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Abstract

Separation and removal of microplastic pollution from aquatic environments as a global environmental issue is classified as one 

of the major concerns in both water and wastewater treatment plants. Microplastics as polymeric particles less than 5 mm in at 

least one dimension are found with different shapes, chemical compositions, and sizes in soil, water, and sediments. Conventional 

treatment methods for organic separation have shown high removal efficiency for microplastics, while the separation of small 

microplastic particles, mainly less than 100 µm, in wastewater treatment plants is particularly challenging. This review aims to review 

the principle and application of different physical and chemical methods for the separation and removal of microplastic particles 

from aquatic environments, especially in water treatments process, with emphasis on some alternative and emerging separation 

methods. Advantages and disadvantages of conventional separation techniques such as clarification, sedimentation, floatation, 

activated sludge, sieving, filtration, and density separation are discussed. The advanced separation methods can be integrated 

with conventional techniques or utilize as a separate step for separating small microplastic particles. These advanced microplastic 

separation methods include membrane bioreactor, magnetic separation, micromachines, and degradation-based methods such as 

electrocatalysis, photocatalysis, biodegradation, and thermal degradation.
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1 Introduction to microplastic occurrence and hazards
Plastic-based materials are widely used in today's life and 
cause a growing threat due to releasing various forms 
of plastic waste such as nano-, micro-, and macro-plas-
tics are releasing into the environment [1]. During the 
last decade, microplastic particles (MPs) have entered 
directly into marine and freshwater environments, affect-
ing habitats and animals negatively. Firstly, in the early 
1970s, microplastics were reported in North America 
as spherules in plankton tows in coastal waters of New 
England [2]. Subsequently, microplastics are penetrat-
ing oceans and water bodies, including rivers and lakes 
progressively. Accordance to the National Oceanic and 
Atmospheric Administration (NOAA), microplastic par-
ticles are defined as plastic particles smaller than 5 mm in 
length. Microplastics can be categorized into two major 
classifications as primary and secondary microplastics, 
depending on their source [3]. Primary microplastics 

consist of industrial products such as cosmetics as well 
as different kinds of textiles [4–6]. Secondary microplas-
tics form by the fragmenting larger plastic items, caused 
by weathering (e.g., ultraviolet light) and during consump-
tion or fabrication [6–8]. Annually more than 348 million 
tons of plastic waste releases into aquatic environments. 
Fragmented polymeric particles less than 5 mm has poten-
tial toxic risks in the ecosystem and human health [9]. 
Fragmentation of polymeric waste decreases the size of 
plastic particles to micro- and nano-scale, which may be 
due to the effect of tides and waves [10]. 

Recent research revealed that more than 100 billion 
microplastics can be released by a single wastewater treat-
ment plant (WWTP) yearly; hence WWTPs are substan-
tial contributors to the issue of microplastic pollution of 
surface waters [11]. Additionally, microplastic particles in 
the effluent of the wastewater treatment plant penetrate the 
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water bodies and pile up in the environment eventually, 
taking into account WWTPs may remove some of micro-
plastics in light of used treatment units [12, 13]. 

Typically, microplastics refer to plastic particles with 
dimensions ranging from 100 nm to 5 mm. This range 
includes sub-micron plastic particles (100 nm–1  µm), 
small microplastics (1–100 µm), and large microplas-
tics (100 µm–5 mm). Plastic particles smaller than 100 nm 
are classified as nanoplastics [14–17]. However, a thresh-
old limit of 1000 nm is used in some studies related to 
environmental nanotechnology [17, 18]. As discussed in 
a comprehensive review by Yin et al. [19] on the toxicity 
of microplastics and nanoplastics, depending on the tar-
get organs, microplastics and nanoplastics show differ-
ent toxicity. Microplastics with small sizes are more toxic 
than large ones because of the higher bioavailability and 
retention time in the body. Generally, nanoplastics with 
higher surface area seem to be more toxic than microplas-
tics. Micro- and nano-plastic particles can accumulate in 
various tissues [20]. Depending on the organ type, the 
accumulation of plastic particles with nano- and micron-
size are different [21]. Plastic particles with different com-
ponents show different toxicity which arises from differ-
ences in their physicochemical properties [19].

The abundance of some polymer types as a percentage in 
wastewater treatment identified by Raman Spectrometer is 
shown in Fig. 1 [22]. Polyethylene and polystyrene as hydro-
phobic polymers with densities like water are some of the 
most abundant microplastics in drinking and freshwater sys-
tems [23, 24]. Microplastics are present in aquatic environ-
ments, sediments, and water treatment plant effluents [25]. 

