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Abstract

According to our best knowledge, this is the first report applying Artificial neural networks (ANN) for simulation of batch propionic 

acid (PA) fermentation. Therefore, the main focus of this research was to investigate the applicability of ANN on PA fermentations. 

To demonstrate this, we used the results of 40 Propionibacterium acidipropionici fermentations (ca 2,000 data points) to build up the 

ANN, and additional two independent fermentations to demonstrate the prediction capability of the observed ANN. Analyzing the 

predicted output parameters we observed, that ratio of propionic acid to acetic acid (PA/AA) variables can only be used for ANN after 

normalization. Finally, the fit of the ANN model to the measured data was fine (average correlation coefficients over 0.9). A special 

feature was also tested: fermentation time was also used as an input parameter, thus making the ANN suitable to predict time course 

of PA fermentations as well which was also satisfying.
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1 Introduction
An artificial neural network (ANN) approach offers an 
attractive alternative to nonlinear multivariate process mod-
elling. Over the last two decades, ANNs have emerged as 
attractive tools for nonlinear multivariate process modelling 
especially in situations where the development of phenom-
enological or conventional regression models is impractical 
or cumbersome [1, 2]. An ANN is an information processing 
paradigm that is inspired by biological nervous systems, e.g. 
the brain, which process information [3, 4]. Indeed, an ANN 
is a massively interconnected network structure consisting 
of many simple processing elements capable of performing 
parallel computation for data processing [5]. The fundamen-
tal processing elements of ANNs, namely connected units 
or nodes called artificial neurons, simulate the basic func-
tions of biological neurons [6, 7]. The benefit of ANNs is that 
they are generic in structure and able to learn from historical 
data. Furthermore, the main advantages of ANNs compared 
to the response surface methodology (RSM) are:

1. ANNs do not require any prior specification of a 
suitable fitting function and

2. ANNs have universal approximation capabilities. 
They can approximate almost all kinds of nonlinear 

functions including quadratic functions, whereas 
RSM is useful only for quadratic approximations [8].

It is believed that ANN would require a much greater 
number of experiments (number of patterns) than RSM to 
build an efficient model. In fact, ANNs can also work well 
even with relatively less data as long as the data is statis-
tically well distributed in the input domain, which is the 
case with Design of Experiments (DOE) [9]. Therefore, 
experimental data of RSM should be sufficient to build an 
effective ANN model [10]. There are only a few articles in 
the literature which present comparative studies between 
ANNs and RSM. ANNs have consistently been found to 
perform better than RSM in all the studies published [11]. 

Over recent years, ANNs have been successfully 
applied to the modelling and control of various biological 
processes [12–16]. ANNs are now the most popular arti-
ficial learning tools in biotechnology, with applications 
ranging from pattern recognition in chromatographic 
spectra and expression profiles to functional analyses of 
genomic and proteomic sequences [17–19].
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PA is a valuable C-3 platform chemical. Accordingly, 
PA and its derivatives are used in the agricultural, food 
and pharmaceutical industries, e.g. as an important chem-
ical intermediate in the synthesis of herbicides, per-
fumes, cellulose fibers and pharmaceuticals [20–22]. As 
a three-carbon-long building block, it is used as a precur-
sor of high-volume commodity chemicals such as propyl-
ene [23]. PA and its calcium, sodium and potassium salts 
are widely used as preservatives in animal feed and food 
for human consumption. Some of them are also important 
mould inhibitors [24, 25].

Most used wild type Propionibacterium species for PA 
production are P. acidipropionici and P. freudenreichii. 
The latter is also capable of producing vitamin B12 [26, 27]. 
P. acidipropionici is able to grow in microaerophile con-
ditions and also able to produce more propionic acid in 
comparison to P. freudenreichii [28]. Propionic acid fer-
mentation is known to suffer from end-product inhibi-
tion and byproduct formation, mainly acetic and succinic 
acids, which lower the yield and productivity of propionic 
acid [29]. To overcome these limitations genetically modi-
fied microorganisms and various fermentation techniques 
are in the scope of research [30]. Nowadays there is no 
developed and successful method for economical bio-PA 
production [31]. There are a lot of articles concerning the 
utilization of alternative and renewable carbon as well as 
nitrogen sources [32]. With wild type Propionibacterium 
species and free-cell batch fermentation technique only 
20-30 g L−1 of PA is achievable [28]. 

