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Abstract

Pharmaceutical stability studies are conducted to estimate the shelf life, i.e. the period during which the drug product maintains 

its identity and stability. In the evaluation of process, regression curve is fitted on the data obtained during the study and the shelf 

life is determined using the fitted curve. The evaluation process suggested by ICH considers only the case of the true relationship 

between the measured attribute and time being linear. However, no method is suggested for the practitioner to decide if the linear 

model is appropriate for their dataset. This is a major problem, as a falsely selected model may distort the estimated shelf life to 

a great extent, resulting in unreliable quality control. The difficulty of model misspecification detection in stability studies is that 

very few observations are available. The conventional methods applied for model verification might not be appropriate or efficient 

due to the small sample size. In this paper, this problem is addressed and some developed methods are proposed to detect model 

misspecification. The methods can be applied for any process where the regression estimation is performed on independent small 

samples. Besides stability studies, frequently performed construction of single calibration curves for an analytical measurement is 

another case where the methods may be applied. It is shown that our methods are statistically appropriate and some of them have 

high efficiency in the detection of model misspecification when applied in simulated situations which resemble pre-approval and post-

approval stability studies.
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1 Introduction
According to the definition of FDA (U.S. Food and Drug 
Administration), shelf life is the period during which a 
drug product remains suitable for the intended use. The 
length of this period determined during registration of 
the drug product is referred to as claimed shelf life. It is 
required for the products from the on-going manufactur-
ing process to have a period of shelf life the same or longer 
than that of the claimed shelf life. If this requirement is not 
fulfilled, a deviation procedure must be initialized by the 
producer company and the root cause is to be found. Also, 
regulatory authorities such as the FDA might issue a recall 
of the concerned products from the market. 

Stability studies are conducted to estimate shelf life by 
monitoring different attributes of the drug products. In the 
phase of the drug registration, studies are called pre-ap-
proval stability studies, while studies in the phase of 

on-going production are called on-going or post-approval 
stability studies. When a batch (products manufactured in 
one process circle) is considered for a stability study, sam-
ples are collected from it right after the production. The 
samples are held under regulated conditions (temperature 
and humidity) throughout the study, and relevant chemi-
cal, biological, and physical attributes are measured at cer-
tain time points. The conditions under which the samples 
are to be held and the measuring frequency can be found 
in the ICH Q1A Guide [1]. The ICH Q1A Guide [1] con-
siders pre-approval stability studies only, but the general 
principles can be and convenient to be applied for on-go-
ing stability studies as well. 

The data collected for each attribute during a stability 
study are evaluated to estimate the shelf life. The statistical 
methods that should be used in the evaluation process are 
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specified in ICH Q1E Guide [2]. Two statistical methods are 
considered in the guide: calculation of confidence band for 
the estimation of shelf life and application of ANCOVA for 
the test of poolability of regression lines from different sta-
bility studies. Mihalovits and Kemény [3] suggested a third 
method to detect out-of-trend (outlier) points in stability 
studies. In all three methods, it is required that the regres-
sion model fitted on the stability data is appropriate. If the 
fitted model is not adequate, that is model misspecification 
is present, the methods are biased, resulting in an unreliable 
estimation of shelf life and thus unreliable quality control. 

The Q1E Guide generally considers lines as appropriate 
trends, and the statistical methods suggested there assume 
the adequacy of the linear trends. The Guide mentions the 
possibility of application of other models:

"The relationship can be represented by a linear or 
non-linear function on an arithmetic or logarithmic scale. 
In some cases, a non-linear regression can better reflect 
the true relationship" ([2]:p.7).

However, it does not advise the practitioners on how 
to test whether the linear model is appropriate and how to 
proceed if the linear model is found to be not appropriate. 
In stability studies, the connection between the measured 
attribute and time is usually assumed to be linear. That is 
because it is the simplest model and might be appropriate 
in a lot of cases. When the measured attribute is the active 
pharmaceutical ingredient (API) and it is known that its 
degradation follows zero-order kinetic, the linear trend is 
appropriate. However, for other attributes, there might not 
be any theoretical idea to support any initial model to be 
fitted. In this case, sound statistical methods are required 
to verify the appropriateness of linear or any other type of 
model. Although model verification methods (discussed in 
Section 2) are well settled in the literature, those methods 
assume a relatively large sample size. In the case of sta-
bility studies the sample size is extremely small and the 
appropriateness and efficiency of the widely applied meth-
ods are questionable. 

In this paper, new methods are suggested to detect 
model misspecification. These methods are applicable 
even when only a few observations are available in a sam-
ple. The methods use information from historical sam-
ples (e.g. data from historical stability studies) and thus 
they need to be available. In general, the methods may be 
applied for any process where the regression estimation is 
performed on independent small samples. Besides stability 
studies, frequently performed construction of single cali-
bration curves for an analytical measurement is another 

case where the methods may be useful. The independent 
variable is chosen to be time in this paper as it is in the 
case of stability studies, but it may be substituted with any 
other quantity depending on the problem (e.g. concentra-
tion in calibration curve fitting). It should be noted, that 
model selection methods are omitted from the discussion, 
as the aim here is not to select the seemingly best model 
from candidate models, but to test whether the linear or 
any other initially fitted model is appropriate (accordance 
with the established practice in the evaluation of pharma-
ceutical stability studies).

2 Model verification techniques in the literature
In model verification, it is tested whether a candidate model 
is an appropriate fit for the data. It is checked whether there 
are detectable discrepancies between the observations and 
the fitted model at a given probability. Acceptance of the null 
hypothesis of no discrepancy means that no evidence was 
found against the adequacy of the model at the given sig-
nificance level. Rejection of the null hypothesis means that 
there is (at least one) evidence against the adequacy of the 
fitted model. A model with linear function can be written as:

Y x= +β β
0 1

, 	 (1)

where β0 and β1 are the true intercept and slope, respec-
tively, and Y is the expected value at x. In this paper, this 
model is referred to as a linear model (although in statistics 
linear model is a family of models (that are linear in the 
parameters), which includes the model defined in Eq. (1)). 

