
Cite this article as: Ruiz-Santoyo, V., Andrade-Espinoza, B. A., Romero-Toledo, R., Anaya-Esparza, L. M., Villagrán, Z., Guerra-Contreras, A. 
"Use  of Nanostructured Photocatalysts for Dye Degradation: A Review", Periodica Polytechnica Chemical Engineering, 66(3), pp.  367–393, 2022.  
https://doi.org/10.3311/PPch.18885

https://doi.org/10.3311/PPch.18885
Creative Commons Attribution b |367

Periodica Polytechnica Chemical Engineering, 66(3), pp. 367–393, 2022

Use of Nanostructured Photocatalysts for Dye Degradation: 
A Review

Victor Ruiz-Santoyo1*, Beatriz A. Andrade-Espinoza2, Rafael Romero-Toledo1,3,  
Luis M. Anaya-Esparza4, Zuamí Villagrán5, Antonio Guerra-Contreras6

1 Engineering Department, Division of Agricultural Sciences and Engineering, University Center of Los Altos, University of 
Guadalajara, Av. Rafael Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico

2 Department of Clinics, Division of Biomedical Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael 
Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico

3 Chemical Engineering Department, Division of Natural and Exact Sciences, University of Guanajuato, Lascuráin de Retana No. 5, 
36000 Guanajuato, Mexico

4 Department of Livestock and Agricultural Sciences, Division of Agricultural Sciences and Engineering, University Center of Los 
Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico

5 Department of Health Sciences, Division of Biomedical Sciences, University Center of Los Altos, University of Guadalajara, 
Av. Rafael Casillas Aceves 1200, 47600 Tepatitlán de Morelos, Mexico

6 Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Lascuráin de Retana No. 5, 
36000 Guanajuato, Mexico

* Corresponding author, e-mail: victor.ruiz8959@alumnos.udg.mx

Received: 05 July 2021, Accepted: 30 September 2021, Published online: 29 March 2022

Abstract

Among the technologies proposed for wastewater treatment, the Advanced Oxidation Processes are viable and technological strategies 

for dyes degradation. Different photocatalytic systems classified in metal oxides alone or combined through hybrid composites or 

immobilized onto supports have been designed in various nanostructured shapes for their application in the photodegradation of 

polluting dyes. This review aims to describe the dyes as an environmental threat, photocatalysis as an effective process to remove 

dyes from water and provide an overview of the recent studies using photocatalytic systems grouped according to their development. 

Furthermore, this review describes the main parameters of a photocatalytic system with an important role in dye photodegradation. 

Finally, we discuss the limitations of photocatalysis for real industrial applications and the challenges for this environmental 

nanotechnology.
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1 Introduction
The use of natural dye for textile dyeing has been prac-
ticed for 5,000 years ago. On the other hand, the discovery 
and application of synthetic dyes begun in the 19th century 
by displacing the use of natural dye. Nowadays, the global 
colorant market is about 32 billion USD and is projected to 
increase to around 42 billion USD by 2021 [1]. Synthetic 
dyes present advantages compared to natural dyes because 
of their lower prices, repeatability, and wide range of 
bright shades with considerably improved color fastness 
properties [2]. Dyes are colorful substances designed to 
give a hue to any colorable materials, and this is possible 
as dyes can attach themselves to any amenable materials. 
Moreover, dyes are composed of a group of atoms known 

as chromophores, responsible for the dye color. Dyes are 
sorted according to their application and chemical struc-
ture and are classified as acid, basic, direct, mordant, and 
reactive dyes, which are examples of soluble dyes, whereas 
azo, disperse, sulphur and vat dyes are an example of insol-
uble dyes [3]. The azo dyes kind, molecules with one or 
more azo (N=N) bridges linking substituted aromatic 
structures, represent a 70% of the global production and 
are the most frequently utilized dyes [4]. Unfortunately, the 
dye industry dramatically contributes to global pollution, 
generating consequences to the ground and water due to its 
toxic, carcinogenic, and xenobiotic repercussions. On the 
other hand, researchers have proposed using the Advanced 
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Oxidation Processes (AOP's) as an attractive technology 
for removing a wide range of emerging contaminants. 
The AOP's involve the in-situ production of highly reactive 
oxygen species such as hydroxyl radicals (OH•) and super-
oxide anion radicals (O

2

�� ) with oxidation potentials of 2.7 
and −2.3 eV, respectively. These species can be initiated by 
primary oxidants ( e.g., H2O2 , O3 ), energy sources (e.g., UV 
light, ultrasonic, and heat), or catalysts ( e.g., TiO2 , ZnO, 
and ZrO2 ) [5]. Among AOP's, photocatalysis is a viable 
alternative process to remove the emerging contaminants 
at standard temperature and pressure (STP) conditions by 
oxidation reactions. As mentioned, a huge variety of nano-
materials with photocatalytic activities have been used in 
environmental remediation because they propose using 
solar energy to promote photoreaction, making the pro-
cess cheaper and environmentally friendly. Moreover, the 
favorable combination of electronic structure, light absorp-
tion properties, charge transport characteristics, improved 
textural proprieties, excited lifetimes, and versatility in 
shapes and sizes of metal oxides has made them possible 
for their application in photocatalysts [6]. Therefore, this 
review compiles the information of current photocata-
lytic systems based on mixed oxide nanoparticles used to 
degrade water dyes. In addition, scientific aspects were dis-
cussed, some social concerns and current trends of photo-
catalysis are also described.

2 Dyes and their environmental impact
Nowadays, it is estimated that 700,000 tons of vari-
ous colouring from about 100,000 commercially acces-
sible dyes are manufactured each year [7]. Nevertheless, 
between 10% and 15% of the synthetic dyes are lost during 
different textile industries processes [4]. Moreover, about 
40,000–50,000 tons of dyes are discharged in water bod-
ies from natural or anthropogenic means [8]. The azo dyes 
are considered one of the most difficult compounds to be 
removed and degraded from aqueous systems; thereby, the 
public demand for color-free discharge has rendered decol-
orization of wastewater is a priority [9]. During the dye-
ing processes, not all dyes that are applied to the fabrics 
are fixed on them, and usually, a portion of these dyes that 
remains unfixed to the fabrics and gets washed out, this 
amount of generated textile wastewater can reach more than 
300 L kg−1 of product [10]. These unfixed dyes are found to 
be in high concentrations in textile effluents, and the com-
position of the wastewater will depend on the different 
organic-based compounds and the dyes used in the dry and 
wet-processing steps. Moreover, textile wastewaters can 

generate fluctuations in parameters such as chemical oxy-
gen demand (COD), total organic carbon (TOC), biochem-
ical oxygen demand (BOD), pH, flavor, colour, and odor 
when are released in aquifers [11]. The releasing of dye 
effluents into aquifers is undesirable due to the high impact 
on photosynthesis of aquatic organisms, and the carcino-
genic nature and mutagenicity of many of these dyes and 
their breakdown products [11]. One of the main concerns is 
reducing the penetration of light when dyes are dissolved 
in water, which can cause an alteration of the photosyn-
thetic activity and thus modify the natural balance of flora 
and fauna. Furthermore, these effluents can pass through 
soil layers and may contaminate nearby surface and under-
ground water. For human health affectations, the dermal 
exposure of the dye precursors leads to bladder cancer, 
since as dyes contain aromatic amines, they can generate 
damage in the DNA of cells, leading to the risk of cancer 
disease. Moreover, dyes can promote other human health 
problems such as allergies, urticaria, angioedema, hyper-
activity, ocular irritability, aggressiveness and learning 
impairment related to intake of dye [12].