Adsorption of hazardous substances such as metals or 
organic compounds on the surface of microplastic increases 
the chemical toxicity of hazardous. Long-term weathering 
of microplastics in aquatic systems provide sorption sites for 
metals or organic compounds  [9, 26, 27]. Aquatic ecosys-
tem is widely affected by plastic wastes as one of the most 
emerging contaminants with small size, low-density, and 
bioavailability to organisms. The hydrophobic nature and 
high surface area of microplastics facilitate the adsorption 
of organic pollutants and metals in aquatic systems  [28]. 
Fossi et al.  [29] studied the detection of microplastics as 
plastic debris on large filter feeders such as baleen whales 
and sharks. The results revealed that the concentration of 
Phthalate and organochlorines could be considered as a tracer 
for microplastic. Besseling et al. [30] reported microplastics 
of various types and sized in the baleen whale. FTIR analy-
sis revealed the existence of various polymers such as poly-
ethylene, polypropylene, polyvinylchloride, polyethylene 
terephthalate, and nylon of various shapes such as sheets and 
fragments with sizes larger than 1 mm. Gonçalves et al. [31] 
assessed the ingestion and excretion of microplastics by 
exposing the Mediterranean mussel to polystyrene micro-
plastics of 2 and 10 mm µm. The histopathological results 
revealed the potential ability of the Mediterranean mussel 
to digest and exert microplastics. Several studies are con-
ducted to detect microplastic particles in food such as honey, 
sugar, beer, table salt, and drinking water [1]. Oral digestion 
of microplastics in food has topological harmful and small 
microplastic particles less than 1.5 µm may penetrate organs; 
therefore, it is essential to develop high precise methods for 
detecting small microplastic particles in food [32]. 

Additionally, microplastics due to their physicochem-
ical properties can interact with metallic, inorganic, and 
organic matters and pollutants, and nutrients and create 
a suitable condition for microorganisms' attachment and 
colonization [33–35]. The attached microorganisms via 
their surrounded extracellular biopolymers or so-called 
biofilms have been studied extensively [36–39]. In addi-
tion to some effects of biofilm formation such as pro-
tecting the microplastics from abiotic and environmental 
stress and destruction, growth and enrichment of patho-
genic bacteria and fungi and possible genetic materials' 
exchange between bacteria are the main concerns [40–44]. 
Microplastics can act as vectors for transferring the micro-
organisms and contaminating the environments [45, 46]. 
It is worth noting that many researches are focused on 
another aspect of the interaction between microplastics 
and microorganisms. Due to the potential of some bacteria 

Fig. 1 Different types of polymers in wastewater samples detected by 
Raman Spectrometer [22].
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and fungi in the enzymatic digestion of plastics, biologi-
cal degradation of plastic materials attracts much attention 
in the last decades [47–50]. Since the focus of the review 
is microplastics' separation techniques, we refer the read-
ers to good reviews published in recent years for more 
information on microplastics and microorganisms inter-
actions [44, 51, 52].

This review provides a critical discussion on vari-
ous techniques for microplastic particles separation from 
aquatic environments. In addition to the separation meth-
ods conventionally utilized in the wastewater treatment 
process, more recent advanced separation techniques such 
as membrane bioreactors, magnetic-based separation, 
micromachines, and degradation-based separation are pre-
sented and reviewed. The challenges and limitations of con-
ventional techniques as well as the advantages of advanced 
techniques to separate small micron-size plastic particles 
from water have also been presented and discussed. 

2 Conventional methods of microplastic separation 
Studies related to the occurrence and removal of micro-
plastics have attracted the attention of researchers, mainly 
about the removal of microplastics by applying different 
treatment techniques. The potential hazards of microplas-
tics in our everyday life and the development of efficient 
methods for the characterization and quantification of poly-
meric particles of micron size in aquatic environments and 
sediments have been investigated in many researches [53]. 

Among various treatment methods in water treatment 
plants [54, 55], clarification, sedimentation, density sepa-
ration, coagulation and, or flocculation, activated sludge, 
sieving and filtration are considered conventional treatment 
processes in water treatment plants, and several studies 
have been focused on the removal efficiency of these treat-
ment process for microplastic separation [56]. The basis of 
various physical, chemical, and biological methods conven-
tionally applied in water treatment plants has been reviewed 
by Tirkey and Upadhyay  and Zhang et al. [57, 58]. 

The sedimentation process is limited for the separation 
of low-density particles. Unlike the cake filtration method, 
dept filtration is a suitable technique for microplastic sep-
aration from large volume and dilute aquatic samples. In 
contrast, dept filtration method suffers from a large pres-
sure drop in this process [53]. 

