst 
activity), were found to be the primary factors limiting oil 
upgrading [78]. Basically, the hydrogenation of heavy cuts 
can be assisted by hydrogen donors such as cyclohexane, 
sodium borohydride, water, tetralin, ammonia, methanol, 
ethanol, citric acid, formic acid, hydrazine, methane, pen-
tane, naphtha, and hydrogen [91, 92]. A laboratory-scale 
in-situ THAI-CAPRI study over alumina catalysts shows 
a higher potential of methane, ethane, and hydrogen to 
provide the highest H/C ratio and better upgrading [93]. In 
fact, the partial surface upgrading of bitumen for pipeline 
transportation with CH4 over the zeolite-supported cata-
lyst at moderate conditions, without diluent addition, has 
been established [94]. Among fused ring hydrogen donors 
such as naphthalene, decalin, tetralin, 1–methyl naphtha-
lene, tetralin showed superiority for use in upgrading with 
< 4 % coke formation [95]. Methane and Fe3(CO)12 assisted 
HDS and heavy oil conversion efficiencies are equivalent, 
and are much lower than with H2 [96]. This observation 
supports a prior evidence which showed no improvement 
in oil recovery under hydrogen partial pressures below 
5.2 MPa (and 343.3 °C) and oil recoveries are higher from 
experiments carried out under higher H2 partial pressures 
than under N2 atmosphere [97]. Certain in-situ combus-
tion can generate CO, from which H2 can be produced via 
water-gas shift, but with implication of coking [98].

3.5 Modification of heterogeneous catalysts
The performance of catalysts can be dramatically increased 
by making key considerations regarding size, catalyst acid-
ity and composition [99]. Carbon-loaded iron and Ni-Mo/
Al2O3 materials having larger mesopore volume tend to 
give higher oil conversion and a very high hydrodemetal-
lisation (HDM) and hydrodesulpharisation (HDS) [100]. 
Similarly, nanoparticles of NiO, SiO2, and Fe3O4 can pre-
vent the aggregation of asphaltenes in heptane solutions 
and increase the adsorption of large molecules [101]. A 
study with NiO shows that only certain nano range may be 
more catalytically effective for upgrading [102]. 

The surface modification of β-zeolite catalyst with 
triphenyl silane has the potential to reduce coke formation 
and generate 55.7 % C7 to C13 cuts (petrol) from heavy oil 
in 2 h [103]. The significant reduction in coke formation 
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confirmed the stability of the catalyst. In aquathermolysis, 
the modification of the surface of heamatite nanoparticles 
with oleic acid was found to significantly reduce the vis-
cosity and upgrade the quality of heavy crude oil [104]. 
Similarly, TiO2 has served as a good modifying agent for 
alumina supporting CoMo, for HDM and HDS [105]. In 
addition, temperature tolerant ionic liquid-modified cata-
lysts such as imidazolium tetracholoferrate BMIM [FeCl4] 
when added to heavy crude (at 0.25, 0.5 and 1 % cata-
lyst oil ratio) can achieve remarkable reduction in viscos-
ity (52.2 %), and HDS (20 %) at 70 to 90 °C[106].

Molybdenum-doped akaganeite (ca 30 nm β-FeOOH) 
can form nanorods, which in presence of tetralin exhibit 
remarkable enhancement in the viscosity reduction rate of 
extra-heavy crude oil (viscosity 750,000 mPa.s at 50 °C) 
to 72.7 % [107]. A commonly used catalyst in heavy oil 
upgrading is the SO4

2--modified ZrO2-based nanoparticle 
catalyst, but having fewer acid sites and poor hydrother-
mal stability limited its application [108]. However, mod-
ification of the zirconia catalysts by doping or composit-
ing with oxides has proved beneficial. Kondoh et al. [109] 
found that a fifty-fifty TiO2–ZrO2 mixed catalyst possesses 
high BET surface area and acidity compared to either ZrO2 
or TiO2, which can improve heavy oil upgrading reactions.