3 Photocatalysis
Photocatalysis was proposed in 1972 by Fujishima and 
Honda [13]; they discovered that TiO2 decomposes water 
into hydrogen and oxygen under light irradiation. In this 
context, photocatalysis is the acceleration of a reaction 
using a catalyst in light presence with an adequate wave-
length. To carry out a photocatalytic process, the inci-
dent light on the catalyst should supply energy equal to or 
greater than the semiconductor band gap value (eV). This 
energy can be calculated using Eq. (1):

Eg eV nm� � � � �� �1239 9. ,�  (1)

where λ is the wavelength value, for example, if a semi-
conductor has a band gap of 3.0 eV, the incident wave-
length value on photocatalyst should be equal to or under 
413.3 nm to photo-excite the electrons from the valence 
band ( VB ) to the conduction band ( CB ). Therefore, an 
electron belonging to VB is excited to the CB , giving as a 
result a pair of species, a hole (h+) in the VB and an elec-
tron (e−) in the CB [14], Fig. 1 and Eq. (2). The recombi-
nation of e− and h+ carriers must be prevented to promote 
the photocatalytic reaction. The excited electrons that are 
now in CB ( eCB

− ) react with oxygen ( O2 ) to produce super-
oxide radicals (O

2

�� ) which degrade pollutants in water 
(H2O) and carbon dioxide ( CO2 ), Eqs. (3) and (4). On the 
other hand, the water oxidation reaction takes place in the 
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positive hole in valance balance ( hVB
+ ) generating hydroxyl 

radicals (OH•) and hydrogen ions (H+) to degrade pollut-
ants in water (H2O) and carbon dioxide ( CO2 ) as well, 
Eqs. (5) and (6) [15]. In a typical photocatalysis process, 
two different reactions occur; an oxidation reaction due to 
photo-induced positive holes and a reduction reaction due 
to photo-induced negative electrons [16]. Furthermore, 
the oxidation potentials of hydroxyl (OH•) and superoxide 
radical (O

2

�� ) are 2.7 and −2.3 eV respectively, whereas 
the oxidation potential of organic molecules ranged from 
−1 to 2 eV but, due to the difference in potential between 
the reactive oxygen species and the pollutant molecules, 
an organic pollutant molecule in contact with the hydroxyl 
(OH•) or superoxide radical (O

2

�� ) will either gain or lose 
electrons immediately through chain reactions resulting 
in the mineralization of the organic molecules forming 
CO2 and H2O as innocuous products.

catalyst excitation� � � � �� �hv CB VBe h  (2)

O O O reduction
2 2 2
� � � �� ��
eCB  (3)

O pollutant H O CO
2 2 2

�� � � �  (4)

H O OH H OH oxidation
2

� � � � �� � ��
hVB  (5)

OH pollutant H O CO
� � � �

2 2
 (6)

The most important characteristics of a photocatalytic 
system are the morphology, high surface area, thermal and 
mechanical stability, reusability, active sites, and desired 
band gap [17]. According to Molinari et al. [18], photoca-
talysis offers some advantages: 

1. It avoids the application of hazardous heavy metal 
compounds and oxidants/reducing agents.

2. It permits the mineralization of the pollutants with 
the generation of safer by-products as H2O and CO2 .

3. It is an alternative to traditional high energy-de-
manding treatment methods by using solar energy as 
the energy source.

4. It degrades a moderate range of pollutant 
concentrations.

5. It can be combined with another wastewater method 
to get a better water quality

Additionally, the use of photocatalysis at industrial pro-
cesses is still restricted due to the recombination of the 
photo-generated e− and h+ carriers, which releases energy 
in unproductive heat form, fast-backward reaction, and 
the inability to utilize solar radiation energy since around 
5% of solar radiation is UV light [19].

3.1 Photocatalysts synthesis methods
Nanotechnology is defined as the ability to structure mat-
ter in atomic and molecular levels between 1–100 nm [20]. 
At this scale, materials have novel size-dependent features 
different from their larger counterparts. Nanomaterials 
have been developed in several forms, such as nanotubes, 
nanowires, flakes, particles, rods, films, quantum dots, 
and colloids [21]. Nanotechnology has opened a wide pos-
sibility field for designing nanomaterials with the objec-
tive application through manipulating synthesis con-
ditions, which allows us to design nanostructures with 
attractive features in shape, size, mechanic resistance, and 
chemistry activity [22]. The synthesis of nanomaterials 
with a defined morphology is an important key to getting 
nanostructures with desired chemical and physical prop-
erties. Moreover, the chemical activity depends not only 
on their size, shape, morphology, and phase composition, 
as well as the synthesis route [23]. This favors the prepa-
ration of nanostructured materials with desirable features, 
which enhance the catalytic activity of the photocatalyst. 
Furthermore, the power of the lamp also plays an import-
ant role with influence on the performance of the photo-
catalyst. Several nanoparticles synthesis methods have 
been reported, and each one is selected depending on the 
nanostructures application. The most common methods 
for photocatalysts synthesis are colloidal, microwave radi-
ation, sol-gel, hydrothermal, chemical vapor deposition, 
photochemistry reduction, solvothermal, electrochemi-
cal deposition process, and electrospinning [24]. Among 
these methods, the sol-gel is the most attractive way to 
synthesize photocatalysts due to low cost, reproducibility, 
high purity, synthesis time, variable control, low process 

Fig. 1 Photocatalysis general mechanism
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temperature, and homogeneity in particle size [25, 26]. 
The sol-gel method for preparing metal oxide photocata-
lysts relies on the hydrolysis and polycondensation of the 
metal alkoxides used as precursors, M(OR)x (M = Si, Ti, Zr, 
Zn, Al, Sn and Mo) to react in aqueous or organic phase.

4 Nanostructured photocatalytic systems for dye 
degradation
Throughout history, various photocatalytic systems have 
been developed to eliminate the dyes present in water. 
The development of photocatalytic materials through his-
tory can be divided into three groups: single component 
photocatalysts in suspension, heterojunction photocata-
lysts (multi-component in suspension), and immobilized 
photocatalysts, Fig. 2.