In the present investigation, more than 2,000 data points 
were used from more than 40 fermentations to obtain a 
practical and acceptable model using an ANN. The fer-
mentation parameters were derived from four experimen-
tal designs, thus ensuring the random deviation of the 
data. The results as PA titers, yields, N-PA/AA ratios and 
productivity were evaluated by the ANN. To the best of 
our knowledge, this is the first report modelling PA fer-
mentation by Propionibacterium acidipropionici using an 
ANN. The main focus of this research was to investigate 
the applicability of ANN on PA fermentations. To demon-
strate this, we used the results of 40 PA fermentations to 
build up the ANN. Since it was expected that the ANN is 
able to predict PA fermentations, the prediction capability 
of the observed ANN was tested with such two fermen-
tations, which were neither involved in ANN building, 
training, nor validation processes.

2 Materials and methods
2.1 Used materials and equipments
All media components were from Reanal Laborvegyszer 
Kft (Hungary). Tuttnauer 3870ELV autoclave (Netherlands), 
Biobase A2 Class II. steril cabinet (Biobase Gmbh, 
China), New Brunnswick Excella E24 (New Brunnswick 
Scientific, Connecticut USA) incubator shaker, Biofuge pico 
Heraeus (Heraeus, Germany) centrifuge, Pharmacia LKB 
Ultrospec Plus (Pharmacia, Sweden) photometer, Waters 
Breeze HPLC (Waters, USA) were used.

2.2 Microorganism
Propionibacterium acidipropionici DSM 20273 (equiva-
lent to ATCC 4965) from DSMZ German Collection of 
Microorganisms and Cell Cultures was used in this study. 

2.3 Media
The modified Peptone Yeast Glucose (PYG) medium for 
inoculum preparation was composed of the following per 
litre: 5.00 g trypticase peptone, 5.00 g peptone, 10.00 g yeast 
extract, 5.00 g beef extract, 5.00 g glucose, 2.00 g K2HPO4, 
1.00 ml TWEEN 80 and 40.00 ml salt solution (see below). 
While the glucose was sterilized separately, every compo-
nent of the medium and piece of equipment was sterilized 
in an autoclave and added aseptically to the broth. The salt 
solution was composed of the following per litre: 0.25 g 
CaCl2 ∙ 2H2O, 0.50 g MgSO4 ∙ 7H2O, 1.00 g K2HPO4, 1.00 g 
KH2PO4 , 10.00 g NaHCO3 and 2.00 g NaCl.

The fermentation medium was composed of the follow-
ing: molasses, calcium lactate, glycerol, whey powder or 
glucose as carbon sources, yeast extract, corn steep liquor, 
tryptone, casein or corn germ flour as nitrogen sources 
were used as required according to the experimental 
design. In addition, each experimental broth contained 
2.5 g K2HPO4 and 1.25 g KH2PO4 per litre.

2.4 Inoculum preparation
Stock cultures were inoculated from stab cultures into 
100 mL of modified PYG medium in 100 mL Erlenmeyer 
flasks to produce the pre-inoculum before being incubated 
at 32 °C for 72 h in a shaking incubator at an agitation 
speed of 150 rpm. For preparing inoculum 30 mL of the 
pre-inoculum cultures were transferred into 270 mL of the 
modified PYG medium in 300 mL Erlenmeyer flasks to 
prepare the inoculum. These were incubated at 32 °C for 
3 days in incubator shaker at an agitation speed of 150 rpm.
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2.5 Fermentation conditions
For starting the batch PA fermentations 10 mL of inocu-
lum were added to every 250 mL Erlenmeyer flask con-
taining 240 mL of the fermentation medium. The flasks 
were incubated at 32 °C for 7 days on a rotary shaker at 
150 rpm. To control the pH, CaCO3 was kept in a small 
excess to avoid forming a cake at the bottom of the flasks 
due to low levels of agitation. Therefore, ca. 1.5 g of sterile 
CaCO3 was added to the broth during sampling if the pres-
ence of CaCO3 was no longer visible.

