
414|https://doi.org/10.3311/PPch.18834
Creative Commons Attribution b

Periodica Polytechnica Chemical Engineering, 66(3), pp. 414–421, 2022

Cite this article as: Hamadi, O. P., Varga, T. "Semi-supervised Clustering Algorithm for Retention Time Alignment of Gas Chromatographic Data", Periodica 
Polytechnica Chemical Engineering, 66(3), pp. 414–421, 2022. https://doi.org/10.3311/PPch.18834

Semi-supervised Clustering Algorithm for Retention Time 
Alignment of Gas Chromatographic Data

Omar Péter Hamadi1*, Tamás Varga1

1 Research Centre for Biochemical, Environmental and Chemical Engineering, Faculty of Engineering, University of Pannonia, 
Egyetem u. 10, H-8200 Veszprém, Hungary

* Corresponding author, e-mail: hamadio@fmt.uni-pannon.hu

Received: 25 June 2021, Accepted: 14 October 2021, Published online: 10 February 2022

Abstract

Gas chromatography (GC) is an effective tool for the analysis of complex mixtures with a huge number of components. To keep tracking 

the chemical changes during the processes like plastic waste pyrolysis usually different sample states are profiled, but retention time 

drifts between the chromatograms make the comparability difficult. The aim of this study is to develop a fast and simple method to 

eliminate the time drifts between the chromatograms using easily accessible priori information. The proposed method is tested on GC 

chromatograms obtained by analysis of pyrolysis product (Mg/Y catalyst) of shredded real waste HDPE/PP/LDPE mixture. A modified 

k-means algorithm was developed to account the retention time drifts between samples (different sample states). The outcome of the 

retention time alignment is an averaged retention time for each peak from all the chromatograms which makes the comparison and 

further analysis (such as "fingerprinting") easier or possible.
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1 Introduction
Pyrolysis is one of the most investigated routes used to min-
imize plastic waste and convert it into a valuable product. 
A huge number of components (about 300–400 peaks on 
chromatogram) can be found in the pyrolysis product which 
can be characterized by using GC. When multiple samples 
are profiled, retention time shift occurs between the chro-
matograms due to some instrument-related phenomena (e.g. 
injection-timing problem, varying flow rate, temperature 
disturbances/gradient) or due to the chemical interaction 
between the samples and the instrument (selectivity changes 
over time). Despite that the instrument-induced retention 
time shifts have been lessened through the advanced elec-
tronic control systems; an appreciable amount of time drift 
remains in the chromatographic data [1].

The correction of misalignments is important in every 
field where samples are characterized with any kind 
of chromatographic data. For example, methods were 
developed and tested for correction of retention time 
shifts in case of HPLC analysis of herbal medicines [2], 
GC × GC data [3], diesel fuel GC profiles [1], drug metab-
olites LC/MS data [4], and metabonomic GC/MS data [5]. 
The most commonly used methods to eliminate the time 

drifts are the wrapping algorithms and principal compo-
nent analysis (PCA). A clear summary of wrapping meth-
ods for chromatographic signal alignment is available 
in [6]. PARAFAC2 is a generalization of PCA, which is 
a powerful and popular tool for handling retention time 
shifts [7]. However, wrapping method requires the selec-
tion of a target chromatogram, which can be difficult or 
computationally expensive, and the segmentation during 
the application of PARAFAC2 method is influenced by 
user chosen parameters [8].

One of the reasons to keep tracking the chemical changes 
during processes with profiling different sample states 
is to assist the development of a reliable kinetic model. 
In this case, the determination of the target chromatogram 
is not possible, and the uncertainty can be increased with 
user chosen parameters of chromatogram analysis. Thus, 
the abovementioned methods are not suitable for reten-
tion time alignment (in this special case) and the devel-
opment of a method is required in which these disadvan-
tages are eliminated. The fact that k-means algorithm was 
originally designed for minimizing variance and not the 
arbitrary distances, makes the method unpopular to use 
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for time series. However, this paper shows that with some 
modification and with the appropriate preprocess of data, 
it is also a powerful tool for handling time shifts in chro-
matograms. The experiments were performed at different 
temperature levels using different zeolite based catalysts, 
additional details can be found in [9].