4.1 Single component photocatalysts
Elements such as TiO2 , ZnO, ZrO2 , Fe2O3 , CdS, and ZnS 
are semiconductors and can act as sensitizers for light-in-
duced redox processes due to the electronic structure 
of the metal atoms in chemical combination, which are 
characterized by an empty CB and a filled VB [27]. When 
these kinds of materials are irradiated with energy equal 
to or greater than its band gap value (eV), an e− from VB 
migrates to the CB generating an h+ behind. The h+ may 
react either with electron donors in the solution or with 
hydroxide ions to produce powerful oxidizing species like 
superoxide radicals (O

2

�� ) and hydroxyl (OH•) radicals. 
Nevertheless, the recombination process of the e− and h+ 
carriers must be avoided to favor the photocatalysis reac-
tion. TiO2 was the first material used and investigated for 
the water-splitting reaction. Years later, its application 
increased to other fields like H2 production, water, and air 

pollutant oxidation, antibacterial activity, and solar cells 
development. However, due to its large band gap (3.2 eV 
for anatase and 3.0 eV for rutile), it only can operate under 
UV light irradiation. Indeed, the anatase phase of TiO2 
is preferred catalytic reactions due to its conferred fea-
tures by its crystallinity nature [28]. In this context, other 
metal oxides with a wide use for photocatalytic purposes 
are ZnO and ZrO2 . The ZnO can present the crystalline 
phases type wurtzite, zinc blende, or rock salt. Moreover, 
the ZnO is seen as the substitute for TiO2 and is consid-
ered as an efficient and promising candidate in environ-
mental management systems because of its unique charac-
teristics, such as direct and wide band gap in the near-UV 
spectral region, strong oxidation ability, suitable photocat-
alytic property, and a large free-exciton binding energy 
so that excitonic emission processes can persist at or even 
above room temperature [29]. For its part, the ZrO2 can 
present the cubic, tetragonal, or monoclinic crystal struc-
ture (eV = 3.25–5.1 eV, depending on the preparation 
technique), and it belongs to the group of semiconductor 
materials. In this context, it has been reported that ZrO2 
can cause higher photocatalytic degradation than nano 
TiO2 [30]. Moreover, the manipulation of ZrO2 morpho-
logical tuning, porous structure control, and crystallinity 
development is required to enhance the light-harvesting 
capability, prolong the lifetime of photoinduced elec-
tron-hole pairs, and facilitate the reactant accessibility to 
surface active sites [31]. Fig. 3 shows the band gap of com-
mon semiconductors, while Table 1 [31–44] shows repre-
sentative first group photocatalysts.

This first group of metal oxides including the  
TiO2 [32–37], ZrO2 [31, 38, 39], and ZnO [40–44] exhib-
ited good physical features like thermal and mechanical 

  (a)              (b)   (c)

Fig. 2 Classification of the photocatalysts according to their development, (a) First group, (b) Second group, (c) Third group
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stability, low toxicity and cost of production, reusability, 
and easy reactivation. However, their main drawback is 
their wide band gap value from 3 to 5 eV and the recom-
bination process that present, by affecting the production 
of the e− and h+ carriers. Therefore, a new group of photo-
catalysts with superior features of coupled nanomaterials 
was developed, which are based in heterojunctions.

4.2 Heterojunction photocatalysts
To enhance the visible light absorption efficiency of the 
photocatalyst, the electronic structure of the nanomate-
rial needs to be modified [45]. Methods such as doping, 
metal loading, and heterojunctions have been used to effi-
ciently separate the photogenerated e− and h+ carriers in 

Fig. 3 Band gap of semiconductors (eV) versus Normal Hydrogen 
Electrode

Table 1 TiO2 , ZrO2 and ZnO applied for the dye removal

No Photocatalyst Synthesis Method Morphology Size 
(nm)

Band gap 
(eV) Light Dye Time

(min)
Degradation

(%) Ref.

1 TiO2 Degussa P-25 - 30 3.0 UV Methyl red 60 75 [32]

2 TiO2 Degussa P-25 - 30 3.0 UV Congo red 120 95 [32]

3 TiO2 Degussa P-25 - 30 3.0 UV Methyl blue 120 98 [32]

4 TiO2 Hydrolysis of TiCl4 Irregular 6.5 3.6 UV Methylene blue 120 85 [33]

5 TiO2 Hydrolysis of TiCl4 Irregular 6.5 3.6 UV Congo red 80 99.7 [33]

6 TiO2 P-25 Hydrothermal - 32 3.2 UV Violet 26 60 93 [34]

7 TiO2 P-25 Hydrothermal Irregular 30 3.0 UV Methylene blue 30 95 [35]

8 TiO2 P-25 Hydrothermal Irregular 30 3.0 UV Methyl Orange 30 70 [35]

9 Core-shell 
structured TiO2

One-step hydrogen 
treatment Core-shell 30–40 3.0 Vis Methylene blue 150 96 [36]

10 TiO2 Hydrothermal Cube 80–100 3.3 UV Acetate Red X3B 30 98 [37]

11 ZrO2 Electrochemical - - - UV Methyl orange 60 80 [38]

12 ZrO2 Electrochemical - - - UV Methylene blue 60 92 [38]

13 ZrO2 Electrochemical - - - UV Congo red 60 87 [38]

14 ZrO2 Electrochemical - - - UV Malachite green 60 100 [38]

15 ZrO2 
monoclinic Precipitation Semiglobular 34 3.25 UV Methyl Orange 110 99 [31]

16 ZrO2 tetragonal Precipitation Semiglobular 17 3.58 UV Methyl Orange 110 90 [31]

17 ZrO2 cubic Hydrothermal Semiglobular 20 4.33 UV Methyl Orange 110 80 [31]

18 ZrO2-Zeolite Sol-gel method and 
precipitation Semispherical 40.8 - UV Methyl Orange 80 100 [39]

19 ZnO Hydrothermal - - 3.3 UV Violet 26 60 90.1 [34]

20 ZnO Co-precipitation Slit platelets 550 - UV Reactive Blue 19 360 100 [40]

21 ZnO Co-precipitation Slit platelets 550 - UV Reactive blue 21 360 91 [40]

22 ZnO Ultrasonication Semiglobular 17.5 3.25 Sunlight Methylene blue 120 89.7 [41]

23 ZnO Calcination Irregular 10 - UV Malachite green 150 98.5 [42]

24 ZnO Precipitation and 
ultrasound Spherical 50 - UV Reactive blue 203 20 85.4 [43]

25 ZnO Sol-gel Rod-like 22–50 3.37 UV Methyl orange 30 99.7 [44]

26 ZnO Sol-gel Rode-like 22–50 3.37 UV Congo red 30 92.1 [44]

27 ZnO Sol-gel Rode-like 22–50 3.37 UV Direct black 38 30 99.45 [44]
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a photocatalytic semiconductor. The created electronic 
structure of the new photocatalyst could decrease the 
recombination of the carriers due to the creation of new 
energy levels by trapping the electrons by reducing the 
recombination of the charge carries (Fig. 4 (b)) [46]. A 
heterojunction is the creation of an interface between two 
different semiconductors with unequal band gap struc-
ture, resulting in band alignments. In this sense, different 
classes of heterojunctions have been reported:

1. semiconductor–semiconductor,
2. semiconductor–metal,
3. semiconductor–carbon, and
4. multicomponent heterojunction [47].