2.6 Experimental design for PA fermentations
To gain a statistically well distributed data-matrix input for 
the ANN four experimental designs were applied. At first, a 
full factorial design was used with two factors at five levels: 
carbon sources (molasses, calcium lactate, glycerol, whey 
protein powder, glucose) and nitrogen sources (yeast extract, 
corn steep liquor, tryptone, casein, corn germ flour). 

Thereafter three central composite experimental 
designs were applied. The factor pairs were the follow-
ing: yeast extract and molasses, yeast extract and glycerol, 
corn germ flour and molasses. The factors were varied at 
three levels (50 %, 100 %, 150 %). 100 % was the quantity 
applied in the full factorial experimental design. 

The sets of experimental conditions of all fermenta-
tions are listed in Table 1.

2.7 Analysis of PA fermentations samples
Cell growth was monitored by measuring the optical den-
sity (OD) at 600 nm in a 1 mL cuvette using a spectro-
photometer. Samples of the broth containing suspended 
cells were diluted fourfold with 2.5 % of HCl solution. For 
blank cell free supernatant of centrifuged (13.000 rpm, 
5 min) samples were used with the same dilution.

Sugars and organic acids were quantified from filtered 
and ten-fold diluted supernatants of samples by using 
High-Performance Liquid Chromatography which con-
sisted of an inline degasser, isocratic pump, autosampler 
and refractive index (RI) detector at 40 °C with an organic 
acid analysis HPLC column (Aminex HPX-87H, Bio-Rad) 
operated at 65 °C with 0.5 mM H2SO4 as the mobile phase 
at a flow rate of 0.5 mL/min.

2.8 Experiments to test ANN prediction
To verify the generated ANN, two fermentations were 
randomly selected and investigated in 250 mL Erlenmeyer 
flasks. The first medium contained the following per litre: 
20.8 g yeast extract, 58.8 g glycerol, 2.5 g K2HPO4 and 

1.25 g KH2PO4. The second medium contained the follow-
ing per litre: 11.6 g yeast extract, 44.4 g molasses, 2.5 g 
K2HPO4 and 1.25 g KH2PO4. 

2.9 Construction of ANN
TIBCO Statistica software (version 13.4.0.14) was used in 
both the experimental design and ANN. 

Raw experimental results were used for building the 
ANN except in the case of the PA/AA ratio. For that vari-
able, the maximum value obtained for each carbon source 
was used for normalization because different carbon 
sources physiologically generate different orders of mag-
nitude in terms of the PA/AA ratio. 

During ANN construction, we used the software's 
Automated Network Search (ANS) function and allowed 
the software to use minimum 2 and maximum 30 multi-lay-
er-perceptron (MLP i.e. noodle) together with output neu-
rons searching among all possible activation functions (iden-
tity, logistic, tangenthyperbolicus, exponential) without any 
weighing decay and fixed seeds with Brozden, Fletcher, 
Goldfarb, Shanno (BFGS) algorithm.

3 Results
More than 200 cases with 11 data points were used to gain 
information about PA fermentation by Propionibacterium 
acidipropionici using the ANN. 

The repeats in centrum points of the experimental 
design have a variance as low as 0.042, 0.855, 0.067, and 
0.005 for N-PA/AA, PA, yield and productivity, respec-
tively. The same variances for all runs are 0.202, 4.749, 
0.234, and 0.083, which indicate appropriate quality of 
resulted data for constructing ANN, modeling the effect 
of different variables on PA production. 

The selected best model of ANS had performance on 
Training sets of 0.980 and on Test sets of 0.954 as well as 
on Validation of 0.941 with SOS error function.

It was achieved by 20 hidden neurons with exponen-
tial activation function. 70 % of the data points were used 
to train 15 % of the data points were used for test ANNs 
and. the remaining 15 % of the data points were used in 
the validation. The determination coefficients are summa-
rized in Table 2.

Residues were also inspected and showed approxi-
mately normal distribution and there was no anomaly and 
regularity among them, therefore the statistical model is 
considered adequate (Figs. 1–4).