A challenge encountered when trying to compare results 
from microplastic surveys is the lack of comparable proto-
cols, for the identification of microplastic in the samples. 
In sampling protocols microplastics are usually, classify 

based on source, type, shape, color, and degradation stage. 
Identification is primarily made by visual identification, 
often with the aid of stereomicroscope. Researchers for 
sampling and analyzing plastics from natural particles use 
different protocols. There are some protocols for analysis 
of microplastic in aquatic samples based on visual analyz-
ing and FTIR spectroscopy. The most common analysis 
methods are FTIR and Raman spectroscopies [59, 60]. 

Here we provide a brief explanation of the most com-
mon techniques utilized in water and wastewater treatment 
plants to remove small polymeric particles of micron size.

Primary clarification aims to provide solid settling 
before the biological treatment. Primary clarifiers are 
also supported by surface skimmers to skim floating 
solids off the surface before the secondary treatment. 
Michielssen  et  al.  [61] observed that 84–88% of micro-
particles with sizes ranging from 100–1000 μm, were 
eliminated through primary screening and primary clari-
fication; Conley et al. [62] reported the loading of micro-
plastics and their removal efficiency in three wastewater 
treatment plants with various treatment operations and ser-
vice arrangements in USA for one year. The major waste-
water treatment plant was using a primary clarification and 
demonstrated the highest microplastic removal efficiency 
of about 97.6 % that clarifies the impact of primary clari-
fiers on microplastic removal performance. The size frac-
tions included microplastic particles larger than 418 µm, 
between 178–418 µm, and between 60–178 µm [62].

The sedimentation technique, which is based on gravita-
tional settling, can remove suspended contaminants such as 
microplastic particles from aquatic systems. This method 
is used not only in primary treatment but also in second-
ary treatment. The removal efficiency of microplastics by 
sedimentation is affected by two crucial factors, including 
density and shape [63, 64]. This process can be used before 
other treatment techniques [63, 64] with removal effi-
ciencies of 57%–64% in wastewater of South Korea [65], 
which microbeads and fragments were reported as the 
major kinds of microplastics in all wastewater samples and 
91.7% [66, 67]. The major drawback of the sedimentation 
technique is the essence of utilizing some other appropriate 
techniques in the following to complete removal.

Flotation is based on four steps. The steps include bubble 
generation in the wastewater, contact between the gas bub-
bles and suspended particles/oil droplets, attachment of the 
particle/oil droplets to the bubble surface, and finally rising 
the air-solid mixture for skimming off the floating materi-
als [68]. There are several types of floatation, depending on 
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the bubble generation method, such as dissolved air floata-
tion (DAF), Induced air floatation (IAF), Froth floatation, 
electrolytic floatation, vacuum floatation  [69]. Flotation 
is one of the most widely used methods for separating 
low-density plastic particles from soil or sediment in dense 
liquids  [70]. Dissolved air floatation allows to remove of 
low-density particles and algae effectively; however, this 
method is expensive to operate and maintain compared 
with the sedimentation process [71]. Coppock et al. [15] pro-
posed a portable density floatation to separate microplastics 
with particle sizes ranging from 100 μm-10 mm from sedi-
ments with an average efficiency of 95.8%. 

Conventional activated sludge process (CASP) is a 
common wastewater treatment process, relying on bio-
degradation using activated sludge. Microplastic particles 
could attach to the suspended matter and separate in the 
subsequent settling step [67, 72]. Magni et al. [73] con-
ducted a grid chamber and conventional activated sludge 
process at a municipal WWT system in Italy for microplas-
tic separation with a 64% removal rate. In this study, the 
size classes included 1–5 mm, 0.5–1 mm, 0.1–0.5 mm, and 
0.01–0.1mm. The main drawbacks of CASP are producing 
an excessive sludge, extensive retention times, extensive 
sedimentation surface, and massive cost of energy and 
dumping. However, this process is flexible, appropriate for 
wide-scale treatments [63, 74–76]. The retention time and 
nutrient extent in wastewater are considered as the most 
important affecting factors on the efficiency of the acti-
vated sludge method for microplastic removal [12, 77]. 

To investigate the impacts of microplastics as emerg-
ing pollutants, it is required to collect different types of 
microplastics from aquatic environments for identification 
through sampling and extraction techniques. 