The principal requirement to create a heterojunction, is 
that semiconductors should exhibit dissimilar band gaps, 
and the narrow band gap must lie in the visible region. 
In addition, in the direct band gap, the highest energy level 
of the VB aligns with the lowest energy level of the CB to 
momentum [48], hence direct band gap is preferred over 
the indirect band gap. There are three types of conventional 
heterojunction photocatalysts, those with a straddling gap 
(type-I, Fig. 4 (a)), with a staggering gap (type-II, Fig. 4(b)), 
and with a broken gap (type-III, Fig. 4 (c)), [49, 50].

In the type-I heterojunction, the CB and the VB of semi-
conductor A are higher and lower than those correspond-
ing of the semiconductor B. In other words, the band gap 
of one semiconductor B is insideof the band gap of the A 
semiconductor. When the photocatalyst is irradiated with 

the appropriate energy, the e− and h+ carriers from semi-
conductor A migrate and are caught by the CB and VB of 
semiconductor B. Since e− and h+ carriers are caught on the 
same semiconductor, the charge carriers cannot be effec-
tively separated. In the type-II heterojunction, the CB and 
the VB levels of semiconductor A are higher than the corre-
sponding CB and VB of semiconductor B. Therefore, under 
light irradiation, the photogenerated electrons from A will 
migrate to CB of semiconductor B, while the photogenerated 
holes from semiconductor B will migrate to VB of semi-
conductor A. In both cases, the redox ability will be also 
considerably reduced because the redox reaction occurs 
on semiconductor with the lowest redox potential. In the 
type-III heterojunction, the CB and VB of semiconductor A 
are higher than the CB of semiconductor B, and the band 
gaps do not overlap. The carrier transfer is like type-II, 
just more pronounced. For this case, the e− and h+ carriers 
migration and separation between the two semiconductors 
cannot be carried out, making it unsuitable for enhancing 
the separation of the e− and h+ carriers [51]. From the three 
cases, the type-II heterojunction looks to be the most pho-
toactive heterojunction due to its suitable electronic struc-
ture for the spatial separation of the photoinduced e− and h+ 
carriers. Moreover, type-II heterojunction photocatalysts 
exhibit good e− and h+ carriers separation efficiency, fast 
mass transfer and absorbance of light in the visible region 
with a band gap values under 2.8 eV [52]. In this sense, 
Prabhu et al. [53] synthesized djembe like ZnO micro-
structures by surfactant-assisted hydrothermal method, 

     (a)     (b)   (c)

Fig. 4 The three conventional heterojunction types, (a) type-I, (b) type-II and (c) type-III. Adapted from [49].
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and its composite with graphitic carbon nitride ( g-C3N4 ) 
was prepared by ethanolic reflux method for the first time. 
The nanostructures were studied in the photodegradation 
of methlyne blue (MB) and rhodamine B (RhB). According 
to optical studies, the VB potential and CB potential were 
calculated as 2.83 eV and –0.64 eV for ZnO and 1.62 eV 
and –1.15 eV for g-C3N4 . Due to the distinct positions of the 
VB and CB potentials between ZnO and g-C3N4 , a type-II 
heterojunction was formed. The authors also mentioned 
that the heterojunction formed between djembe like ZnO 
and g-C3N4 decreased the optical band gap energy due to 
the light absorption was shifted towards the visible region. 
The degradation efficiency of the ZnO / g-C3N4 composite 
for MB and RhB degradation was found to be ~95% and 
~97%, respectively, compared to the pure ZnO and g-C3N4 . 
The authors proposed a possible visible-light-driven pho-
tocatalytic mechanism at the interface of ZnO / g-C3N4 het-
erojunction (Fig. 5, [53]). Pure ZnO semiconductor can-
not be excited due to its wide bandgap (3.17 eV); only the 
g-C3N4 is excited by visible light to generate e− and h+ car-
riers. Since the CB edge potential (–1.15 eV) of g-C3N4 is 
more negative than that of ZnO (–0.64 eV), the photoex-
cited electrons in the CB of g-C3N4 are transferred to the 
CB of ZnO and then to the surface of the photocatalyst, by 
enhancing their photocatalytic properties.

Additionally, Ramezanalizadeh et al. [54] pre-
pared through a sol-gel hydrothermal approach a novel 
CoTiO3 / CuBi2O4 heterojunction semiconductor photocata-
lyst for the degradation of Direct Red 16 dye under LED 
visible light irradiation. According to the authors, com-
pared to the pure CoTiO3 and CuBi2O4 , CoTiO3 / CuBi2O4 
heterojunction showed the highest photodegradation effi-
ciency. Based on the obtained results, the CoTiO3 / CuBi2O4 

heterojunction nanocomposites showed the highest removal 
efficiency (91%) in pH 4.3 solutions and at a loading of 
5 g/L. This effect was attributed to the efficient separation 
of electron-hole pairs, compatible junction formation, vis-
ible light absorption ability, suitable band gap, and a large 
amount of light-harvesting. Moreover, according to the 
scavenger experiments, the pH played a major role during 
photocatalytic activity. Similarly, Chen et al. [55] prepared 
a photocatalyst of TiO2 grown in situ on the surface of car-
bon nanotubes (CNT) for the photocatalytic degradation of 
Rhodamine B (Rh-B) under simulated sunlight synthesized 
by the sol-gel reflux method. The degradation efficiency of 
CNT-TiO2 for Rh-B was 50% higher than pure TiO2 , and 
the addition of CNT increased the specific surface area, 
optical support, dispersibility, and uniformity of the syn-
thetic material of the TiO2 nanoparticles. The authors con-
cluded that the n-n heterojunction structure was beneficial 
to accelerate the e− and h+ carriers migration and improved 
the photocatalytic performance of the composite. In this 
study, the authors propossed that under the radiation of sim-
ulated sunlight, photoexcited electrons from TiO2 CB were 
transferred to the CNT structure, reducing the recombina-
tion process of the e− and h+ carrieres.

4.3 The p–n heterojunctions
Although the heterojunction type-II seems to be the most 
effective way to avoid the recombination process due to 
the entrapment of photogenerated e− and h+ carriers, it is 
not effective enough to avoid the fast recombination pro-
cess. Hence, the p-n-type heterojunction model was pro-
posed to explain the accelerated migration of photogene-
rated species through a generated electric field in the 
interface between p-type and n-type semiconductors by 
suppressing the recombination process [56]. A p–n junc-
tion is the interaction between two types of semiconduc-
tors photocatalytic materials (p-type and n-type) inside a 
single crystal of photocatalyst. The p-type semiconductor 
contains an excess of holes, and the n-type semiconductor 
contains an excess of electrons. Therefore, during irradia-
tion, when electrons and holes are photo-created, the elec-
trons of CB from p-type semiconductor near of interface 
undergo diffusion towards CB of n-type (positive field) and 
then reacted with O2 adsorbed on the surface to produce 
reactive O

2

�� . At the same time, the holes from the VB of 
n-type semiconductor near interface tend to flow towards 
VB of p-type (negative field) semiconductor, establishing 
the p-n junction (Fig. 6) [57].