Fig. 1 shows the measured (Target) and predicted (Output 
by the ANN) N-PA/AA ratio. To achieve the relatively good 



Vidra and Németh
Period. Polytech. Chem. Eng., 66(1), pp. 10–19, 2022 |13

Exper-
imental 
design

Quality of 
C-source

Quality of 
N-source

Quantity 
of 

C-source

Quantity of 
N-source

C to N 
ratio

1 Molasses Yeast 
extract 44.2 11.7 5.0

1 Ca-lactate Yeast 
extract 57.5 20.9 5.0

1 Glycerol Yeast 
extract 59.0 20.9 5.0

1 Whey 
powder

Yeast 
extract 57.5 7.8 5.0

1 Glucose Yeast 
extract 57.5 20.9 5.0

1 Molasses
Corn 
steep 
liquor

43.5 16.9 5.0

1 Ca-lactate
Corn 
steep 
liquor

55.8 29.9 5.0

1 Glycerol
Corn 
steep 
liquor

57.2 29.9 5.0

1 Whey 
powder

Corn 
steep 
liquor

40.6 16.7 5.0

1 Glucose
Corn 
steep 
liquor

55.8 29.9 5.0

1 Molasses Tryptone 44.2 9.7 5.0

1 Ca-lactate Tryptone 57.5 17.4 5.0

1 Glycerol Tryptone 59.0 17.4 5.0

1 Whey 
powder Tryptone 42.0 9.5 5.0

1 Glucose Tryptone 57.5 17.4 5.0

1 Molasses Casein 44.2 9.9 5.0

1 Ca-lactate Casein 57.5 17.7 5.0

1 Glycerol Casein 59.0 17.7 5.0

1 Whey 
powder Casein 42.0 9.6 5.0

1 Glucose Casein 57.5 17.7 5.0

1 Molasses
Corn 
germ 
flour

38.1 35.6 5.0

1 Ca-lactate
Corn 
germ 
flour

44.6 57.5 5.0

1 Glycerol
Corn 
germ 
flour

45.7 57.5 5.0

1 Whey 
powder

Corn 
germ 
flour

36.6 34.6 5.0

1 Glucose
Corn 
germ 
flour

44.6 57.5 5.0

Exper-
imental 
design

Quality of 
C-source

Quality of 
N-source

Quantity 
of 

C-source

Quantity of 
N-source

C to N 
ratio

2 Molasses
Corn 
germ 
flour

19.0 17.8 5.0

2 Molasses
Corn 
germ 
flour

57.0 17.8 15.0

2 Molasses
Corn 
germ 
flour

11.1 35.6 1.5

2 Molasses
Corn 
germ 
flour

57.0 53.4 5.0

2 Molasses
Corn 
germ 
flour

19.0 53.4 1.7

2 Molasses
Corn 
germ 
flour

38.0 10.4 17.1

2 Molasses
Corn 
germ 
flour

64.9 35.6 8.5

2 Molasses
Corn 
germ 
flour

38.0 60.8 2.9

2 Molasses
Corn 
germ 
flour

38.0 35.6 5.0

2 Molasses
Corn 
germ 
flour

38.0 35.6 5.0

3 Molasses Yeast 
extract 13.0 11.6 1.5

3 Molasses Yeast 
extract 75.8 11.6 8.5

3 Molasses Yeast 
extract 44.4 11.6 5.0

3 Molasses Yeast 
extract 22.2 5.8 5.0

3 Molasses Yeast 
extract 66.6 5.8 15.0

3 Molasses Yeast 
extract 44.4 11.6 5.0

3 Molasses Yeast 
extract 44.4 19.8 2.9

3 Molasses Yeast 
extract 66.6 17.4 5.0

3 Molasses Yeast 
extract 44.4 3.4 17.1

3 Molasses Yeast 
extract 22.2 17.4 1.7

4 Glycerol Yeast 
extract 88.2 31.2 5.0

Table 1 Set of experimental conditions
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Exper-
imental 
design