 Based on these experiments a lumped kinetic model 
was developed and published in [10], and the uncertainty 
of the model was diminished by reducing the size of the 
reaction network in [11]. The starting point for a tradi-
tional lumping model is in macroscopic level (e.g. boiling 
point), so the amount of information that can obtained is 
quite limited [12]. One possible way to allow more obtain-
able information from the model is to define the pseudo 
components more properly, e.g. based on molecular rather 
than physical properties. The molecular properties of the 
aforementioned experimental products can be obtained 
directly from chromatographic data. Our aim is to develop 
an algorithm to perform the alignment of peaks from 
different chromatograms (so eliminate the time drifts) 
which characterized the product of a complex reaction 
system in time, which makes easier to define the proper 
pseudo-components.

2 Proposed methodology
Suppose that X = {x1,1, x1,2, …, x1,m, x2,1, x2,2, …, x2,m, …, xn,m}  
is a given data set of n retention times of chromatographic 
peaks from m measurements. The object of a clustering 
algorithm without any constraints is to grouping a set of 
objects (peaks) into k clusters (c = {c1, c2, …, ck}), in such 
way that objects in the same group are more similar to each 
other than to those in other groups. In this section we pres-
ent a method that allows the proper alignment of peaks from 
different chromatograms obtained by analyzing different 
sample states.

2.1 Preprocessing the data
First of all we would like to highlight the most important 
properties of the investigated dataset:

• obtained by the GC based product analysis of waste 
plastic pyrolysis carried out in a two-stage labo-
ratory scale reactor system. The 50 g solid plastic 
waste was measured into the reactor at the start of 
all experiments and 15 dm3 h−1 nitrogen flow was 
maintained that drove volatiles through the second. 
The experiments in which the investigated chro-
matograms were performed at 425 °C using Mg/Y 
catalyst, additional details can be found in [1, 13];

• data contains 7 chromatograms in different sample 
states (sampled as the experiment progressed, at: 10, 
20, 30, 40, 50, 60 and 70 min);

• paraffinic peaks were identified in advance.

As we stated in our previous modelling study of this 
system, only a small changes can be noticed in the chro-
matograms of pyrolysis product samples taken at different 
time steps [2]. Hence, the collected data can be applied to 
test the proposed clustering algorithm, since the primary 
aim of this algorithm to find peaks in every chromatogram 
which can be the same molecule.

The identification of the paraffinic peaks is an easy 
but essential task, as these peaks serve as points of ref-
erence during the peak alignment process. The chromato-
grams are divided into segments by these reference points. 
Moreover, the alignment of the reference points is unequiv-
ocal, hence through the segments the task of retention time 
alignment can be divided into subtasks. The dataset is plot-
ted in Fig. 1, where the dashed lines are reference points 
(i.e. paraffinic peaks) and the sections between them are 
the same segments in all chromatograms (the highlighted 
segments are the C10 fractions). These segments are coher-
ent so they can be grouped, and the retention time align-
ments within these segment groups are the subtasks.

In Fig. 2 (a), the retention times of data from C10 frac-
tions from all chromatograms is illustrated. The size of 
the circles denotes the origins of the data points, for exam-
ple the smallest circles are from 1st measurement, and the 
largest ones are from the 7th sample. Fig. 2 (b) shows the 
data from Fig. 2 (a) when it is normalized to 0–1 range for 
each segment in the segment group separately according 
to Eq. (1). (The retention time of paraffinic peak heading 
is 0 and the retention time of paraffinic peak trailing is 1, 
but the latter is not shown.)

Fig. 1 The chromatographic data. The segments between the dashed 
lines denote the C10 fractions.
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Where xpa,h is the retention time of paraffinic peak head-
ing and xpa,t is the retention time of paraffinic peak trailing 
xn,m .

The normalization balanced the retention time drifts 
to such extent that some of the coherent data points can 
be grouped manually without any further ado. The trans-
formed data set is only one dimensional, there is no clear 
pattern in time shifts, and coherent data points seem 
to be similar to clusters where the variance needs to be 
minimized. All the above-mentioned facts led us to use 
k-means for the retention time alignment.

2.2 Modified K-means algorithm
K-means is a well-known clustering algorithm which par-
titions data into clusters based on the distance from each 
data point to different centroids. The algorithm requires 
the number of maximum iterations, the initial centroids, 
and the number of clusters. The standard algorithm can be 
described in three steps [3]:

1. Initialization: initialization of the centroids ( μ j ) (usu-
ally random data points from the data set) according 
to Eq. (2).

� �j p p i px x x i k i j1 1
1� � � � � �� �: , , ,X  (2)

2. Assignment: each data point is assigned to the near-
est cluster according to squared Euclidean distances 
(t denotes the iteration step).
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3. Update: calculating the centroids for the next itera-
tion based on the data assigned to each cluster.
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The proposed algorithm (Fig. 3) terminates when the 
number of maximum iterations is reached (or the cluster 
centers do not change significantly), otherwise it iterates 
back to step 2.