Fig. 5 Schematic representation of the photocatalytic mechanism over 
ZnO / g-C3N4 heterojunction. Adapted from [53].
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The electron-hole transfer between n-type and p-type 
semiconductors is known as diffusion, and it will con-
tinue until the system's equilibrium state (e.g., Fermi 
level), reducing the recombination of the photogene-
rated charge carriers by the internal electric field at the 
p-n junction [58]. Moreover, the systems of p-n junc-
tions are designed for operation under visible light, one 
of the goals of modern photocatalysis. Recently, Habibi-
Yangjeh et al. [59] prepared ZnO / ZnBi2O4 ( containing 
5, 10, 20, and 30 wt% of ZnBi2O4 ) nanocomposites with 
p-n heterojunction fabricated by integrating ZnO with 
ZnBi2O4 nanoparticles via a calcination process for the 
photodegradation of RhB. The ZnO / ZnBi2O4 nanocom-
posites exhibited superior photocatalytic performance for 
the photodegradation of the organic dye under visible light 
compared with the pure ZnO and ZnBi2O4 . The composite 
ZnO / ZnBi2O4 with 10 wt% achieved a photodegradation 
of 97% of the RhB dye after 240 min, whereas the pristine 
ZnO and ZnBi2O4 decomposed 28% and 39% of the RhB 
solution after 360 min, respectively. This enhancement 
can be ascribed to the efficient charge carrier separation 
through the heterojunction structure, which inhibits the 
recombination of photoinduced charges. The authors men-
tioned that an inner electrostatic field directed from ZnO 
to ZnBi2O4 was produced; moreover, in the presence of 
visible-light illumination, only ZnBi2O4 is excited, and the 
e− and h+ carriers are produced because of its narrow band 
gap. After the p-n heterojunction formation, the CB level 
of ZnBi2O4 is more negative than that of ZnO. Hence, the 
excited electrons can inject into the CB of ZnO, promoted 
by the inner electrostatic field, while holes remain in the 
VB of ZnBi2O4 . Therefore, the photogenerated charge car-
riers can be separated effectively by the formed inner field 
of p-n heterojunction reducing the recombination of the 
e− and h+ carriers in the photocatalyst. In another work, 

Sang et al. [60] reported the synthesis of heterostructured 
Bi2O3 / Bi2S3 nanoflowers (1 to 2 µm of diameter) fabri-
cated by a one-step hydrothermal method to remove of 
RhB and Cr(VI). The results of photocatalysis showed that 
removal efficiencies of RhB (99.7%) and Cr(VI) (91.8%) 
over Bi2O3 / Bi2S3 heterojunction were higher than those of 
pure Bi2O3 and Bi2S3 (< 50% of removal) under visible light 
irradiation after 90 min of reaction. The improved photo-
catalytic performance of the Bi2O3 / Bi2S3 heterojunctions 
was associated with the combination between components 
and their specific surface areas (46.3 m2g−1, 10.1 m2g−1 and 
12.6 m2g−1, respectively. Moreover, according to the radi-
cal trapping experiments, the photogenerated h+ were the 
major oxidative species for removing RhB, while the pho-
togenerated e− were responsible for the photoreduction 
of Cr(VI). Authors argued that the excited e− on the CB 
of p-type Bi2S3 moves to n-type Bi2O3 , while the photo-
generated h+ still stays in the VB of p-type Bi2S3 . In the 
Bi2O3 / Bi2S3 photocatalytic system, the e− and h+ carriers 
are involved in the redox reaction. Therefore, for the sys-
tem of Cr(VI) solution, the e− provided by the CB of n-type 
Bi2O3 is being effectively consumed by Cr(VI), which 
is a strong oxidant. On the other hand, the h+ stayed on 
the VB of Bi2S3 would oxidize the RhB molecules directly 
(Fig. 7); hence the h+ is the predominant radicals, which 
oxide RhB to simpler molecules.

For its part, Lu et al. [61] prepared a series of BiOI / KTaO3 
p–n heterojunctions via a facile in situ chemical bath strat-
egy for the degradation of Rhodamine B (RhB) under visi-
ble light irradiation. As a result, the BiOI / KTaO3 compos-
ites showed higher photocatalytic efficiency compared to 
the individual catalysts. In particular, 54 wt% BiOI / KTaO3 

Fig. 6 Schematic diagram illustrating the formation and operation of 
the p–n junction (Adapted from [57])

Fig. 7 Proposed mechanism for separation and transfer process of 
photogenerated carriers in the Bi2O3 / Bi2S3 . Adapted from [60].
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degraded 98.6% RhB within 30 minutes withouth affect-
ing its removal properties up to 3 cycles (91.1%), while 
only 68.1% RhB was degraded over pure BiOI. According 
to the authors, the improved photocatalytic performance 
was attributed to the successful construction of the p–n 
junction between BiOI and KTaO3 , facilitating the separa-
tion and migration of photo-induced charge carriers.

4.4 Direct Z-scheme
Yu et al. [62] proposed the concept of the direct Z-scheme 
mechanism to explain the process of the photocatalytic 
formaldehyde degradation in the TiO2 / g-C3N4 presence. 
The assembly of a direct Z-scheme photocatalyst (Fig. 8) 
looks like that of a type-II heterojunction (Fig. 4 (b)), but 
their e− and h+ charge carriers transport processes are 
somewhat different [63]. Furthermore, the direct Z-scheme 
system does not need a redox medium, and the photocarri-
ers directly transfer across the interface of both semicon-
ductors without a charge carrier intermediary. Therefore, 
the transmission distance is reduced, and the photocata-
lytic efficiency is enhanced. Under light irradiation, the 
photogenerated electrons in semiconductor A, with a lower 
reduction ability, recombine with the photogenerated holes 
in semiconductor B with a lower oxidation ability [64]. 
Thus, the photogenerated electrons in semiconductor B 
with high reduction ability and the photogenerated holes in 
semiconductor A with a high oxidation ability are kept in 
their particular sites to get the spatial separation of charge 
carriers to improve the redox capacity of the photocata-
lytic structure. In this manner, the charge-carrier migra-
tion is more promising than in type-II junction because the 
migration of electrons from the CB of semiconductor A to 
the hole-rich VB of semiconductor B is thermodynamically 
possible by the electrostatic attraction between the e− and 
h+. Direct Z-scheme offers advantages as fast e− and h+ 

carriers separation efficiency, good redox ability, corrosion 
resistance, and low fabrication cost [49, 65].