Quality of 
C-source

Quality of 
N-source

Quantity 
of 

C-source

Quantity of 
N-source

C to N 
ratio

4 Glycerol Yeast 
extract 58.8 20.8 5.0

4 Glycerol Yeast 
extract 29.4 31.2 1.7

4 Glycerol Yeast 
extract 58.8 35.5 2.9

4 Glycerol Yeast 
extract 100.4 20.8 8.5

4 Glycerol Yeast 
extract 58.8 20.8 5.0

Exper-
imental 
design

Quality of 
C-source

Quality of 
N-source

Quantity 
of 

C-source

Quantity of 
N-source

C to N 
ratio

4 Glycerol Yeast 
extract 29.4 10.4 5.0

4 Glycerol Yeast 
extract 88.2 10.4 15.0

4 Glycerol Yeast 
extract 17.2 20.8 1.5

4 Glycerol Yeast 
extract 58.8 6.1 17.1

Table 1 Set of experimental conditions (continuous)

Table 2 Coefficients of determination of the ANN

Training Testing Validation

N-PA/AA ratio 0.962 0.939 0.937

PA 0.968 0.937 0.958

Yield 0.924 0.804 0.714

Productivity 0.984 0.968 0.949

Fig. 1 Measured (blue dots) and predicted (solid red line) N-PA/AA 
ratio data points of the ANN

Fig. 2 Measured (blue dots) and predicted (solid red line) PA data points 
of the ANN

Fig. 3 Measured (blue dots) and predicted (solid red line) yield data 
points of the ANN

Fig. 4 Measured (blue dots) and predicted (solid red line) productivity 
data points of the ANN
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fit presented, raw data concerning the PA/AA ratio should be 
normalized to their maximum values, otherwise a weak fit 
was observed for almost all outputs of the ANN. The reason 
for large differences in the PA/AA ratio is related to the dif-
ferent carbon sources applied. Several studies have shown 
that glycerol can be a good carbon source for PA fermen-
tation with a higher yield of PA and a much lower amount 
of AA formed compared to glucose [33]. Glycerol induces 
homopropionic acid fermentation and AA production was 
minimized to almost 1 mol for every 30 mol of PA produced 
or even less [34]. Zhang and Yang also reported the free-cell 
fermentation of glycerol by Propionibacterium acidipropi-
onici where the PA/AA ratio was more than 100 g/g [35]. 
These high values can cause an unsatisfactory fit, but nor-
malization can solve this problem. The fit of the model for 
the training, testing and validation data of N-PA/AA were 
0.962, 0.939 and 0.937, respectively (Table 2). 

One of the most important output data points of a fer-
mentation is the concentration of the product. The fits of 
the model for the training, testing and validation data of 
PA were 0.968, 0.937 and 0.958, respectively (Table 2). All 
three values were in excess of 0.900 so produced accept-
able fits. The measured (Target) and predicted (Output) PA 
values are shown in Fig. 2. It can be observed that the data 
points are located in the vicinity of the line with a small 
degree of variance. A typical PA batch fermentation takes  
~3 days to reach a PA concentration of ~20 g L−1 with a PA 
yield typically of 0.4 g/g glucose [36]. Since time is one of 

the input variables, lower values are measured from sam-
ples taken early in the experiment.

The output parameter with the poorest fit of the four was 
the yield as is shown in Fig. 3. Zhang and Yang explained 
that the theoretical yields for PA production from glucose 
and glycerol were 0.55 g/g and 0.80 g/g, respectively [33, 34]. 
In Fig. 3, the data points were arranged in approximately 
two groups scattered around 0.4 and 0.7, slightly below the 
theoretical values for glucose and glycerol, respectively. 
Molasses showed similar results to those of glucose.

Conventional PA fermentation suffers from low pro-
ductivity and yield due to strong end-product inhibition 
and the co-production of other by-products, mainly ace-
tic and succinic acids. The PA productivity of the fermen-
tation highly depends on the applied carbon source and 
the fermentation technique. The range of PA productivity 
which could be reached with a typical PA batch fermenta-
tion may vary between 0.15 and 0.30 g L−1 h−1 [37]. Fig. 4 
presents the predicted and measured productivities. The 
best fit was achieved by the productivity parameter. The 
data points were located in the vicinity of the line with a 
relatively small standard deviation. Since time was also an 
input parameter, lower values were achieved at the begin-
ning of the fermentations.