Model verification is generally performed by residual 
analysis. Discussion about residual analysis can be found 
for example in the works of Pagan and Hall [4], Draper 
and Smith [5] and Neter et al. [6]. One of the aims of the 
residual analysis is to test the assumptions of the errors. If 
the assumption of independent and normally distributed 
errors is fulfilled (i.e. no evidence is found against it), the 
fitted model may be considered appropriate. The errors (εi ) 
are obtained as Y − yi , where yi are the measured obser-
vations. As the true model, and thus Y is not known and 
estimated by a sample, only the estimates of the errors, the 
ordinary residuals (εi ) may be tested.  Beside the ordinary 
residuals, other types of residuals can be used in the anal-
ysis. The generally tested residuals are:

•	 ordinary residuals,
•	 standardized residuals,
•	 internally studentized residuals,
•	 externally studentized residuals.

̂
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A brief discussion of these residuals is given in the fol-
lowing. Pierce and Kopecky [7] showed that as the sample 
size approaches infinity, the distribution of the ordinary 
residuals approaches the distribution of the errors. Thus, 
testing the assumptions of the errors by testing the ordi-
nary residuals is appropriate when the sample size is suf-
ficiently large. However, when the sample size is small the 
distribution of the residuals may differ from that of the 
error terms to a great extent. The ordinary residuals are 
not identically distributed as their variance depends on the 
allocation of the values of the independent variable ( xi ). 
When the observation is closer to the centrum of the bulk 
of the data they have a larger variance, while observations 
closer to the edge have a smaller variance. Behnken and 
Draper [8] called it the ballooning effect. Besides not hav-
ing common distribution, the residuals are correlated [9]. 
Accordingly, in small samples, ordinary residuals should 
not be used in the residual analysis.

The standardized residuals ( ε i
* ) are obtained by divid-

ing the ordinary residuals with the residual standard devi-
ation ( s ):

ε
ε

i
i

s
*

,=
	 (2)

where:

s n p
i

n
i= ( ) −( )

=∑ 1

2ε / , 	 (3)

and n is the number of observations used to fit the regres-
sion line and p is the number of parameters in the fitted 
model, equals two in the linear case. If the ordinary resid-
uals were independent and normally distributed variables, 
standardization would result in a standard normal distrib-
uted random variable which would be convenient for outlier 
detection. However, as the ordinary residuals are not inde-
pendent and normally distributed variables, the standard-
ized residuals are not standard normal distributed either. 
Gray and Woodall [10] showed based on Shiffler's work [11] 
that the standardized residuals are bounded and the bounds 
depend on the sample size. The bounded distribution of the 
standardized residuals in a small sample differs to a great 
extent from the normal distribution of the errors. Thus, the 
application of standardized residuals in the general residual 
analysis is inappropriate for small samples.

The internally studentized residuals are obtained by 
adjusting the standardized residuals in a way that they 
have unit standard deviation:

r
s hi

i

i

=
−
ε
1

, 	 (4)

hi is called the leverage or potential of the i th observation 
and obtained by the formula [5]:
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2

1

2
, 	 (5)

where n is the number of observations used to fit the 
regression line, xi is the value of the independent variable 
of the i th observation, and x  is the average of xi values. 
The presented formula for calculation of hi is appropriate 
only if the fitted model is linear. The general calculation 
of leverage, which includes matrix calculations can be 
found in the work of Draper and Smith [5]. The internally 
studentized residuals are bounded (similarly to the stan-
dardized residuals) and tau distributed [12]. The bounded 
tau distribution differs to a great extent from the normal 
distribution of the errors when the sample size is small. 
Thus, internally studentized residuals should not be used 
in residual analysis when the sample size is small. 

The fourth type of the generally considered residuals 
is the externally studentized residuals. The distribution of 
the externally studentized residuals is more familiar for 
the practitioners; they follow student's t-distribution. The 
externally studentized residuals (ti ) are calculated as:

t
s hi

i i

i i i

=
+
( )

( ) ( )

ε

1
, 	 (6)

where s(i ) is the residual standard deviation estimated from 
the fit without the i th observation (hence the (i ) notation) 
and calculated according to Eq. (3) while the given point is 
left out from the fitting. ε i i( )  is the difference between the 
i th observation and the regression curve estimated with-
out the i th observation. ε i i( )  is usually called deleted resid-
ual. The 1+ ( )hi i  term in Eq. (6) is the adjustment of the 
deleted residuals so they have a common, unit standard 
deviation. hi(i ) is obtained by the formula:
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x x
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where n(i ) is the number of observations used to fit the 
regression line (ith observation excluded), xi is the value of 
the independent variable of the i th observation, and x i( )  is 
the average of the values of the independent variable of the 
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observations used in the fitting (i th observation excluded). 
While the externally studentized residuals are correlated, 
they have normal distribution which is convenient for 
residual analysis. 

The distribution and behavior of the discussed types of 
residuals depend on the sample size. Methods in residual 
analysis which generally assume a sufficiently large sam-
ple size may not be appropriate and may be ineffective for 
small samples. Razali and Wah [13] studied the power of 
the most widely applied test for normality including the 
Shapiro-Wilk test [14]. It was shown, that the tests have 
rather low effectiveness when the sample size is the small-
est that is investigated, 10. Different plotting techniques 
may also be used to visually investigate the behavior of the 
residuals (e.g. QQ plot [15] and standardized PP plot [16]). 
However, visual inspections are subjective; any visual dis-
crepancies found by the practitioner should only raise suspi-
cion for the presence of potential discrepancies. Therefore, 
the decision should not be based on visual inspections only. 