In this sense, Zhao et al. [66] prepared a Z-scheme 
heterogeneous g-C3N4 / FeOCl photocatalysts using the 
calcination method. The composite with a morphology 
of a ribbon-like sheet was used to eliminate RhB from 
water. Compared with the pure FeOCl material (60% of 
RhB removal), the Z-scheme g-C3N4 / FeOCl composites 
revealed a higher photocatalytic activity (90% of RhB 
removal) under visible light irradiationafter 60 minutes of 
reaction. The authors argued that the enhanced catalytic 
activity of the g-C3N4 / FeOCl material was attributed to 
the formation of a Z-scheme between g-C3N4 and FeOCl 
(Fig. 9). Authors explainded that when g-C3N4 / FeOCl is 
irradiated with visible ligth, the electrons from the VB of 
the g-C3N4 and FeOCl were transferred to their respective 
CB . After that, the electrons were transferred from the CB 
of FeOCl to the VB of the g-C3N4 and combined with h+. 
Then, these electrons transformed the H2O2 into the OH•. 
In this process, the H2O2 served as the electron acceptor 
which further successfully limited the recombination of 
holes and electrons. On the other hand, on the surface of 
the FeOCl material, the Fe3+ was transformed into Fe2+ 
with the presence of H2O2 and the irradiation of visible 
light; hence, the Fe2+ was easily reacted with H2O2 to gen-
erated the OH• for removing the pollutant. Due to the CB 
of the g-C3N4 was more negative than E0(O2 /O2

�� ) and the 
VB of the FeOCl was more positive than E0(OH•/OH−), the 

Fig. 8 Electron-hole separation on a direct Z-scheme photocatalysts
Fig. 9 The PF-like degradation mechanism of g-C3N4 / FeOCl composite 

under the visible light irradiation. Adapted from [66].
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electron which gathered on the CB of the g-C3N4 would 
also reduce O2 to form the 

O
2

��  and the h+ on the VB of the 
FeOCl could oxide the OH− into the OH• at the same time.

In other study, An et al. [67] prepared a core-shell 
Ag2CO3@g-C3N4 photocatalyst by two-dimensional coat-
ing nanosheet g-C3N4 on the surface of Ag2CO3 for the 
photodegradation of methyl orange (MO). According 
to the authors, the Ag2CO3@g-C3N4 (5 wt.%) composite 
exhibited the best degradation efficiency, up to 96.7% 
and 87.3% after five cycles. However, the photodegra-
dation performance was in a g-C3N4 dose-dependent 
response (from 1 wt.% to 10 wt.%). The authors mentioned 
that the photocatalytic performance was due to the fast-
er-photogenerated carrier migration efficiency derived 
from core-shell structure and chemical bond hybridiza-
tion effect arising from Ag2CO3 and g-C3N4 . Moreover, 
the excellent performance of photocatalyst was due to 
the Z-scheme structure formed by the Ag2CO3@g-C3N4 
photocatalyst, which effectively avoids the accumula-
tion of photoinduced electrons in the Ag2CO3 and inhib-
its Ag+ photoreduction, which significantly improves the 
stability of Ag2CO3 . Recently, Zhang et al. [68] reported 
a Z-scheme-based BiOI/CdS heterojunction with effi-
cient photocatalytic degradation of RhB (20 mg/L) 
under visible light. The in-situ stirring and calcin-
ing method synthesized the Z-scheme-based BiOI/CdS  
heterojunction. Three BiOI/CdS composites were pre-
pared (the mass ratio of BiOI to CdS was 60 wt.%, 80 wt.%, 
and 100 wt.%, respectively referred to as 0.6-BiOI/CdS,  
0.8-BiOI/CdS, and 1.0-BiOI/CdS). The removal efficiency 
of RhB was BiOI < CdS < 1.0-BiOI/CdS < 0.6-BiOI/CdS 
< 0.8-BiOI/CdS. Moreover, after 4 cycles, the degradation 
of the 4th experiment reached 98% of the first, indicating 
the 0.8-BiOI/CdS composites exhibited excellent stability. 
According to the authors, the free radical capture experi-
ments showed that •O was the main active substance in the 
degradation process.

4.5 The g-C3N4-based photocatalysts
The g-C3N4 is a characteristic material belonging to the 
second group of designed photocatalysts with a band gap 
of 2.7 eV, which means that operates under visible light. 
g-C3N4 shows a two-dimensional (2D) planar π conjuga-
tion structure, which could improve the electron transfer 
mechanism due to its prominent electronic activity [69]. In 
addition, due to its high nitrogen content, g-C3N4 may pro-
vide more active reaction sites than other N carbon mate-
rials by contributing to the photocatalytic reaction [70]. 

However, its fast recombination of the e− and h+ carriers 
reduces its photoactivity efficiency as only photocatalyst. 
Therefore, it is recommended that g-C3N4 be coupled to 
another semiconductor material to improve its photocat-
alytic activity by creating an interesting electronic struc-
ture as a whole. For example, Wei et al. [71], through the 
solvothermal method, synthesized the ternary hetero-
junction g-C3N4 / Ag / ZnO with a 3D flower-like structure 
and 1.5 µm of diameter for the photodegradation of MO. 
The ternary heterojunction g-C3N4 / Ag / ZnO photocat-
alytic activity was better compared to the pure g-C3N4 , 
g-C3N4 / ZnO composite, and g-C3N4 / Ag composites. 
According to the authors, the plasma effect of Ag nanopar-
ticles can be used to expand the response range of the pho-
tocatalyst to visible light. Meanwhile, Ag particles on the 
heterogeneous interface of g-C3N4 and ZnO play the role 
of conducting electrons, which are beneficial to separating 
of photogenerated electrons and holes. Zhao et al. [72] pre-
pared a photocatalyst of Ag /WO2.9 / g-C3N4 , demonstrating 
better adsorption capacity promotion than traditional WO3 . 
The composite was prepared by calcination and compared 
with the Ag / WO2.9 and g-C3N4 , the Ag / WO2.9 / g-C3N4 
showed a graphite-like carbon nitride as a substrate, and 
nano-sheets WO2.9 attached to silver nanoparticles are 
stacked on g-C3N4 . This unique structure generated a large 
specific surface area, coupled with the oxygen deficiency 
inherent in WO2.9 , which favored the adsorption of dye 
molecules. Moreover, the photocatalytic tests (under vis-
ible light irradiation (λ ˃ 420 nm)) on Ag / WO2.9 , g-C3N4 , 
and Ag / WO2.9 / g-C3N4 showed that Ag / WO2.9 / g-C3N4 has 
the best adsorption activity and photocatalytic degra-
dation ability under visible light conditions. The authors 
also mentioned that the formed photocatalyst constitutes 
a Z-scheme, which effectively separates the CB region 
and the VB region and performs efficient regional reac-
tion. Likewise, Xue et al. [73] prepared a hetero-struc-
tured photocatalyst consisting of two-dimensional g-C3N4 
nanosheets and commercial MoO3 microparticles through 
a simple mixing and annealing process for the photodegra-
dation of RhB. According to the authors, the MoO3 / g-C3N4 
composite showed a significant improvement compared 
with individual MoO3 or g-C3N4 and their physical mix-
ture. Moreover, with the results of electron spin resonance, 
the authors concluded that a direct Z-scheme charge trans-
fer between MoO3 and g-C3N4 not only causes an accumu-
lation of electrons in g-C3N4 and holes in MoO3 , but also 
boosts the formation of superoxide radicals and hydroxyl 
radicals. The total dye was photodegraded in 15 minutes 
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using 25 mg of catalyst dispersed into 50 mL of RhB 
solution ( 10 mg L−1 ). In this context, several heterojunc-
tions materias have been used for MO [66, 71, 72, 74–79], 
RhB [53, 59, 60, 61, 67, 72, 73, 78, 80–95], MB [53, 72, 75, 
77, 94, 96–105] and other pulliting dyes [54, 75,100, 103, 
106–118] removal, as shown in Table 2.