Filters with different pore structure, pore size, and 
materials are used for extracting the microplastics from 
aquatic samples. Metal-based filters such as stainless steel 
and polymer-based filters such as polycarbonate, nitrocel-
lulose, and nylon are utilized for the separation of micro-
plastics from retained particles [78, 79]. Some filter mate-
rials have curvy and deep pore structures such as stainless 
steel and nylon filters. Some others exhibited narrow and 
straight circular pores such as polycarbonate filters. The 
particles employed in the mesh filtration technique were in 
the range of 50-1000 μm [80]. After sampling, the retained 
microplastics on the filter are analyzed quantitatively and 
qualitatively. The analysis of the abundance and size dis-
tribution of retained microplastics are termed quantitative 
analysis. The qualitative analysis includes evaluating the 

color, shape, and composition of the retained microplas-
tics [81]. In some studies, manta trawls and neuston nets are 
utilized as a sampling system from large volume aquatic 
environments such as oceans and water column  [82]. It 
may be possible secondary contamination of water by fil-
ter fibers in filtration method. Therefore, it may be checked 
that the secondary contamination is reasonable in compar-
ison with the removal of the primary microplastics.

The sieving method of water samples is also used to 
separate microplastics plentifully, resulting in sorting par-
ticles into different size ranges depending on the choice of 
sieve mesh size categories [83, 84]. The sieve physically 
traps the microplastic particles, enabling water to get lost 
from the sample [85]. Olivatto et al. [86] studied separate 
microplastics found in samples of the Guanabara Bay in 
Brazil via the sieving and manual sorting. Microplastic 
particles less than 5 mm were isolated in the laboratory 
by wet sieving using two meshes including 355 μm in the 
bottom and 4.75 mm in the top. The most common sieving 
system for the separation of microplastics from water and 
sediment samples is multi-step sieving, which is using a 
series of sieves with different mesh size [87]. A cost-ef-
fective separation and quantifying method with less envi-
ronmental footprint was presented by Gimiliani et al. [88] 
comprising sieving of 2.0, 1.0, 0.5, and 0.25 mm mesh 
sizes, sediment collection, drying, and stereomicroscopic 
evaluation of the samples maintained on each sieve [88].

Density separation of microplastics is based on their dif-
ferent densities and is usually conducted by adding brine 
solutions to allow separating lower density particles from 
denser matrices after settlement [6, 15, 89, 90]. Konechnaya 
et al. [91] reported that ZnCl2-based density separation is an 
appropriate method for separating polymeric particles from 
a sandy sample for isolating the particles with sizes includ-
ing 1–5 mm, 400–1000 μm, 200–400 μm, and 100–200 μm. 
Applying a centrifugation step after density separation in 
saline solutions can enhance the plastic-sediment separation 
ability and improve the extraction capacity of microplastic 
fibers and granules from sediments [90, 92]. 

3 Recent progress in conventional separation methods 
Removal of small microplastic particles less than 100 µm 
is challenging since particles larger than 100 µm can 
be sufficiently separated in today's water treatment 
plants  [56, 93]. Wang et al. [56] studied the presence of 
various microplastics of 1–100 µm in size such as poly-
ethylene terephthalate, polyethylene, polypropylene, poly-
acrylamide with fiber, sphere, or fragment shapes in the 
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effluent of different treatment processes of an advanced 
drinking water treatment plant (ADWTP) . Xia et al. [94] 
utilized the Fluorescence imaging method to evaluate the 
effect of tween 20 surfactants in ppm level on the coag-
ulation of polystyrene microplastics of 1 μm. A flexible 
and hydrophilic layer formed on the microplastic particles 
by surfactant molecules hinders the deposition of benton-
ite. It inhibits agglomeration resulting in a decrement in 
the removal efficiency with increasing surfactant concen-
tration, as shown in Fig. 2 [94]. In contrast, anionic sur-
factants such as sodium dodecyl sulfate will not hinder 
the coagulation of microplastic particles since negative 
charges induced by surfactant adsorption are neutralized 
in the presence of Al3+ ions resulting in the precipitation 
of microplastic particles. As shown in Fig. 2, the coagu-
lation removal efficiency was not affected by increasing 
sodium dodecyl sulfate surfactant [94]. The coagulation 
integrated with sedimentation is an appropriate choice for 
contaminant removal [95]. Pivokonský et al. [96] reported 
microplastic removal of 88% using a multi-step process 
such as coagulation-flocculation with sedimentation. 
Coagulation-flocculation with sedimentation was quite 
effective for the elimination of microplastics, and addi-
tional MP removal was obtained by filtration and gran-
ular activated carbon processes. Ma et al. [97]  examined 
microplastic removal in coagulation/sedimentation and 
ultrafiltration in controlled tests using Al- and Fe-based 
salts, observing a removal efficiency lower than 40%. 

Filtration system integrated with various separation 
techniques such as clarification, floatation, or reverse 
osmosis has been investigated in some studies [70, 98, 99]. 