Statistical tests which partition the initial dataset and 
compare certain statistics of the partitions to detect model 
misspecification usually applied in the literature. The orig-
inal lack of fit test was developed by Fisher [17]. The test 
requires to have repeated measurements at any given xi. 
Instead of including every repetition in the model fitting, 
the lack of fit test applies only the average of the repeated 
measurements. This way, two independent estimators of 
the residual variance can be obtained: one from the fit-
ting  (residual sample variance) and one from the repeti-
tions. The latter is referred to as pure error and is indepen-
dent of the fitted model. If the fitted model is appropriate, 
the ratio of the residual sample variance and the pure 
error follows an F-distribution. The expected value of the 
ratio is one, and a significantly greater null statistic indi-
cates lack of fit, i.e. model misspecification. Another test 
for model misspecification was developed by Utts [18] 
which is called the rainbow test. The test aims to detect 
whether curvature is needed to describe the data. In the 
method, the initial dataset is partitioned into two datasets: 
one with the observations located around the center of the 
bulk of the points ( x ), and the other with observations on 
the edges of the bulk of the points. If the fitted model is 
correct the residual sample variance estimated from each 
dataset is an unbiased estimator of the residual variance. 
The general F test utilizing the extra sum of squares [6] is 
applied in the test. When the extra sum of squares method 
is applied generally, a misspecified model is considered 
to be incomplete. That is, the fitted model is considered 

to be a part of the true model and at least one parameter 
is left out from the fitted model. Due to the assumption of 
this nested nature between the falsely selected and the true 
model, the F test is one-sided. 

Robust statistics may also be applied to detect model 
misspecification. In most cases, robust statistics are used 
to overcome (to some extent) the effect of present of outli-
ers or heteroskedasticity (non-constant error variance) and 
deviation from the assumed error distribution which would 
result in biased estimators [19]. In regression analysis, 
robust standard error may be used to calculate inferences 
for the model, e.g. confidence intervals for the parameters 
and confidence band for the curve. The most-widely used 
formulas for the robust standard error are based on the work 
of White [20]. While using the robust standard error to cal-
culate inferences is not a solution when a falsely selected 
model is fitted, it can be used to test whether model mis-
specification is present at all [21]. The information matrix 
test developed by White [22] compare the robust standard 
error with the standard error obtained using least-squares 
estimation. The test statistic follows a chi-squared distribu-
tion as the sample size approach infinity. For small sample 
sizes different approaches were suggested [23–25] to obtain 
critical values for the information matrix test. However, the 
study of the appropriateness of the different approaches do 
not concern sample sizes smaller than 25. Thus, the appli-
cation of the test for sample sizes even smaller is question-
able. An extensive discussion about the application and 
misconceptions about the robust standard error is provided 
by King and Roberts [21]. 

Outlier detection is also part of the residual analysis, how-
ever, it is not used for model verification. In outlier detection 
one usually assumes that the form of the fitted model is cor-
rect, but the estimation of the parameters in the model might 
be biased due to outlier points. Some of the developed meth-
ods in this paper (discussed in Section 3) are inspired by the 
technique briefly discussed in the following. 

Snedecor and Cochran [26] proposed a test to check if 
the expected value of a deleted observation at xi agrees 
with that of the fitted model at xi. This method tests 
whether the expected value of the externally studen-
tized residuals is zero. In the approach, an observation is 
detected as an outlier when:

t ti > −( )1 2α ν/ , , 	 (8)

where ti is the externally studentized residual calculated 
at xi and t 1 2−( )α ν/ ,  is the upper critical t-value with 
degrees of freedom v at α significance level. To detect 
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outlier observations in a dataset, each point is to be tested. 
The externally studentized residuals are not independent 
of each other, and the significance level used in each test 
is to be adjusted accordingly. The technique that is applied 
is based on the Bonferroni inequality [27], which states 
that for q test with α significance level, the probability of 
falsely rejecting the null hypothesis is increased from the 
desired value of α to a maximum of α', where α' =qα. If 
the desired overall significance level of outlier detection 
is 0.05 (α' ) and there are five observations (five tests to be 
performed), the critical t values are to be taken at α = 0.01. 

3 Developed methods for detection of model 
misspecification
The presented methods are applicable in situations in 
which fitting is performed on extremely small indepen-
dent samples. For example, if there are three samples (e.g. 
three stability studies or calibration datasets) each with six 
observations, the proposed methods can be applied to test 
the adequacy of the fitted model. It is assumed that the true 
models of every sample have the same form (e.g. they are 
all linear models) but it is not required that the parameters 
of the models agree. In the case of linear models, it means 
that the true slope or true intercept can vary from sample 
to sample. Also, the residual variances (σ2 ) need to agree 
in every sample (does not necessarily mean that estimates 
of the residual variances (s2 ) agree) and each sample is 
required to include at least four points. The assumption 
of common residual variance can be justified for exam-
ple when the same analytical measurement (instrument) is 
used for obtaining observations in each sample, and it also 
may be tested with Bartlett's test [28]. 

When the form of the fitted model is not appropriate 
all the observations are actually outliers compared to the 
falsely selected model. Accordingly, the goal of the inves-
tigation is to detect outlier nature. However, outlier nature 
can also be present when the model is correct. That is, two 
situations may be distinguished: 

•	 Outlier nature is present while the form of the fitted 
model agrees with the form of the true model but 
the expected values of some observations are biased. 
This is the theoretical situation when outlier detec-
tion methods are used. Observations with such an 
outlier nature are referred to as ordinary outlier here.

•	 Outlier nature is present while the form of the fitted 
model DOES NOT agree with the form of the true 
model therefore the expected values of the observa-
tions are all biased compared to the falsely selected 

model. That is, the model is misspecified and the out-
lier nature would not occur if the appropriate model 
were fitted. 

When the sample size is extremely small it is rather 
difficult to distinguish between cases of ordinary outlier 
nature and misspecified model. 

The idea in the developed methods is the following: 
observations at each value of the independent variable 
from the different samples are grouped (observations 
from every sample at each xi form a group). For example, 
in stability studies, observations from the different stud-
ies at each time point are grouped, while in the calibra-
tion process, observations at the same concentrations are 
to be grouped. Then, it is tested for each group whether it 
is an outlier, based on certain statistics derived from the 
data in the group. If the model is misspecified, each group 
is in fact outlier, and finding outlier nature by the test is 
desired. However, it is a possibility that the model is cor-
rect but a group is an outlier due to a single ordinary out-
lier observation in the group. Finding of outlier nature of 
the group in this situation is undesired. The influence of 
ordinary outlier observation on the group is smaller and 
more negligible when the number of non-outlier obser-
vations increases in the group. To decrease the chance of 
false alarm due to ordinary outlier observations it is sug-
gested to consider a group for testing only if at least three 
observations are available in that group. If one considers 
only the groups with an even greater number of observa-
tions, the chance of detection of model misspecification 
when it is only an ordinary outlier that is present, further 
decreases. Fig.  1 illustrates the grouping method: each 
blue circle marks a group eligible for testing. 