To demonstrate the goodness of results Fig. 5. intro-
duce graphically the distributions of standard residuals. 
All of the standard residues have normal distributions, 
and narrow ranges. The widest case is the propionic acid 

Fig. 5 Statistical analysis of results by Box-Whisker plot representing the distribution of standard residuals
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concentration, of which measured values also were the 
highest, so even its distributions is acceptable.

3.1 Verification
To check the accuracy of the model, two techniques were 
applied: while building the ANN, a validation step is 
also generally involved, but here two additional fermen-
tations were simulated as well as monitored. Data points 
from these fermentations were not used in the developed 
ANN. Fig. 6 shows the measured and predicted values of 
PA concentrations of the two verification experiments. By 
comparing the experimental and predicted PA concentra-
tions (using glycerol as a substrate). It can be observed 
that the forecasted values are similar to those measured. 
Considering the fact that the fit of the PA concentration 
for all involved cases in the ANN was in excess of 0.95, a 
good fit was also expected here. Furthermore, this was sup-
ported by the second verification experiment (Molasses) 
where a good fit was achieved as well. 

The N-PA/AA ratio could only be determined in the 
glycerol-based verification experiment in a few samples 
because the AA concentration was often below the detec-
tion limit so assumed to be zero. Nevertheless, the few 
data points detected fitted well as can be seen in Fig. 7. 
In the case of the molasses-based verification experi-
ment, a slightly higher difference was obtained especially 
between 20 and 50 hours but was still acceptable. 

The yield produced the poorest fit of all the parame-
ters during the development of the ANN. This fact is also 
reflected by verification experiments as well as presented in 
Fig. 8. After approximately 50 hours, remarkable differences 
were observed in the glycerol-based flasks. For the molas-
ses-based verification experiment, another deviation was also 
observed after 20 h. However, the trends were still accurately 

predicted. The key to estimating the yield accurately is to 
know the amount of unused (i.e. residual) substrate.

In terms of process development, productivity was the 
most important parameter and resulted in an excellent 
fit without significant differences between the predicted 
and measured data as can be seen in Fig. 9. In the initial 

Fig. 6 Measured and predicted PA concentrations of the verification 
experiments

Fig. 7 Measured and predicted N-PA/AA ratios of the verification 
experiments

Fig. 8 Measured and predicted yields of the verification experiments

Fig. 9 Measured and predicted productivities of the verification 
experiments
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phase, the trends of both experiments (and their predic-
tions) increased steeply and then decreased steadily after 
reaching their maxima. 

4 Conclusion
The applicability of ANN for simulation of PA fermenta-
tion was investigated. A statistical design of 40 fermenta-
tions were used to generate more than 2,000 datapoints for 
training, testing and validating the observed ANN. The 
predicted fermentation parameters, namely PA concentra-
tion, PA/AA ratio, yield and productivity, were in good 
agreement with experimental values having a fit in excess 
of 0.95 except yield. For appropriate description of PA/AA 
ratio, it is necessary to normalize the experimental values, 
because without it for some carbon sources (like glycerol) 
it can be infinite high. Since time was an input param-
eter during the construction of ANN, the time course 
of PA fermentation became also predictable. Using the 
developed ANN, it was possible to determine in advance 
the course of two additional fermentations, the results of 
which confirmed the prediction. Instead of carry out in 
vitro experimental designs, this ANN can be used to fore-
cast their result in silico, without the need to conduct real 
trials. Of course, some experimental runs should be per-
formed to verify the model predicted results. It is worth 
expanding the ANN database with new fermentation data, 
specifically with data that expand the studied ranges. It 
is conceivable that such an expanded ANN will be able 
to predict the yield with a sufficient degree of certainty. 
Many other possibilities could be exploited with regard 

to ANNs, e.g. numerous input parameters could be added 
and more information extracted by adding other output 
parameters. After creating a properly designed database, 
an ANN can be generated that can significantly facilitate 
and accelerate experimental work in a reliable manner.
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Nomenclature
AA Acetic acid

ANN Artificial neural network

N-PA/AA ratio Normalized propionic acid to acetic acid ratio

RSM Response surface methodology

PA Propionic acid

PA/AA ratio Propionic acid to acetic acid ratio
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