Kim and An [100] developed a vacuum-based method for 
separating microplastic LDPE films, for including two dif-
ferently sized cylindrical sieves to accumulate film sam-
ples. Wang et al. [99] studied the occurrence of phthalate 
esters and microplastics at the effluent of four wastewa-
ter treatment plants, receiving water bodies in winter and 
spring. The main techniques were clarification, filtration, 
and reverse osmosis with removal rates of 42.7%‒69.2%, 
25.3%‒59.3%, and 22.6%‒51.0%, respectively. The total 
removal rates of phthalate esters and microplastics in 
the four RWTPs were 47.7%‒81.6% and 63.5%‒95.4%, 
respectively. The results revealed that the surrounding 
environment considerably affected the amount of phthal-
ate esters and microplastics in surface waters. 

Classification of microplastics before analysis seems 
to be required and useful since sedimentation veloc-
ity depends on particle density and size. Polymeric par-
ticles have various densities; some polymers are denser 
than water, and some others have densities close to or less 
than water. For small-size microplastics with a low sed-
imentation velocity of 1 cm/h, a filtration system should 
be designed based on the particle size rather than parti-
cle density [101]. Bannick et al. [101] developed a filtration 
system for analyzing microplastic samples in water using 
a thermal extraction-desorption gas chromatography-mass 
spectrometry (TED-GC-MS). The filtration system was 
validated for artificial water samples and was applied in 
the effluent of a WWTP in Berlin. Artificial water sam-
ples composed of spherical polyethylene and polystyrene 
particles with various sizes ranging from 22–150 µm and 
298 µm, respectively. The filtration system included several 
stainless-steel filters to classify microplastics into different 
size classes of 1000–500 µm, 500-100 µm, 100-50 µm, and 
50–10 µm. The results revealed that the sampling and sep-
aration method depends on the size class of microplastic 
in water. This filtration method showed a recovery percent 
of 80–110, depending on the type and size of particles. For 
analyzing quantic samples using TED-GC-MS, the larger 
particles required a larger volume of water required to be 
sampled. For particles smaller than 50 µm, significantly 
smaller than 10 µm, it is required to apply pressure filtering 
due to the small effect of density in sedimentation of small 
polyethylene and polystyrene particles [101]. 

Anna Markiewicz et al. [102] assessed the performance 
of a pilot plant for the removal of non-particulate organic 
pollutants from urban runoff in Sweden. The separation sys-
tem included a sand-column as pre-filter, which is in series 
with a granulated activated carbon, Sphagnum peat, or Pinus 

Fig. 2 The effect of surfactants on (left) the removal efficiency of 
polystyrene microplastics and (right) the residue concentration of 

microplastic particles in the effluent [94].
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sylvestris bark column. All filters exhibited an effective 
removal of total suspended particles larger than 1.2 µm. 

Automatic recognition of different microplastics, 
including polyethylene, polypropylene, and polystyrene 
with a size of 100 µm, is reported by Zhu et al. (2020) 
using a near-infrared hyperspectral imaging (HSI) tech-
nique. Gold-coated polycarbonate and glass microfiber fil-
ters showed a suitable performance for the identification of 
microplastics using the HSI technique [103].

4 Advanced methods of microplastic separation
Increasing demand for removing parts of microplastics 
that pass through conventional water and wastewater 
treatment plants is comprehensible. As reported in the lit-
erature [104–106], several advanced methods and tech-
nologies for removing micropollutants have been evalu-
ated on a large scale in several countries such as Germany, 
Sweden, and Switzerland. Here we represent and discuss 
some of the advanced methods, including magnetic-based 
techniques such as magnetic seed filtration and mag-
netic micro-submarines [107], photocatalytic micro-mo-
tors  [108], membrane bioreactors coupled with activated 
carbon filters, rapid sand filtration, or CAS [109] and deg-
radation-based techniques such as electrocatalysis [110], 
photocatalysis [111, 112], biodegradation [113], and ther-
mal degradation [114, 115].

4.1 Membrane bioreactors
Different technologies have been studied to remove micro-
plastics from municipal and industrial wastewaters in real 
or pilot scales. Membrane bioreactor (MBR) is a estab-
lished process for removing microplastics from waste-
waters in real WWTPs or pilot scales [67, 98, 109]. The 
removal efficiency of the MBR process in several studies 
conducted in the Netherlands, China, the United States, 
the United Kingdom, and Finland are in the range of 64.4 
to 99.9% [12, 13, 67, 109, 116, 117]. Membrane bioreactor 
is a growing technology in conventional water and waste-
water treatment plants for replacing the conventional acti-
vated sludge technology in some countries such as Sweden. 
Membrane bioreactor is a combination of biological acti-
vated sludge process and membrane separation, which 
results in significant advantages over conventional acti-
vated sludge process for removing micropollutants in both 
municipal and industrial wastewater treatment plants [106]. 
Baresel et al. [106] evaluated a membrane bioreactor cou-
pled with granulated active carbon-based biofilter for the 
removal of various kinds of micropollutants, including 