The proposed methods are presented for the case of sta-
bility studies. Based on ICH Q1A Guide [1] the time points 
in a stability study are considered to be x = {0, 3, 6, 9, 12, 18, 
24, 36} months. It should be noted that the zero time point is 
mathematically not appropriate if the fitted model is loga-
rithmic as the logarithm of 0 is not defined. For these cases, 
it is suggested to adjust the zero time point to the exact time 
point when the observation is obtained. Another solution 
is an arbitrary choice of a sufficiently small (greater than 
zero) time point. For such cases, it is suggested to take the 
zero time point to be 0.05 months, which equals 1.5 days. 

In the following k(=1, 2, ... , 8) represents the kth ele-
ment of the values of x = {0.05, 3, 6, 9, 12, 18, 26, 36}. The 
groups are to be formed and the test statistics are to be 
calculated for each k, provided that there are at least three 
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observations at a given time point. In Fig. 1 the eligible 
groups are those at x1, x2, x5, x6 and x8 ( k = {1, 2, 5, 6, 8}).

3.1 Testing the averages of the adjusted deleted 
residuals
The adjusted deleted residuals (dk ) are obtained in each 
sample by the following formula:

d
hk
k k

k k

=
+
( )

( )

ε

1
, 	 (9)

where hk(k) is calculated according to Eq. (7) and εk(k) is the 
deleted residual. The adjusted deleted residuals follow a 
normal distribution with zero mean and residual variance 
σ2 if the fitted model is correct (Section 2). The test statis-
tic is formulated by averaging dk values at k over the sam-
ples and dividing the average by the sample standard error. 
As the deleted residuals are obtained by excluding the cor-
responding points from the fits, two independent estimates 
of the standard error can be obtained. It can be estimated 
by the sample variance of the adjusted deleted residuals or 
the residual sample variance obtained in the fitting when 
observations at k are excluded. When the sample standard 
error is estimated by the sample variance of the adjusted 
deleted residuals, the test statistic is obtained as:

D
d

s mk
k

d kk

=
/

, 	 (10)

while when it is estimated from the fits, the test statistic is 
calculated as:

D
d

S mk
k

k k

*

/
,=

( )

	 (11)

where dk  is the average of the adjusted deleted residuals 
at k, mk is the number of observations at k and sdk  is the 
sample standard deviation of the adjusted deleted residuals 

at k. When there is no observation in a given sample at k, 
the sample does not contribute to the calculation of dk ,  
mk , and sdk .  S(k) in Eq. (11) is the square root of the pooled 
residual sample variance. S(k) is obtained by pooling the 
residual sample variances obtained from all the fits when 
observations at k are excluded:
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where u is the number of samples (studies), nl(k) is the num-
ber of observations in the l th sample without the observa-
tion at k, p is the number of parameters to be estimated in 
the model (  p = 2 for linear models) and sl k( )

2  is the residual 
sample variance in the l th sample when observation at k 
is excluded. When there is no available observation in a 
given sample at k, nl(k) = nl and s sl k l( ) =

2 2
.

If the fitted model is correct both sdk
2  and S k( )

2  esti-
mate the true error variance ( σ2 ) independently from dk   
and are χ σ ν2 2 2

/ sdk( )  and χ σ ν2 2 2
/ S k( )( )  distributed,  

respectively. dk  values are normally distributed with   
expected value of zero and variance of σ2 / mk.  
Accordingly, Dk is a ratio of a normally distributed  

and a χ σ ν2 2 2
/ sdk( )  distributed random variable,  

while Dk
*  is a ratio of a normally distributed  

and a χ σ ν2 2 2
/ S k( )( )  distributed random variable.  

Therefore, both statistics follow a Student's  
t-distribution:

D t s mk d kk
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The tests of Dk and Dk
*  are two-tailed tests. When Dk or 

Dk
*  exceeds the critical t-values with degrees of freedom  

of mk − 1 and n pl kl

u
( )=
−( )∑ 1

 respectively at a given signif- 
icance level, the group at k is marked as an outlier, that 
is model misspecification is present. At each time point  
where at least three observations are available, the test 
statistics are to be calculated. The decision is to be made 
by comparing each of the values of Dk or Dk

*  to the crit-
ical  values. The critical t-values may vary from time 
point to time point due to the varying value of mk and nl(k). 
Similarly to the adjusted deleted residuals, the test statis-
tics obtained at different time points are not independent. 
Considering the Bonferroni adjustment, the critical values
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Fig. 1 Construction of groups: each blue ellipse 
marks a group eligible for testing
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are t (α' / 2q, v ) and t (1 − α' / 2q, v ), lower and upper val-
ues respectively, where q is the number of tests to be 
performed  (the number of available Dk (or Dk

* ) values). 
We propose the application of 0.01 overall significance 
level (α'  ), which results in 0.01 false alarm rate. That is, 
the probability of falsely rejecting an appropriate model - 
based on Dk (or Dk

*  if that is the applied test statistic) 
exceeding the critical values in at least one group - is 1 %.

3.2 Testing the extra sum of squares when grouped 
observations are excluded
The extra sum of squares method can be applied to mea-
sure the reduction in the error sum of squares when one or 
more observations are deleted from the fit. The test statis-
tic ESSk at a given k (provided that mk   ≥  3) corresponds to 
the situation when observations at k are deleted in every 
sample. ESSk has an F-distribution and is obtained as:

ESS
SS SS m

SS n p
F m n pk

k k

k l k
k l k=

−( )
∑ −( )
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( ) ( )
( )

/

/
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where SS is the sum of the residual sum of squares from 
every fit when all observations are included. SS(k) is the 
sum of the residual sum of squares from every fit when 
observations at k are excluded, nl(k) is the number of 
observations in the l th sample when observations at k are 
excluded, mk is the number of samples in which observa-
tion is present at k and p is the number of parameters to be 
estimated in the model. SS is obtained by fitting a regres-
sion line on each sample separately and summing the sum 
of squared residuals from the fits:

SS SSl= ∑ . 	 (16)

SS(k) is obtained by fitting a regression line in each sample, 
while the observations at k are excluded and summing the 
sum of squared residuals from the fits:

SS SSk l k( ) ( )= ∑ . 	 (17)

When there is no available observation in a sample at k, 
SSl(k) = SSl . Contrary to the generally applied extra sum of 
squares method (discussed in Section 2), this test is not one-
sided. That is because in this case it is not assumed that the 
falsely selected model is nested into the true model. The 
test is more general here: it is to be tested whether the form 
of the fitted model is correct. This more general approach 
requires a two-sided test. ESSk values are to be compared 
to the upper and lower critical F-values with degrees of 
freedom of mk and ∑ −( )( )nl k 2  at α' / q significance level.