4.6 Immobilized photocatalysts
The typical suspended photocatalytic systems of powders 
show good mass transfer coefficients and the advantage 
of a greater surface area against the immobilized sys-
tem. However, their disadvantage relies on the recovery 
of the powders after the photocatalytic reaction, increas-
ing the process costs, which is a drawback [119]. In addi-
tion, the loss in the photoactivity of the recycled powders 
is another challenge related to the separation techniques. 
The immobilized systems take better advantage of the 
irradiated light and do not require a post-treatment for 
recovery the photocatalyst. The features of the semicon-
ductor-active species and its interaction with the employed 
support are key factors to achieve a good photoactivity. 
Unfortunately, the immobilized system's configuration is 
only effective in arranging with a high surface-to-volume 
ratio, e.g., in microchannel reactors [120]. For example, 
Bahrudin et al. [121] studied the decolorization of methyl 
orange (MO) using immobilized TiO2 / chitosan-mont-
morillonite (TiO2 / CS-MT), a combination of TiO2 as the 
top layer and CS-MT as the sub-layer on a glass plate. 
The authors mentioned that the immobilized CS-MT film 
showed better performance over the CS film since the 
former adhered stronger and swelled less than the latter, 
which showed its favorability in the aqueous medium. 
Moreover, the bilayer photocatalyst could remove the MO 
from the solution 3 times faster than the single TiO2 within 
90 min of irradiation under a UV–Vis lamp due to the 
strong adsorption of dye by the CS-MT sub-layer. 

Ounas et al. [122] presented a simple and effective 
approach to prepare a polymethyl methacrylate–TiO2 
(TiO2 / PMMA) film photocatalyst, by a cheap and low-
cost technique. The characterization of the film by XRD, 
FTIR, and Transmittance spectroscopy confirmed that 
the anatase TiO2 has been deposited on the surface of 
the polymer. The film prepared was subsequently used 
in photodegradation of MB under artificial UV irradia-
tion and showed a good prospect for the immobilization 
of TiO2 intended for the photodegradation of pollutants 
generally present in waters. However, the authors men-
tioned that the method described can still be improved to 

become easier and faster in a near future. Furthermore, 
de Araujo Scharnberg et al. [123] evaluated the photocat-
alytic properties of TiO2 under porous ceramics support 
for the degradation of RhB. For this, the anatase TiO2 cal-
cined at 400 °C was prepared by the sol-gel method and 
supported in a porous ceramic substrate by a dip-coat-
ing process. The heterogeneous photocatalysis showed 
excellent results, with the degradation of up to 83% of 
RhB. The Authors also mentioned that after the usage, a 
major part of the catalyst stayed at ceramics, making pos-
sible to recover it, or to use the catalyst in a continuous 
flow reactor. Additionally, Inderyas et al. [124] reported 
that ZnO nanoparticles were immobilized on polyure-
thane foam (PUF) and employed for the degradation of 
Acid black 1 dye. In this study, the process variables like 
dye concentration, pH, the concentration of H2O2 , irradi-
ation time were optimized for maximum dye degradation. 
The ZnO / PUF showed high efficiency for the degrada-
tion of AB1 dye, and up to 86% and 65% dye degrada-
tion was achieved under UV and solar light irradiation at 
neutral pH, 4% H2O2 , 240 min/sunlight, and 75 min/UV 
irradiation time using 40 mg L−1 dye initial concentration. 
Moreover, the reductions in BOD, COD, and TOC val-
ues confirmed that the ZnO/PUF was efficient. Das and 
Mahalingam [125] prepared a physical mixture of rGO 
and g-C3N4 along with TiO2 (ratio of 1:1:1). The nanocom-
posites were immobilized in a polystyrene film using the 
facile solvent casting method for the degradation of rema-
zol turquoise blue dye. The results using the immobilized 
catalyst mixture film gave 92.25% of TOC reduction, 
94% of decolorization in 140 min, and a 72% of degrada-
tion in the fourth time of reuse.

In this sense, several supported photocatalysts have 
been prepared for MO [121, 126–130], RhB [123, 131–133], 
MB [122, 134–144], and other pulliting dyes [124, 125, 
145–159] removal, as shown in Table 3.

5 Influence of operational parameters on the 
photocatalytic degradation
According to the evidence, the photocatalysts synthesized 
by different methods are attractive materials with high 
photocatalytic properties for diverse dye degradation from 
water. However, their effects are in a shape-, size- and 
dose-dependent response. In general, these materials are 
low-cost, efficient, reusable, and environmentally friendly 
for wastewater treatment. Additionally, the efficiency of 
these materials mainly depends on the experimental con-
ditions, as discussed in Subsections 5.1–5.6.
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5.1 The pH influence
The pH of the solution in photocatalytic reactions deter-
mines electrostatic properties such as the surface charge 
of the photocatalyst, formation of hydroxyl radicals, size 
of the aggregates that it forms, and the band edge position 
of metal oxides used as photocatalysts [160]. Furthermore, 
the pH can influence the adsorption–desorption character-
istics of the catalyst surface [161]. The photocatalyst sur-
face can be protonated and deprotonated under acidic and 
alkaline conditions, respectively (Eqs. (7) and (8)):

MOH H MOH� �� �
2

 (7)

MOH OH MO H O� � �� �
�
2

. (8)

The operating pH affects the isoelectric point and the 
surface charge of the photocatalyst. The reaction occurs 
at a different pH values from the isoelectric point (point 
of zero charges, pzc) where the surface of the material is 
not charged; under this value, the material is positively 
charged, and above this value, the catalyst is negatively 
charged. At pH > pzc, the adsorption of positively 
charged contaminants is preferred, while at pH < pzc, 
the adsorption of negatively charged contaminants 
is favored [162]. Values close to neutrality have no 
significant effect on the operation. Although the pH 
primarily affects the adsorption of charged contaminants, 
it also has a role in the photocatalysis of those neutral 
molecules that tend to dissociate into charged species. 
Therefore, the pH affects the surface of the photocatalyst 
and the dissociation of the dye [163].

5.2 Process temperature
In most photodegradation reactions, these are carried out 
at STP and do not require cooling or heating of the reac-
tion system due to the photonic activation. Preferably the 
reactions should occur between 20 °C and 80 °C, since at 
high temperature (T ≥ 80 °C), the recombination process 
of charge carriers is favored. Furthermore, the exothermic 
adsorption of reactant is not favored and tends to become 
the rate-limiting step [162, 164]. The increasing tempera-
ture does not favor adsorption, which becomes the inhib-
itor of the reaction, while at low temperature, inefficient 
desorption of final products is presented, and an increment 
in the activation energy is required to carry out the reac-
tion [165]. Therefore, there is no need to waste energy for 
heating water that possesses a high heat capacity.