3.6 Homogeneous catalysts
The efficacy of homogeneous catalysts to improve oil 
upgrading. Heavy oil bound sulphur has been removed suc-
cessfully as sulphide by continuous in-situ process exploit-
ing NaOH (10–20 %) at 380 to 450 °C [110], with the regen-
eration of the alkali by stripping with in-situ metals. Instead 
of regeneration, the catalyst can be conveniently removed. 
A homogenous ammonium molybdate catalyst used in the 
upgrading was removed by calcining the residue followed by 
the addition of NH4OH and ammonium carbonate and leach-
ing at 60–80 °C for 1–5 h [111]. 

The acceleration of heavy oil recovery in presence the 
case of Fe(CH3COCHCOCH3)3 as a homogeneous catalyst 
is established. A coreflooding study has shown that the addi-
tion of 5wt% tetralin can increase oil recovery by 15 % while 
premixing tetralin-catalyst solution with sand mix yielded 
20 % higher recovery [112]. Similarly, heavy crude oil can 
effectively be transformed into lighter oil by a liquid Ni-Mo 
catalyst from (NH4)6Mo7O24.4H2O and NiSO4.6H2O [113].

3.7 Solvent effects and viscosity reduction
In surface upgrading, the viscosity of the heavy oil may 
rise due to the absence of hydrogen donors or the presence 
of oil-insoluble hydrogen donors [91, 114]. Fortunately, 

the synergistic effect between the catalyst and ultrasonica-
tion (a physical process) can reduce up to 86 % of the orig-
inal viscosity of heavy oil [115]. The synergy between car-
bon nano-catalysts and microwave heating great viscosity 
reduction ratio (over 96 %), short reaction time (less than 
1 h), and low required temperature (about 150 °C) [116]. 
Nano-nickel catalysts have demonstrated higher ability 
than iron, Co nanoparticles, and iron(III) oxide to increase 
the efficiency of microwave heating for viscosity reduc-
tion [117, 118]. Under microwave electric heating, in-situ 
heavy oil recoveries with nano-Ni nanoparticles can rap-
idly reach high recovery factors (87 %) [119].

The in-situ upgrading of heavy oil has been studied using 
different solvents such as supercritical methanol (sc-MeOH) 
and supercritical water (sc-H2O) due to their great diffusiv-
ity, mass transfer, and the ability to dissolve organic com-
ponents and gases [119] and a source of hydrogen. In fact, 
the successful upgrading of bitumen, a semi-solid, in pres-
ence of sc-H2O, to stable lighter components in the pres-
ence of a ZrO2-Al2O3-FeOx catalyst has been reported [120]. 
The sc-H2O is believed to be a source of hydrogen and oxy-
gen which can assist the upgrading process.

3.8 Downsizing effects
Nanocatalysts and other nanomaterials have shown supe-
rior applicability in in-situ heavy oil upgrading [121, 122] 
because they eliminate internal and external mass trans-
fer limitations, and contribute to the formation of high 
gas fractions and high conversion [123]. Ultradispersed 
metallic nickel nanoparticles can promote hydrogenation 
and 50 % conversion of asphaltenes and a 70 % reduction 
in resins, with improved aromatics and saturates frac-
tions [124]. Oxide nano-catalysts such as NiO, SiO2, ZnO, 
Fe3O4, Co3O4 are currently gaining interest [125–128]. 
Zirconia based nano-catalysts are particularly appealing 
due to their high acidity and stability in sub- and super-
critical water [127] while ZnO has an unparalleled activity 
for supercritical water upgrading [128]. Silica-supported 
iron oxide nano-catalyst is effective in the supercritical 
water-based hydrogenation of the unsaturated fragments 
in vacuum residue cracking [129]. Moreover, fumed sil-
ica nanoparticles functionalised with 1 wt% nickel and 
palladium oxides have shown potentials for use as cat-
alysts in the continuous steam flooding process [130]. 
The optimisation and integration of oil recovery with 
in-situ upgrading could be achieved through a Dense Hot 
Fluid Injection (DHFI) method in which nano-catalyst 
is injected into the reservoir [131]. Lastly, even though 
the applicability of supercritical water-oxygen fluid in 
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heavy oil conversion has been widely demonstrated, with 
nanoparticles, the possibility of its use at large scale oper-
ation is slim [132]. Similarly, despite the numerous advan-
tages, the use of nanocatalysts in large-scale upgrading 
application remains a challenge [133].