3.3 Over-samples rainbow test
The developed over-samples rainbow test is based on 
Utts's rainbow test (Section 2). Each sample is divided into 
two subsamples: one with observations at the earliest and 
the latest time points (wing observations) and another with 
observations at the mid-range of the time points (mid-
range observations). The idea behind the method is that if 
the linear model is not correct and there is a curvature, the 
linear fit on the mid-range points will provide a better fit 
than the linear fit on the whole range of the points. The test 
statistic (ORT   ) is obtained as:

ORT
SS SS n
SS n n p

D lW

D l lW
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−( ) ∑( )
∑ − −( )

/

/
, 	 (18)

and it follows an F-distribution:

ORT F n n n plW l lW~ , ,∑( ) ∑ − −( )( ) 	 (19)

where SS is the sum of the residual sum of squares from every 
fit when all observations are included and SSD is the sum of 
the residual sum of squares from every sample when the fit-
tings are performed on the mid-range observations. nl is the 
number of observations in the l th sample, nlW is the number 
of wing observations in the l th sample and p is the number 
of parameters to be estimated in the model. When the model 
is misspecified and there is a curvature, the expected value 
of the test statistic increases. Accordingly, a one-sided test 
is to be applied, and the test statistic is to be compared with 
the upper critical F-value at α significance level. The signif-
icance level is not required to be adjusted as only one test 
statistic (ORT  ) is calculated for a dataset. 

The selection of the mid-range observation in each 
sample can be performed in different ways. Two ways are 
considered here: 

•	 mid-range observations are obtained from the initial 
sample sets by excluding two observations: one at 
the earliest and one at the latest time point in each 
sample; for that, each sample must contain at least 5 
observations, so that, at least three mid-range obser-
vations are available and fitting can be performed on 
them. The test statistic is referred to as ORT.

•	 mid-range observations are obtained from the initial 
sample sets by excluding three observations: one at 
the earliest and two at the latest two time points 
in each sample; for that each sample must contain 
at least 6 observations, so that, at least three mid-
range observations are available and fitting can be 
performed on them. The test statistic is referred to 
as ORT *.
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4 Efficiency study of the developed tests
The statistical tests presented in Section 3 may be applied 
to detect model misspecification. Decisions based on sta-
tistical tests are always exposed to the possibility of false 
decisions. The significance level defines the chance of 
falsely rejecting the null hypothesis (type I error). In the 
developed methods 0.01 overall significance level are sug-
gested. This means that when one of the proposed test sta-
tistics is applied, the chance of detecting model misspec-
ification when the model is actually appropriate (that is 
the probability of type I error) is 1 %. The other case of 
false decision occurs when model misspecification is pres-
ent but it cannot be detected and the model is accepted as 
appropriate. This is the type II error and β is the rate of 
its occurrence. The efficiency of the candidate test statis-
tics can be compared by their power which is the probabil-
ity of detecting model misspecification when it is present. 
The power is obtained as 1 − β. The higher is the power of a 
test for a given situation the more efficient the test statistic 
is, i.e. the more frequently it can detect model misspeci-
fication when it is present. Power depends on the dataset 
(number of samples, number of data in each sample, resid-
ual variance), the form of the fitted model and the form of 
the true model as well. Accordingly, a comparison study, 
which answers the question of which test is the most effi-
cient (has the highest power) in any situation, may not be 
performed. However, some general insight may be gained 
about the efficiency of the proposed methods by studying 
situations that resemble those that occur in the practice. 
The time points of the measurements are considered to be 
x ={0.05, 3, 6, 9, 12, 18, 24, 36} months (based on ICH Q1A 
Guide [1] with adjustment of 0 month time point to 0.05 
month). Two main scenarios are considered in the study:

•	 Registration: there is a single measurement at each 
time point, and there are three samples (studies) 
available. That is, there are 24 observations, 8 in 
each sample. This situation occurs in the practice at 
the registration phase of the drug product.

•	 Post-approval: the number of observations in each 
sample is limited to six in order to make the situ-
ation resembling post-approval stability studies, 
where missing observations are usually present. 
Observation at 0.05 month is always available in each 
sample as it is in the practice, while the time points 
of the other five observations are randomly gener-
ated from the remaining time points (3, 6, 9, 12, 18,  
24, 36 months). Only one observation is allowed at a 
given time point in a sample. The number of samples 
considered in the investigation is three and four.

Two situations are considered within each of the 
described scenarios:

1.	 A situation that resembles monitoring an active 
pharmaceutical ingredient (API). The true model is: 
Y  =  97 − log( x ) for each sample and the fitted model 
is linear in each sample. Fig. 2 shows the true model, 
the interval within which 95 % of the observations 
fall (coverage) when the residual variance (σ2 ) is 1, 
and the fitted mean line (in the case when there are 
observations at every time point). The mean line 
gives the trend of the falsely selected linear model.

2.	A situation that resembles monitoring pH. The true 
model is Y  =  6 + exp(−0.06x ) for each sample and the 
fitted model is linear in each sample. Fig. 3 shows 
the true model, the interval within which 95 % of 
the observations fall (coverage) when the residual 
variance is 0.05, and the fitted mean line (in the case 
when there are observations at every time point).
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The effect of the residual variance (σ2 ) is studied in the 
following way: 

•	 In the API cases, the residual standard deviation (σ) 
is considered to be 1 and 0.5.

•	 In the pH cases, the residual standard deviation (σ) is 
considered to be 0.05 and 0.01. 