microplastics and organic compounds from real wastewa-
ter of Stockholm’s main WWTP Henriksda with a hydrau-
lic retention time of 10 hours. An ultrafiltration system 
was applied after the biological reactor. The effluent of the 
membrane bioreactor, with qualities of lower than 0.2 mg 
TP/L and 6 mg TN/L, was pumped to a granulated active 
carbon-based biofilter with a total area of 0.3 m2. A screen-
ing technique using a 20 µm filters was applied to separate 
the microplastics from water samples. A stereo microscope 
with 50 times magnification was applied for counting and 
dividing microplastics into three groups of fragments, 
flakes, and fibers. Baresel et al. [106] found 100 percent 
removal efficiency for microplastics in the MBR effluent. 
Rapid sand filtration is a tertiary treatment in WWTPs, 
and its removal efficiency is compared with other technol-
ogies such as ozonation, membrane disc filter, and mem-
brane bioreactor in some studies [65, 109]. Bayo et al. [109] 
found 14 polymer types in wastewater samples using mem-
brane bioreactor and rapid sand filtration technologies and 
polyethylene, including low-density polyethylene (LDPE) 
and high-density polyethylene  (HDPE) with 75.76%, was 
the most common type in the samples. Different forms of 
microplastics including fibers, films, fragments, and beads 
with size ranging from 210 μm to 6.3 mm were isolated in 
this study. About 58.90% of microplastics had sizes smaller 
than 1 mm. Membrane bioreactor showed a removal per-
centage of about 79%, which was more than that of rapid 
sand filtration, i.e., 75.5%. Among various types of poly-
mers, LDPE, nylon, and polyvinyl were remained in RSF 
effluent and melamine in MBR effluent [109].

4.2 Magnetic based separation
Microplastic recovery and extraction of small size lower 
than 150 μm are challenging. Magnetic separation and 
extraction of microplastics such as polyethylene, polyeth-
ylene terephthalate, polystyrene, polyurethane, polyvinyl 
chloride, and polypropylene from various environmental 
matrices such as seawater, freshwater, and sediment can 
be considered as a post density separation step or a stand-
alone process to produce a drinking water [107]. Magnetic 
seed filtration (MSF) technique includes two general steps: 
hetero-agglomeration of microplastic particles with mag-
netic nanoseeds, and separation of magnetized agglomer-
ates using magnetic force [53, 107]. Compared with classic 
filtration methods, MSF has a lower pressure drop. There 
is no limit on the minimum size of microplastics for sepa-
ration using the MSF method since the size dependency in 
this method can be tuned by varying the size and type of 
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magnetic nanoparticles. Magnetic removal of organic dyes 
and heavy metals from wastewater using magnetic nanopar-
ticles have been reported in the literature [118]. Moreover, 
the magnetic seed filtration technique showed promising 
results in large-scale water treatment. Hydrophobic and 
electrostatic interactions are introduced as main driving 
forces in the magnetic separation of microplastics from 
aquatic environments so far  [53,  107]. Grbic et al. [107] 
developed a magnetic method based on using hydropho-
bic coated iron nanoparticle to recover microplastics even 
small-sized microparticles from seawater. This method 
was based on the magnetization of microplastic surfaces 
using hexadecyl trimethoxy silane functionalized-iron 
nanoparticles, microplastic with a higher surface to volume 
ratio, i.e., smaller microplastics, can be extracted more effi-
ciently, see Fig. 3(A) [107]. The results revealed a sepa-
ration recovery of 92% for microplastic particles smaller 
than 20 μm, including polyethylene and polystyrene beads, 

see Fig. 3(B), (C) [107]. Also, a recovery of 93% obtained 
for microplastic particles larger than 1 mm, including poly-
ethylene, polyethylene terephthalate, polystyrene, polyure-
thane, polyvinyl chloride, and polypropylene. This method 
also applied for the separation of microplastics of 200 μm 
to 1 mm from freshwater and sediments with recovery per-
cent of 84% and 78%, respectively. 