5.3 Photocatalysts loading
When the catalyst loading is increased, there is an increase 
in the contact surface of the catalyst, and a variation of the 
average dye–photocatalyst ratio could generate losses in 
the surface area by aggregation (particle–particle inter-
actions) due to excess of the solid concentration caus-
ing a decrease in the number of exposed active surface 
sites [160]. The decrease of degradation at higher cata-
lyst loading may be due to the deactivation of activated 
molecules by collision with ground-state molecules [166]. 
Moreover, with the increment of photocatalyst loading, 
UV light penetration can be reduced due to saturation 
of the aqueous medium, affecting the photodegradation 
rates [163]. Therefore, an optimum amount of photocata-
lyst must be used to ensure total absorption of light pho-
tons and avoid unnecessary excess. A constant agitation 
with a magnetic stirrer at the reactor base and an air flux 
bubbled continuously inside the reactor to provide enough 
O2 are recommended to keep powder particles fluidization.

5.4 Dye concentration
The dye degradation rate under photocatalytic processes 
depends on its initial concentration [167]. When the ini-
tial dye concentration is increased, many molecules are 
adsorbed on the catalyst surface, and this may promote 
an inhibiting effect on the reaction of the dye with photo-
generated holes or hydroxyl radicals because of the lack 
of any direct contact between them [168]. Furthermore, 
when the concentration of dye is increased, the dye mole-
cules adsorb light (UV-screening effect), and the photons 
hardly reach the photocatalyst surface. Thus, the photo-
degradation efficiency decreases. On the other hand, the 
Langmuir-Hinshelwood model describes the kinetics 
of photocatalytic reactions of aquatic organics pollut-
ants [169]; this model is based on the next assumptions: 

1. limited surface adsorption sites, 
2. only single layer adsorption, and 
3. no interactions between molecules after adsorption.

Langmuir-Hinshelwood model is expressed as:

r dC dT k k C k Cr ad ad� �� � � � � �� �1 ,  (9)

where C is the concentration of aquatic organic, kad is the 
adsorption equilibrium constant and kr is the intrinsic rate 
constant, which takes into account parameters such as cat-
alyst mass, efficient photon flow, O2 layer, etc. [170]. When 
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the concentration of dye is so low (millimolar), the Eq. (9) 
can be simplified to an apparent first-order equation [171]:

ln C C k k t k to r ad app� � � � � � . (10)

The linear region can be obtained from the plot of 
ln( C / Co ) vs t, in which the slope gives the rate constant of 
photodegradation. The half-life time (degradation of dye 
to its 50%) is calculated as:

t kapp1 2
2� � �� �ln . (11)

5.5 Light source and intensity
Relatively high light intensity is required to provide photo-
catalyst particle enough photons energy. Hence, it is essen-
tial to establish the range of radiation with which the solu-
tion must be irradiated. It has been shown that the reaction 
rate is proportional to the radiant flux Φ. However, above 
a certain value, the reaction rate becomes proportional to 
Φ1/2, indicating strong electron-hole recombination. In this 
context, Ollis et al. [172] studied the effect of light inten-
sity on the kinetics of the photocatalytic reaction, and the 
following results were found:

1. At low light intensities ( 0–20 mW/cm2 ), the rate 
would increase linearly with increasing light inten-
sity (first-order) due to reactions involving e− and h+ 
carriers formation is predominant.

2. At intermediate light intensities beyond a certain 
value ( ≈ 25 mW/cm2 ), the rate would depend on the 
square root of the light intensity (half order) because 
the e− and h+ carriers separation compete with recom-
bination causing a lower effect on the reaction rate. 

3. At high light intensities, the rate is independent of 
light intensity if the temperature is low.

Other important factor is the lamp-reactor geometry 
where the reaction takes place; the geometry and fabri-
cation materials could favor the homogeneous dispersion 
of the light.

5.6 Disadvantages and perspectives in photocatalysis 
Even though researchers have made tremendous progress 
in the photocatalysis field, some challenges remain about 
the operation of photocatalysts in industrial applications. 
For example, the light distribution inside the reactor and 
the configuration of the reactor are the main issues to be 
addressed. According to Ahmad et al. [173], the scaling-up 
of a photocatalytic reactor has been limited due to the 
reactor design have not been able to address the two most 

important strictures; light distribution inside the reactor 
through absorbing and scattering liquid to the photocata-
lyst, and to provide high surface areas for photocatalysts 
coating per unit reactor volume. In addition, the costs of 
incident photon production must be considered in the pro-
cess economy when talking about treating huge volumes 
of wastewater. Furthermore, the chemical restrictions play 
a crucial role in the performance of dye removal such as 
the interfacial charge transfer, improve the charge carriers 
separation, and the inhibition of charge carriers recombi-
nation process. Some challenges like mass transfer lim-
itations, catalyst deactivation, generation of intermediate 
products and by-products, and the multi-complex optimi-
zation of the materials and the reactor configuration limit 
the real industrial applications. On the other hand, several 
trends for further development are currently under inves-
tigation. These trends include: 

1. The development of economical methods for the 
preparation at large scale of nanomaterials with con-
trolled morphology. 

2. The development of the characterization techniques 
and instruments to elucidate and confirming the 
migration pathways of electron-hole pairs in hetero-
junction photocatalyst. 

3. The hybridation with photocatalytic components in 
a single device. 

4. The fine control of increasingly complex nanoarchi-
tectures and (v) the use of novel non-oxidic materials.

According to the literature, there are some challenges 
to be achieved for scaling up applications of photocata-
lysts. However, their use for dye degradation is an active 
research area with potential applications as an alterna-
tive for wastewater treatment. Therefore, further research 
efforts should be dedicated to solving these challenges.

6 Concluding remarks
According to the evidence, the potential application of 
photocatalysis is an efficient alternative to remove dyes 
from water. Most recent works reported promising deg-
radation results (> 90% of dye degradation) in shorter 
reaction times. Nevertheless, the search for photocatalysts 
with desired characteristics to induce the total oxidation 
of dye molecules under visible light irradiation in an eco-
nomically accessible way is encouraging. From the transi-
tion of single component photocatalysts to the design and 
application of heterojunctions and immobilized photocat-
alytic systems, important problems were solved, such as 
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extending the life of the photogenerated species and the 
use of a lower photocatalytic powder amount per volume 
of wastewater. In addition, the design of immobilized pho-
tocatalysts also solved problems such as powder separation 
and recovery stages. However, it attracted new challenges 
(e.g., reduction of surface area). At present, the demand for 
environmental sustainability that humanity is facing has 
forced researchers to design photocatalytic systems that 
avoid the recombination process, with various life cycles 
and low cost energetic, easy to manufacture, and economi-
cally accessible at laboratory scale. An ideal photocatalyst 
should fulfill requirements such as visible-light activity, 
high solar energy conversion efficiency, proper band gap 

structure for redox reactions, high photostability for long-
term applications, and scalability for commercialization. 
In fact, several researching groups agree that the design 
of active nanostructures under visible light is one of the 
main challenges for the development of these materials. 
Some current limitations may be resolved in the future, by 
coupling photocatalysis with other emerging technologies.
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