The magnitude of the residual standard deviation was 
chosen to resemble the practice: in analytical measure-
ments usually, the upper bound for relative standard devia-
tion (RSD) is 1 %. Based on that bound, the standard devi-
ation of the measurements in the range of 90–100  (API 
case) and 6–7 (pH case) is 1 and ~0.05, respectively. It 
should be noted that the variation of the observations is 
caused by the analytical measurement and the sampling as 
well. Therefore, an even larger variation of observations 
might be observed in the practice. 

Each situation was simulated 100,000 times and the 
tests based on the test statistics defined in Section 3 (Dk, 
Dk

* , ESSk , ORT and ORT  * ) were performed in each sit-
uation with an overall significance level of 0.01 in each 
test. The power is calculated for each test by counting 
the cases in which the test was able to detect model mis-
specification and dividing it by the number of all cases, 
100,000. Besides the developed test statistics, the Shapiro-
Wilk test on the residuals at 0.01 significance level was 
also performed in each situation. The test was chosen as it 
is the most widely applied method in the practice to check 
the assumption of the normality of the errors, and thus 
the appropriateness of the fitted model. Also, Dixon's Q 
test [29] is performed in each situation. Dixon's Q test is a 
non-parametric method for outlier detection in which the 
gap between the two largest values (or two smallest values 
if their gap is larger) is compared to the range of the data-
set. The aim is not to detect a single outlier residual, but to 
detect an outlier group at one of the time points. Thus, the 
test is performed on the d mk k/  values, that is the means 
of the adjusted deleted residuals corrected with mk ,  so 
they have equal variances (this is only required when there 
are 4 samples). Only the time points at which mk   ≥   3 are 
considered. The critical values for the tests are taken from 
the work of Rorabacher [30].

4.1 Simulation results
An investigation before the efficiency study was carried 
out to show that the suggested methods are statistically 
adequate. A method is adequate when the test statistic 
truly follows its theoretically defined distribution. It can be 

checked by comparing the significance level with the prob-
ability of type I error that is observed in a simulation study. 
If the observed type I error agrees with the significance 
level, the method is appropriate. The found probability of 
type I error is obtained as the number of cases in which the 
test detects an appropriate model as misspecified, divided 
by the number of total cases. The type I error depends only 
on the significance level and it does not depend on the true 
model, the number of samples and observations, or the 
value of the residual variance. Three samples were gener-
ated in each step, each with the true model being Y  = 100 + x 
and σ 2 = 1. Table 1 shows the probability of type I error 
found for the different methods, based on 1,000,000 simu-
lated samples of three, which is a large enough sample for 
the values to be accurate to the first decimal place. 

It should be noted that application of Bonferroni 
inequality ( in the cases of Dk , Dk

*  and ESSk  ) ensures only 
that the applied overall significance level is not greater than 
the nominal one. That is, the expected value of the found 
probability of type I error may be actually smaller than the 
nominal one. Despite the presence of this phenomenon, the 
found probabilities are sufficiently close to the nominal lev-
els, that is the methods are statistically appropriate. 

The simulation results of the efficiency study (the prob-
ability of detection of model misspecification when it is 
present, i.e. power (%)) for the registration scenario are 
shown in Table 2, while for the post-approval scenarios 
are shown in Tables 3 and 4. In the tables, API refers to the 
situation in which the true trend of the active pharmaceu-
tical ingredient is Y  = 97 − log( x ), while pH refers to the sit-
uation in which the true trend of pH is Y  = 6+exp( −0.06x ). 
For example, in the registration phase (i.e. all the 8 data 
are available at time points of 0.05, 3, 6, 9, 12, 18, 24 and 
36 months) at the API case, when σ  = 1, the probability 
of detecting that the falsely selected linear model is not 
appropriate is 96.4 % when Dk

*  is applied (Table 2).
Generally, the Shapiro-Wilk test (SW) is less efficient 

than the developed methods, and also it is rather ineffec-
tive. The only exception is in the registration phase of API 
when σ  = 0.5 (87.6 %). There are cases where the power 
is smaller than the nominal significance level (1 %). This 
behavior of the test, which is the result of the residuals 

Table 1 Found type I error of the developed tests

Nominal (%) Dk ESSk ORT ORT  *

5 4.87 4.88 4.90 4.99 5.01

1 1.00 0.99 1.01 1.01 1.00

0.1 0.095 0.099 0.100 0.100 0.107

Dk
*
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being correlated, was also observed by Weisberg [31]. The 
very same behavior can be observed regarding Dixon's Q 
test ( Q ). Even though 5 % significance level is used in 
these tests, in most cases, the test has undetectable power. 
The reason for that is presumably the correlation between 
the residuals (more specifically the correlation between 
the means of the adjusted deleted residuals), which seems 
to result in bounded Q test statistics that is smaller than the 
critical value in most cases. It should be noted, that the Q 
test is developed for uncorrelated values, and the behavior 

of the test when correlation between the observations is 
present, is not investigated in the literature to the best 
knowledge of the authors of this paper. The Q test may 
be used on the means of the ordinary residuals (instead of 
the means of the adjusted residuals) at the different time 
points as well, however, besides being correlated, the ordi-
nary residuals have different variances, resulting in a Q 
test statistic with even more distorted behavior. 

In the registration scenario (Table 2), it can be con-
cluded that Dk is inefficient in most cases, while Dk

*  almost 
always detect model misspecification in the API case. ORT 
and ESSk can be considered efficient in the API case with at 
least 82.1 % and 70.3 % probability of detection of model 
misspecification, respectively. In the pH case, the tests 
are generally less efficient. Dk

*  and ORT perform reason-
ably well with 74.5 % and 70.6 % probability of detection 
respectively when σ  =  0.05. When σ  =  0.025 the efficiency 
of Dk

*
,  ORT and ORT  * is more than 99 %. It should be 

noted that while ESSk is efficient in the API case, it is inef-
ficient in the pH case. It is difficult to name a single factor 
which is responsible for the test statistics being more effi-
cient in the API case. The nature of the true curve (loga-
rithmic, exponential, polynomial, etc.), how well the cur-
vature agrees with the trend of the fitted line and how each 
observation contributes to the shape of the curve might be 
considered as possible factors.