4.3 Micromachines
One of the most promising technologies for environmen-
tal remediation and removal of contaminants such as oil, 
organic compounds, heavy metals, and microplastics 
from aquatic systems are self-propelled micro/nano-scale 
devices such as magnetic micro-submarines [119] and 
photocatalytic micro-motors [108]. Photocatalytic micro-
motors provide fascinating features, including an on/off 
switch, using water as green fuel and light as a renew-
able energy source [119]. Sun et al. [119] fabricated hollow 

Fig. 3 (A) a schematic of synthesis procedure of hydrophobic iron nanoparticles using 
hexadecyltrimethoxysilane (HDTMS) functionalization and application for surface magnetization of 

microplastics for efficient extraction of small microplastic particles; (B) Number of small polyethylene 
spheres of less than 20 µm in 1µL of spiked sample counting using microscope compared with 

magnetic extraction recovery; (C) Number of small polystyrene spheres of 15 µm in 1µL of spiked 
sample counting using microscope compared with magnetic extraction recovery. Adapted with 

permission from [78]. Copyright (2019) American Chemical Society [107].
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magnetic micro-submarines on a large-scale through 
sequential acidolysis and sputtering of natural sunflower 
pollen grains and applied for effective removal of oil and 
plastic particles from water. Hollow magnetic micro-sub-
marines provided a recyclable, eco-friendly, and chemi-
cal-free method for microplastic removal through non-
contact shoveling because of different fluid flow forces 
induced by the motion of micro-submarines in the aquatic 
environment. Wang et al. [108] developed photocata-
lytic micro-motors in the form of individual micro-mo-
tors and assembled a chain of catalytic particles based on 
Au@Ni@TiO2 structures. The results proved the ability 
of light-driven micro-motors for catalytic elimination of 
microplastics from aquatic samples.

4.4 Degradation based separation
Efficient degradation of microplastics into small and valu-
able substances, known as chemical recovery methods, is 
one of the promising and under-developing approaches 
to decrease the serious environmental severe of realiz-
ing fine polymeric particles such as polyvinyl chloride in 
aquatic systems. The produced substances can be reused 
as fuel or chemical feedstock. Chlorine residue in oil prod-
ucts obtained from polyvinyl chloride waste limits the 
application of chemical recovery methods. Simultaneous 
dichlorination and degradation of the polymeric chain are 
required to develop a sustainable and rapid process for 
polyvinyl chloride waste chemical recovery [110]. Kang 
et al. [120] synthesized magnetic spring-like carbon nano-
tubes (Mn@NCNT) and evaluated polyethylene-based 
microplastics degradation performance of robust hybrid 
carbon based-catalysts via oxidation and hydrothermal 
hydrolysis with 50% removal efficiency. Toxicity analy-
sis proved a green strategy since all organic intermediates 
were eco-friendly to the aquatic organisms. Highly sta-
ble catalytic performance of Mn@NCNT hybrid catalyst 
was attributed to the synergetic effects of robust structure, 
Mn encapsulation, and nitrogen doping, which reduce 
required activation energy. Miao et al. [110] applied a het-
erogeneous electro-Fenton like approach for degradation 
of polyvinyl chloride (PVC) in water using TiO2/graph-
ite cathode through simultaneous reductive dechlorina-
tion and radical oxidation of PVC with 56 wt% removal 
and dechlorination efficiency of 75% at −0.7  V, 100 °C 
for 6 h. During the electrocatalytic process, polyvinyl 
chloride microplastics obtained electrons from the cath-
ode which resulted in the removal of chlorine followed by 
oxidation of polymeric chain and production of organic 

intermediates such as carbocyclic acids, alcohols, and 
esters, which finally converted to CO2 and H2O [110]. 
Ariza-Tarazona et al. [121] studied the visible light cat-
alytic degradation of HDPE microplastics from water 
using protein-derived C,N-TiO2 semiconductor catalyst. 
The best degradation performance was obtained at a low 
temperature of 0˚ C and a low pH value of 3 due to the 
combined effect of pH and temperature on releasing more 
H+ ions to the aquatic system and polymer fragmentation. 
Nabi et al. [122] studied the photocatalytic degradation 
of polystyrene microspheres and polyethylene microplas-
tic particles using TiO2 nanoparticle films as a green and 
cost-effective removal method. Over 12 h illumination of 
UV light, over 98% degradation of 400 nm polystyrene 
microspheres was achieved, while faster photocatalytic 
degradation of polyethylene microplastic was reported 
over 36 h of UV illumination. 