In real world applications the maximum size of the clus-
ters, or must-link/cannot-link constraints (data points that 
should or should not be grouped together) are available as 
background knowledge. A modified k-means algorithm 
which can handle the maximum cluster size problem is 
published in [4]. However, if data points were to be elim-
inated from clusters in order to satisfy the constraint, an 
iteration will be used constructed in which the algorithm 
rather finds the nearest center to the points, than assign 
the nearest points to the center. This way a point could be 
assigned to a wrong cluster and the size of the cluster could 
reach the maximum, so another point which is closer to the 
cluster center will forced to be assigned to another cluster. 
A modified k-means algorithm with must-link/cannot-link 
constraint is published in [4], however in this study we pro-
vide a detailed approach from an engineering point of view.

In the proposed algorithm the assignment step is com-
plemented (Fig. 3), so it can handle both constraints in an 
inner iteration. If there is a maximum cluster size con-
straint and | cj | denotes the size of the jth cluster and ζj 
denotes the maximum size of the jth cluster, than an extra 
constraint is has to be satisfied: | cj | ≤ ζj. The maximum 
cluster size is guaranteed as follows:

1. each data points are assigned to the nearest cluster 
according to squared Euclidean distances;

2. sort the assigned points for each cluster in ascending 
order according to the distances;

3. from 1 to maximum cluster size the assigned points 
remain in the clusters (or less if there are not as many 
assigned points), the others are saved for the next 
iteration;

4. the clusters that reached their capacity do not take 
part in the next iteration; 

5. back to step 1 until all the data points are assigned 
to a cluster.

Fig. 2 The retention times of C10 fractions from all chromatograms 
before (a) and after (b) the normalization
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The fulfilment of cannot-link constraint is divided into 
two parts. The first one: in every (inner) iteration step the 
currently assigned points (for each cluster) do not vio-
late the constraint. If there is a constraint violation, only 
the nearest data point to the cluster center remains in the 
cluster from those that should not be linked, the others 
are saved for the next iteration.  Hence, it is needed to be 
executed after sorting the points according to distances. 
In practice, the constraint violations are detected through 
an additional property. This means that a number is 
assigned to each data point (based on their original chro-
matogram) as a property, and two points cannot be linked 
if the same number is assigned to them. The second part 
of the cannot-link constraint fulfilment is the inspection of 
clusters created in the previous iterations. Those clusters 
need to be identified to which the current individual data 
points should not be assigned, and to ensure that such data 
points will stay out of the clusters. The constraint viola-
tions are detected in the same way as previously based on 
the additional property. To ensure to avoid the violation, if 
a data point should not be assigned to a cluster, the number 
which represents its distance from the cluster center will 
be replaced by an infinite number. Hence, it is needed to 
be executed from the second iteration step before sorting 
the points according to distances. A simplified flow chart 
of the algorithm is shown in Fig. 3.

2.3 Determining the optimal number of clusters and 
initial cluster centroids
The determination of the number of the clusters is essential 
but the appropriate method varies from task to task. In this 
section a proper method is provided when the algorithm is 
applied to processing GC data obtained by analysis of hydro-
carbon products. The number of the clusters is determined 
by the investigation of segments from the current segment 
group (subtask), and it is equal to the maximum number of 
peaks in one segment (this segment is denoted as S0 ). This 
is the minimum number of the clusters, but later it can be 
increased based on the cluster variances to avoid that dif-
ferent chemical substances are grouped together. The ini-
tial centroids are the normalized retention times from S0 . 
The reason why the number of clusters should be increased 
is that any segment from the current segment group could 
contain a data point, which is not equivalent to any data 
points from S0 (this data point is a chemical substance which 
is not present in S0 ). After the clustering, the outlier clusters 
are determined according to their variances (Grubbs's test 
was utilized). If there is at least one outlier cluster, the clus-
tering has to be performed again with an additional cluster. 
In this case the initial centroids are the centroids which were 
determined in the previous clustering iteration and an addi-
tional random data point from the outlier cluster or clusters. 
The clustering is repeated until no outlier cluster is detected.