By comparing the results of the registration case with 
those of the post-approval case it can be stated that the 
tests are less efficient in the post-approval situation. It is 
the effect of having only six observations instead of eight 
in each sample. More observation makes the discrep-
ancy between the observations and the falsely selected 
model more detectable. When three samples are avail-
able (Table 3) the test statistics have poor efficiency in the 
pH case. Dk and ORT  * are also inefficient in the API case, 
while Dk

*  performs well with 88.4 % and > 99.9 % power. 
Overall, when four samples are available in post-approval 
situation (Table 4), the efficiency is higher compared to the 
cases of three samples. In the case of four samples ORT  * 
is still inefficient or have low efficiency, while Dk can be 
considered efficient (78.6 %) in the API case when σ  =  0.5. 
Generally, in the pH case, the test statistics are inefficient 
or have low efficiency. However, when four samples are 
available and σ  =  0.025 Dk

*  and ORT can be considered 
efficient with ~80 % detection of model misspecification. 

An interesting fact should be pointed out: in the four 
samples case of the pH situation, at smaller sigma Dk

*  
is more efficient than ORT, while at larger sigma ORT is 

Table 2 Power (%) of the tests in the 
registration case

Registration

API pH

sigma 1 0.5 0.05 0.025

Dk 8.2 27.1 14.1 43.1

96.4 > 99.9 74.5 99.4

ESSk 70.3 > 99.9 15.0 28.2

ORT 82.1 > 99.9 70.6 99.5

ORT  * 53.7 99.7 61.7 99.0

SW 8.9 87.6 4.2 37.8

Q 2.7 0.4 < 0.0 < 0.0

Dk
*

Table 3 Power (%) of the tests in the post-approval 
case with 3 sample

Post-approval: 3 samples - 6 observations

API pH

sigma 1 0.5 0.05 0.025

Dk 12.3 35.5 10.5 21.5

88.4 >99.9 32.3 45.9

ESSk 45.9 99.0 5.1 6.9

ORT 39.0 96.1 26.8 57.6

ORT  * 8.7 35.0 9.9 28.9

SW 0.9 14.8 0.7 3.5

Q <0.0 <0.0 <0.0 <0.0

Dk
*

Table 4 Power (%) of the tests in the post-
approval case with 4 sample

Post-approval: 4 samples - 6 observations

API pH

sigma 1 0.5 0.05 0.025

Dk 28.3 78.6 22.5 44.3

97.5 >99.9 60.4 79.4

ESSk 62.7 >99.9 11.1 19.2

ORT 59.0 99.8 42.2 82.5

ORT  * 14.6 61.0 16.3 52.6

SW 1.4 16.5 0.4 0.7

Q <0.0 <0.0 <0.0 <0.0

Dk
*
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the more effective one. This phenomenon shows that the 
power of the different tests is influenced by the nature of 
the data in different ways, and thus it is difficult to make 
a general conclusion about the efficiency of the methods.

In this study, the aim was to investigate the effective-
ness of the presented tests in extreme situations (i.e. small 
sample size and rather few samples). It can be concluded 
that in the investigated situations Dk

*  and ORT perform 
reasonably well, and these methods are more effective in 
the detection of model misspecification, than the Shapiro-
Wilk test and Dixon's Q test.

5 Application in a stability study of an API content
The application of Dk

*  on a real dataset is demonstrated 
and compared to the results of the generally applied 
residual analysis in the following. Dk

*  is chosen as it was 
found to be one of the two best methods ( Dk

*  and ORT  ) 
in Section 4. The data are obtained in numerous stability 
studies of a certain API. The values of the API content 
represent the percent of the nominal content. The data can 
be found in Table 5.

The linear model is typically the initial one that is fitted 
by the statistical software used in stability studies to evalu-
ate the stability data. Thus, a linear model was fitted to the 
data in each study. The coefficients of the fitted models are 
summarized in Table 6. The observations with the fitted 
lines are plotted in Figs. 4 and 5. In most cases, the lines 
seem to be appropriate to describe the observations. The 
goodness of the fit is not convincing in Study 5 (Fig. 4), 
however, it should raise concern regarding that sample and 
not the goodness of the linear fit. The same conclusion can 
be made regarding the goodness of the linear fits based on 
the adjusted R2 values (Table 7).

Plotting the residuals against the predicted values might 
help realize the inappropriateness of the fitted model. The 
plot of the residuals against the predicted values (Fig. 6) 
shows no sign of discrepancy between the observations and 
the fitted model; the residuals scatter around zero in a near 
constant range. The plot of the externally studentized resid-
uals against the predicted values (Fig. 7) however, might 
raise suspicion that the fitted model is not appropriate or 
the assumption of the homoscedastic might not be fulfilled. 
However, the evidence based on eyeballing is not convinc-
ing and the decision should not be based only on these plots.

The p-values of the Durbin-Watson test ( DW  ) to 
detect autocorrelation and the Shapiro-Wilk test ( SW  ) 
to detect non-normality of the errors (both performed on 

Table 5 API content (%) from the stability studies

Time point 
(month) Study 1 Study 2 Study 3 Study 4 Study 5

0 98.2 99.7 99.8 101.8 99.1

3 – – – – –

6 94.3 96.9 95.8 98.2 95.3

9 – – – – –

12 91.8 94.0 92.5 96.1 91.0

18 92.1 94.9 91.5 96.5 89.5

24 89.7 91.2 89.2 93.3 89.8

36 87.1 87.7 86.0 90.4 87.4

Table 6 Coefficients of the fitted linear models

Coefficient Study 1 Study 2 Study 3 Study 4 Study 5

Intercept 96.7 99.1 98.3 100.8 96.9

Slope −0.283 −0.318 −0.367 −0.295 −0.306

100 Study 5 
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Fig. 4 Linear fit on the dataset of Study 5
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Fig. 5 Linear fits on the datasets of Study 1–4

Table 7 Adjusted R2 and p-values of SW and DW

Study 1 Study 2 Study 3 Study 4 Study 5

adjusted R2 0.90 0.94 0.94 0.93 0.79

DW 0.442 0.462 0.074 0.952 0.002

SW 0.84 0.79 0.42 0.77 0.60



336|Mihalovits and Kemény
Period. Polytech. Chem. Eng., 66(2), pp. 325–339, 2022

the ordinary residuals) can be found in Table 7. The small 
p-value of the DW test confirms that deviation is present 
in Study  5. Based on the other p-values, deviations (e.g. 
model misspecification) cannot be detected.