A large portion of released microplastics to aquatic 
systems are related to textile microfibers such as polyeth-
ylene terephthalate, and cellulose-based fibers entered to 
wastewater system from the effluent of cloths launder-
ing  [25]. The pure carbon structure of some extensively 
useful polymers, including polypropylene, polyethylene, 
and polyethylene terephthalate, restrict biodegradation 
using conventional techniques [123]. Compared with pho-
tocatalysis [111], electrocatalysis [110], and thermal degra-
dation [114] methods, biodegradation of microplastics has 
particular strengths such as low operational cost, no need 
of chemicals, and being applicable for various polymeric 
particles [48, 124]. Periphytic biofilm was used by Shabbir 
et al. [48] for biodegradation of different microplastics, 
including polypropylene, polyethylene, and polyethylene 
terephthalate in the presence of glucose as an additional 
carbon source. The results revealed a weight loss ranging 
from 5.95–14.02% for PP, from 13.24 to 19.72% for PE and 
from 13.24–19.72% for PET biodegradation after 60 days. 
Li et al. [125] investigated the effect of prothioconazole 
as a broad-spectrum fungicide on the degradation of 
polyethylene and polybutyleneadipote-co-terphthalate 
(PBAT) microplastics. Biodegradable PBAT microplastics 
were degraded faster than polyethylene. Degradation of 
Polyglycerol maleate microbeads of 30 µm as a biodegrad-
able microplastic was evaluated by Hsieh et al. [126] in 
different aquatic systems such as buffer solution, enzyme 
solution, deionized water, and seawater. Complete decom-
position of microplastics was observed in alkaline solu-
tion for 45 min, attributed to surface erosion mechanism. 
Biodegradation of LDPE using Pseudomonas aeruginosa 
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ISJ14 via biofilm formation on the polymer surface by 
microorganisms was proved by Gupta and Devi [127].

5 Conclusion 
The occurrence and impacts of plastic particles in water 
bodies progressively spread worldwide. As reported in the 
literature, million tons of plastic particles of micron- and 
nano-size are released into the aquatic environment annu-
ally. Studies on microplastic hazards and separation have 
been growing over the past decade. Many methods have 
been developed and evaluated on account of the current 
studies on microplastic particles, which will facilitate to 
fill the research gap in the future. 

Some advanced separation techniques capable of 
removing small microplastic particles include membrane 
bioreactors, magnetic-based recoveries, electrocatalytic 
degradation, photocatalytic degradation, biological degra-
dation, and thermal degradation techniques. Some stud-
ies reported almost the same separation efficiency using 
membrane bioreactor and rapid sand filtration compared 
with the conventional methods such as activated sludge 
and removing fiber-like microplastics seems to be chal-
lenging by these advanced methods. Magnetic-based 
adsorbents are introduced as a novel recyclable approach 
with high adsorption efficiency for microplastic separa-
tion with economic feasibility. In some studies, magnetic 
separation is introduced as an efficient and fast extraction 
method for clean samples, and it is recommended to utilize 
as a post-density or post-digestion step in water treatment 
plants. Applying a continuous collecting system such as 
rotary magnetic drums in magnetic separation is recom-
mended as well. Recyclable and reusable microsubma-
rines are developed as a new and environmentally adap-
tive approach for removing microplastic particles with no 
need to adding other chemicals. Regarding UV-, or visible 
light photocatalytic degradation of microplastic particles 
using carbon nitrides, functionalized ZnO, and TiO2, there 
is a gap in evaluating the operating parameters such as pH 
and temperature. It is also required more investigations to 

develop a new photocatalyst for complete degradation of 
microplastics in water. Fragmentation of microplastic par-
ticles through the photocatalytic process facilitates degra-
dation through increasing the surface area and interaction 
between plastic particles and photocatalyst. 

There are two general approaches to developing new 
separation methods in the literature. The first approach is 
sampling and identifying microplastics in water samples 
of freshwater bodies or the effluent of WWTPs based on 
sieving, filtration, and density separation methods. The 
other approach is removing microplastic particles of var-
ious types and sizes using conventional wastewater treat-
ment processes or using integrating new techniques with 
conventional treatments. 

6 Future remarks
There are few reports on the mathematical analysis and 
modeling of conventional and advanced separation tech-
niques in wastewater treatment to have an effective plant 
operation. For a more accurate understanding of the envi-
ronmental consequences of microplastic particles, future 
investigations should concentrate on the development of 
new modeling techniques to evaluate the transport route 
of microplastic particles in the soil, sediments, and water. 
It is also required to evaluate the impact of organism 
adsorption on the surface properties of microplastics and 
their fragmentation. 

Despite conducting many attempts to develop 
approaches for separating and identifying microplastic 
particles, establishing practical and reliable standard pro-
tocols for quantifying microplastic particles with different 
shapes, sizes, and densities in water bodied and wastewa-
ter treatment plants is essential. It is demanding to stan-
dardize sieving, chemical digestion, density separation, 
and visual separation methods in the wastewater treatment 
plants. In conclusion, an appropriate remedy can be the 
identification and removal of microplastic resources and 
penetration routes to monitor inventories of materials or 
employ novel devices and methods.
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