3.9 Aquathermolysis
Aquathermolysis involves metal complex-assisted degra-
dation of large organic molecules in the presence of water 
as hydrogen donor. When catalyst is applied in the ther-
mal cracking of the heavy oils, it is referred to as cata-
lytic. It is called thermal if the thermal cracking is per-
formed thermal-only, devoid of catalyst. Laboratory and 
field catalytic aquathermolysis tests have been conducted 
on various heavy crude oils, especially from China Liaohe 
fields [66, 134]. The applicable catalysts are divided into 
oil-soluble catalysts and water-soluble [135]. An array 
of transition metal-based oil-soluble catalysts has been 
reported in the literature [61, 136]. Instrumental evidence 
has shown that, during the aquathermolysis, iron(III) 
tris(acetylacetonate) can form in-situ magnetic nanoparti-
cles (MNPs) which can exhibit synergy with organic sol-
vents to give high conversion of resins into lighter com-
ponents [137]. With Ni nanoparticles, the recovery of the 
steam-stimulation technique increased by 22 %, while the 
viscosity of the original oil reduced by 40 % [138]. 

By the aquathermolysis, resins and asphaltenes can be 
converted to lighter components on organic acid-derived 
complexes. For instance, the saturates, aromatics, res-
ins and asphaltenes (SARA) composition of a sand-free 
Tazhong heavy oil 42.31 %, 19.70 %, 13.70 %, 24.47 % was 
transformed at 180 °C for 24 h by only 0.5 % of this com-
plex to 45.20 %, 22.74 %, 1.78 % and 19.28 %, respectively, 
indicating a depolymerisation of resin and asphaltenes 
to aromatics and saturated hydrocarbons [139]. The vis-
cosity of the Tazhong heavy oil reduced to 920 mPa.s 
from 4,080 mPa.s. Some successful aquathermolysis 
catalysts include Fe(III) complexes of citrate, lactate, 

and tartrate ligands [140], nano-Keggin heteropoly acid 
salt, K3PMo12O40 [141] and [(CH3(CH2)3CH(CH2CH3)
COO]2Co [142]. Initially, the term "aquathermolysis" 
was applied to systems consisting of transitional metal 
ion salts, transitional metal compounds, and some solid 
superacids which usually form homogeneous phase sys-
tems. Nowadays, the term has been extended to hetero-
geneous systems such as nano-Ni catalyst [143] and oleic 
acid-modified NiFe2O4 nanocatalyst [144], which have 
been successfully used in upgrading.

4 Conlusion, future directions and challenges
Various chemical formulations for exploitation in CEOR 
and thermal EOR have been reviewed. Despite attempts 
to push the current limits of chemical usage for successful 
operation, only a few surfactant formulations can be said 
to work under high salinity (> 200 g/L) and poorly per-
meable (5 mD) reservoirs [145], hence the thirst for new 
formulations with integrity under contemporary reservoir 
conditions. On the other hand, there is a constant need to 
further study the mechanisms of alkali flooding and miti-
gate saponification [125, 146].

In spite of the proposition of supercritical fluids, future 
breakthroughs are necessary for their application in field 
operations. Similarly, works involving nano-materi-
als require serious collaborations to actualize the poten-
tial of applying nanotechnology to oil recovery projects 
to actualize the potential of applying nanotechnology to 
oil recovery projects, notwithstanding the existing one 
between academics and oil development companies [147]. 
Generally, the future of EOR depends on advancements in 
cost-effective technologies and chemicals.
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