Fig. 3 Simplified flow chart of modified k-means algorithm
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3 Results
In this section the method is tested on chromatograms 
obtained by the analysis of pyrolysis products of real 
waste plastics in different sample states. In our case, the 
maximum size of the clusters is 7 as the data set con-
tains 7 different chromatograms. Additionally, we defined 
a cannot-link constraint because the data points (chro-
matographic peaks) from the same chromatogram cannot 
be in one cluster. Fig. 4 is similar to Fig. 2 (b), but normal-
ization was performed for all subtasks (segment groups). 
Fig. 4 confirms the statement that the normalization bal-
anced the retention time-drifts such an extent that the 
modified k-means algorithm can be applied.

As the chromatograms are divided by the reference 
points (as described in Section 4), clustering was per-
formed for each segment group separately along the nor-
malized retention time. Hence, data points with the same y 
coordinate from Fig. 4 (except data points with x = 0 coor-
dinate) can take part in the clustering at the same time.

The results are shown in Fig. 5, the clusters are circled 
and marked with colors as well, and the width of the clus-
ter is proportional to the cluster variance. Higher variance 
clusters were formed in fractions with fewer peaks i.e.: in 
C7–C8 and C35+ fractions. Fig. 5 shows that the developed 
algorithm partitioned the data points effectively and can 
handle the overlapping.

In Fig. 6 the alignment of the C10 fractions is shown. 
Hence the clustering was performed in one dimension 
(normalized retention time), the height of the peaks is 
not important so their value in the figure is one. In this 
subtask, 107 chromatographic peaks were grouped into 
22 clusters, meaning there are 22 different chemical sub-
stances within the C10 fraction were formed during the 
experiment. In total, 382 clusters were determined, i.e. 
382 individual components are detected. 49% of the clus-
ters contain seven peaks, which means that the presence of 
almost half of the components continuously presented in 
the product mixture during the experiment.

As it is shown in Fig. 7 (a), 11% have one, 8% have two 
and 8% of the clusters have three elements. Hence, the pres-
ence of 27% of the components is temporary in terms of the 
sample states, the presence of the rest of the components 
(24%) is permanent. The pie charts in Fig. 7 (b) shows the 
distribution of cluster sizes along the measurements. Since 
the heights of the peaks were not constrained, every cluster 
took part in the investigation. Through this analysis the nois-
iest chromatograms can be detected and marked as outliers.

Fig. 4 The normalized retention times for all chromatographic data, 
y coordinate denotes the fractions

Fig. 5 The resulted clusters, i.e. the components in the pyrolysis 
product. The individual clusters are circled and marked with different 

colors as well

Fig. 6 The alignment of peaks in C10 fraction from seven different 
chromatograms (different sample states)
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The outliers are the first, fourth and fifth chromato-
grams as the proportion of small sized clusters is the 
highest in these chromatograms. The proportion of clus-
ters with one or two elements is 52% in the fourth chro-
matogram, and this proportion is significant in case of the 
first (37%) and fifth (30%) chromatogram. Based on the 
above-mentioned facts, the proposed method is suitable 
for analyzing the chromatograms and determines the out-
liers, hence the experiments can be repeated considering 
the results to avoid the outlier samples.

The corrected retention times belonging to the elements 
of the individual clusters are equal to the cluster centroids. 
In this case the connection between the peaks in the chro-
matograms is a clear bijective function. Therefore, the 
retention time drifts have been eliminated and the chro-
matograms have become comparable as it is shown in 
Fig. 8. The retention time is a characteristic parameter in 
qualitative analysis. Ideally, peaks with the same retention 
time denote the same molecule. However, the peak area 
under the curve is proportional to the concentration. Fig. 8 
is an example for the visualization of chemical changes 
during the pyrolysis process. Points with the same coor-
dinates denote the same molecules and their colors are 
applied to mark their concentration in the sample.

4 Conclusion
In special cases such as chromatograms, the developed 
algorithm is appropriate for the alignment of time series. 
The main criterion for the application is that the time series 
have reference points. Based on the properties of segments 
between these reference points, the number of clusters 
can be determined and, in an iteration, can be corrected 
based on the cluster variances. The main advantages of the 
developed algorithm compared to other methods are that 
no target chromatogram is needed, and the result is not 
influenced by any user chosen parameters. The method 
was tested in the analysis of the chromatographic data 
coming from thermo-catalytic pyrolysis of waste plas-
tics. The results showed that with proper pre-processing 
of the data the developed algorithm is appropriate for han-
dling the retention time drifts and can assign to each other 
to become traceable how the component concentrations 
changing in time.
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Fig. 7 (a) The distribution of cluster sizes along the overall data (b)–(h) The distribution of the individual cluster sizes 1–7 along the measurements
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