The normality test can be performed on the whole data-
set of the residuals and the externally studentized resid-
uals as well. On the normal probability plots (Fig. 8), no 
discrepancy can be observed between the residuals and 
the theoretical normal distribution. The Shapiro-Wilk test 
performed on the residuals and the externally studentized 
residuals result in p-values of 0.83 and 0.25, respectively. 
Thus, model misspecification cannot be detected.

Considering the investigation of the residuals, there is 
no strong evidence against the appropriateness of the fitted 
linear model. However, further investigation of Study  5 
might be required. 

Application of Dk
*  provides another way to test the 

appropriateness of the linear models. There are six eligi-
ble time points with at least three measurements, and thus 
six Dk

*  values are calculated. The calculated values can be 
found in Table 8. 

The applied overall significance level is 0.01. To main-
tain this level, the significance level used in the test of Dk

*  
in each time is to be corrected according to the Bonferroni 
adjustment. Thus, the significance level used in each test is 
0.01/6. The degrees of freedom in each test is calculated as 

nl kl ( )=
−( )∑ 2

1

5

,  where nl( k ) equals five in each case. Thus, 
the two-sided critical t-values with degrees of freedom of 15 
and at 0.01/6 significance level equal to ± 3.82. Dk

*  at the time 
point of 0 month exceeds the critical value, that is, model 
misspecification is detected, and a more appropriate model 
is to be fitted. In reality, there are numerous more investi-
gated stability studies connected to the presented dataset 
from which it can be deduced (even from the tests of nor-
mality of the residuals) that the trends are in fact not linear, 
but exponential. The aim of this study was to show that in 
some cases, the suggested methods in this paper may detect 
more efficiently if model misspecification is present. If the 
false selection of the linear model is not detected, the estima-
tion of the shelf life, the ANCOVA applied in the estimation 
of shelf life and the methods used to detect OOT nature are 
biased, resulting in unreliable quality control. 

6 Further perspective
It was found in the simulation study that Dk

*  and ORT are 
the most efficient tests with generally good efficiency in 
most of the investigated situations. The results obtained 
in the study are valid when only the corresponding test is 
used for a given dataset. It is a reasonable idea to think 
that by using more than one test statistic simultaneously for 
checking model misspecification (for example one applies 
both Dk

*  and ORT  ) higher power might be accomplished. 
However, this is not necessarily true. To uphold the over-
all significance level when more than one test is used, the 
individual significance level used in each test (which might 
have been already adjusted according to the Bonferroni 
correction) is to be adjusted. The outcome of the adjustment 

Fig. 6 Residuals against the predicted values

Fig. 7 Studentized residuals against the predicted values

SW test p-value: 0.83 SW test p-value: 0.25

Fig. 8 Normal probability plots of residuals and studentized residuals

Table 8 Calculated test statistics

Time point (month) 0 6 12 18 24 36

4.04 −0.70 −3.29 0.31 −0.35 1.81Dk
*
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is increased individual significance level which results in 
lower power for the given test. That is if more than one 
test is applied for detection of model misspecification the 
individual power decreases. However, the overall power 
is comprised of these individual powers, which might be 
greater than the power of any single test. The idea of simul-
taneous application of test statistics might be beneficial but 
it requires further investigation to obtain a general idea of 
which tests should be applied together. 

The presence of model misspecification and ordinary 
outlier nature interfere with each other's statistical inves-
tigation. Both of the methods assume that the other phe-
nomenon is not present. That is, in model misspecifica-
tion it is assumed that ordinary outliers are not present, 
while in outlier detection it is assumed that the form of the 
fitted model is appropriate. In the presented methods, to 
decrease the impact of potential ordinary outlier nature, 
it was recommended to calculate test statistics for a given 
k only if at least three observations are available at that 
time point. It is a reasonable idea to investigate how the 
efficiency and appropriateness of the proposed methods 
change when ordinary outlier observations are present in 
the dataset. It is a possibility that a test that now seems 
less efficient is more robust to the presence of outliers and 
therefore may be a better choice for detection of model 
misspecification when it cannot be reasonably assumed 
that outliers are not present. 

Additionally, the modeling of the power of the devel-
oped tests could be developed using statistical tech-
niques such as the response surface method. It could help 
to understand and optimize the response by refining the 
determinations of relevant factors (e.g. number of obser-
vations in a sample, number of samples, allocation of the 
observations) using the developed model [32]. Also, novel 
techniques such as machine learning or artificial intelli-
gence may be used [33–35]. On the other hand, it would 

be of interest to incorporate stochastic modeling, in case 
of extending the analysis to a greater number of indepen-
dent variables, in order to have a robust system that allows 
generating predictions of the response in front of partial-
ity in the independent variables [36]. The results of the 
mentioned modeling techniques, would allow for redefini-
tion of the allocation of the points and the number of the 
batches to be measured (in the pre-approval studies) that 
are defined by the ICH Q1A Guide [1], in order to increase 
the probability of the detection of model misspecification.

7 Conclusion 
Pharmaceutical guide Q1E lacks statistical support regard-
ing the detection of model misspecification. It is a diffi-
cult task to detect a discrepancy between a falsely selected 
model and the observations in stability studies due to 
the small sample size. To address this problem, different 
statistical tests were presented which may be applied to 
test the appropriateness of the fitted model. These tests 
are shown to be statistically appropriate (i.e. found type I 
error agrees with the nominal level) and some of them are 
showed to have sufficient efficiency in the investigated 
situations. The tests based on Dk

*  and ORT are found to 
have reasonably high efficiency. This is especially true 
when applied in the registration phase of the drug prod-
uct. Application of these test statistics are of importance in 
evaluation of stability studies. The bias that can be caused 
in the estimation of the shelf life by model misspecifi-
cation is disadvantageous and should be prevented. The 
authors believe that the presented methods (or those with 
found to have high efficiency) should be considered as a 
general step in the evaluation of stability data. 
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