Supplement

Diisopropyl Malonate as Acylating Agent in Kinetic Resolution of Chiral Amines with Lipase B from *Candida antarctica*

József Szemes¹, Ágnes Malta-Lakó¹, Regina Eszter Tóth¹, László Poppe^{1,2,3*}

University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary,

³ SynBiocat Ltd., Szilasliget u. 3, Budapest H-1172, Hungary

* Corresponding author, e-mail: poppe.laszlo@vbk.bme.hu

1 General

Materials and synthetic procedures are described in detail in the experimental section of the main article.

2 Characterization of compounds

2.1 Gas chromatography

General details of gas chromatographic methods are described in Section 4.2 of the main article.

Samples (5 μ L) from kinetic resolution reactions (described in Section 4.5 of the main article) were diluted with methyl *tert*-butyl ether (500 μ L), treated with acetic anhydride (10 μ L) at room temperature and 350 rpm for 30 min in a shaker (for derivatization

of unreacted amines **1a-d** into *N*-acetamides **1*a-d**) and quenched with one drop of distilled water. After drying over anhydrous Na_2SO_4 , the samples were analyzed on chiral column by GC. Representative GC results are shown in Fig. S1–Fig. S13.

2.2 NMR

General details of NMR methods are described in Section 4.2 of the main article. ¹H-NMR and ¹³C-NMR spectra of the products are depicted as Fig. S14–Fig. S31.

Table S1 GC methods, and retention times of acetamides [(S)- and (R)-1*a-d] and amides [(S)- and (R)-3a-d] in quantitative GC analysison chiral column

Substrate	Temperature program	Retention times ^a [min]			
		(S)-1*a-d	(<i>R</i>)-1*a-d	(S)- 3a-d	(R)- 3a-d
(±)-1a	160–170 °C, 0.8 °C min ⁻¹	2.44	2.49	10.23	10.69
(±)-1b	110 °C, 10 min; 110–190 °C, 5 °C min ⁻¹	4.84	5.73	21.02	21.77
(±)-1c	160–184 °C, 0.8 °C min ⁻¹	5.85	5.97	22.28	23.23
(±)-1d	130 °C, 60 min; 130–140 °C, 2 °C min ⁻¹ ; 140–190 °C, 10 °C min ⁻¹ ; 190 °C, 20 min	65.89	66.34	85.53	86.13

^a The acetamides **1*a-d** were prepared by derivatization of the residual amines **1a-d** in the samples from enzymatic reactions with acetic anhydride as described in Section 2.1 of this Supplement.

¹ Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest

² Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Str. 11, Cluj-Napoca RO-400028, Romania

Fig. S3 GC chromatogram of the mixture after CaLB-catalyzed kinetic resolution of racemic heptane-2-amine (±)-1a with diisopropyl malonate (2) and after derivatization with Ac₂O

Fig. S4 GC chromatogram of racemic 1-methoxypropane-2-amine (±)-1b after derivatization with Ac₂O

Fig. S5 GC chromatogram of racemic acetamide (±)-3b [amide of racemic 1-methoxypropane-2-amine (±)-1b]

Fig. S6 GC chromatogram of diisopropyl malonate (2) used as acylating agent

Fig. S7 GC chromatogram of the mixture after CaLB-catalyzed kinetic resolution of racemic 1-methoxypropan-2-amine (±)-1b with diisopropyl malonate (2) and after derivatization with Ac₂O

Fig. S8 GC chromatogram of racemic 1-phenylethane-1-amine (±)-1c after derivatization with Ac_2O

 $Fig. \ S9 \ {\rm GC} \ chromatogram \ of \ racemic \ acetamide \ (\pm)-3c \ [amide \ of \ racemic \ 1-phenylethane-1-amine \ (\pm)-1c]$

Fig. S10 GC chromatogram of the mixture after CaLB-catalyzed kinetic resolution of racemic 1-phenylethane-1-amine (±)-1c with diisopropyl malonate (2) and after derivatization with Ac₂O

Fig. S11 GC chromatogram of racemic 4-phenylbutan-2-amine (\pm)-1d after derivatization with Ac₂O

 $\label{eq:Fig.S12} Fig. \, S12 \ {\rm GC} \ chromatogram \ of \ racemic \ acetamide \ (\pm)-3d \ [amide \ of \ racemic \ 4-phenylbutan-2-amine \ (\pm)-1d]$

Fig. S13 GC chromatogram of the mixture after CaLB-catalyzed kinetic resolution of racemic 4-phenylbutan-2-amine (±)-1d with diisopropyl malonate (2) and after derivatization with Ac₂O

Fig. S14 ¹H-NMR spectrum of racemic isopropyl 3-(heptan-2-ylamino)-3-oxopropanoate (±)-3a

Fig. S15 ¹³C-NMR spectrum of racemic isopropyl 3-(heptan-2-ylamino)-3-oxopropanoate (±)-3a

Fig. S16 ¹H-NMR spectrum of isopropyl (R)-3-(heptan-2-ylamino)-3-oxopropanoate (R)-3a

Fig. S17 ¹H-NMR spectrum of isopropyl (R)-3-(heptan-2-ylamino)-3-oxopropanoate (R)-3a

Fig. S18 ¹H-NMR spectrum of racemic isopropyl 3-[(1-methoxypropan-2-yl)amino]-3-oxopropanoate (±)-3b

Fig. S19 ¹³C-NMR spectrum of racemic isopropyl 3-[(1-methoxypropan-2-yl)amino]-3-oxopropanoate (±)-3b

Fig. S20 ¹H-NMR spectrum of isopropyl (R)-3-[(1-methoxypropan-2-yl)amino]-3-oxopropanoate (R)-3b

Fig. S21 ¹³C-NMR spectrum of isopropyl (R)-3-[(1-methoxypropan-2-yl)amino]-3-oxopropanoate (R)-3b

Fig. S22 ¹H-NMR spectrum of racemic isopropyl 3-oxo-3-[(1-phenylethyl)amino]propanoate (±)-3c

 $\label{eq:Fig. S23 13} Fig. S23 \ ^{13}C-NMR \ spectrum \ of \ racemic \ isopropyl \ 3-oxo-3-[(1-phenylethyl)amino] propanoate \ (\pm)-3c$

Fig. S24 ¹H-NMR spectrum of isopropyl (*R*)-3-oxo-3-[(1-phenylethyl)amino]propanoate (*R*)-3c

Fig. S25 ¹³C-NMR spectrum of isopropyl (R)-3-oxo-3-[(1-phenylethyl)amino]propanoate (R)-3c

Fig. S26 ¹H-NMR spectrum of racemic isopropyl 3-oxo-3-[(4-phenylbutan-2-yl)amino]propanoate (±)-3d

Fig. S27 ¹³C-NMR spectrum of racemic isopropyl 3-oxo-3-[(4-phenylbutan-2-yl)amino]propanoate (±)-3d

Fig. S28 ¹H-NMR spectrum of isopropyl (R)-3-oxo-3-[(4-phenylbutan-2-yl)amino]propanoate (R)-3d

Fig. S29 ¹³C-NMR spectrum of isopropyl (R)-3-oxo-3-[(4-phenylbutan-2-yl)amino]propanoate (R)-3d

Fig. S30 ¹H-NMR spectrum of 3-isopropoxy-3-oxopropanoic acid (5)

Fig. S31 ¹³C-NMR spectrum of 3-isopropoxy-3-oxopropanoic acid (5)