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Abstract

Lanthanum supported on 4Å molecular sieves proved to be an efficient heterogeneous catalyst for the one-pot three-component 

synthesis of 1,2,3,4-tetrahydroisoquinolinone-4-carboxylic acid derivatives from homophthalic anhydride, aromatic aldehydes and 

an amine component, ammonium acetate or aralkyl amines, with good to excellent yields. The catalyst could be recovered easily and 

reused without significant loss of its initial activity.
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1 Introduction
Tetrahydroisoquinolonic acids form an important class 
of heterocyclic compounds since they possess exhibit 
several pharmaceutical and biological activities. These 
compounds have been demonstrated to act as antican-
cer [1, 2], anticonvulsant [3, 4] and antidiabetic agents [5]. 
Furthermore, they are known have served as starting 
material for the total synthesis of natural products, such 
as the benzophenanthridine alkaloids nitidine chloride [6] 
and (±)-corynoline  [7], as well as the 3-arylisoquinoline 
alkaloid decumbenine B [8].

Tetrahydroisoquinolonic acids can be synthetized via 
the Castagnoli-Cushman reaction [9, 10] of homophthalic 
anhydride with imines [11–16] or the one-pot three compo-
nent version of the reaction [17, 18]. In recent years, mul-
ticomponent reactions (MCRs) have gained much interest 
among synthetic organic chemists, since they allow the 
formation of multiple bonds in a single reaction compo-
sition within shorter reaction times providing the desired 
products with higher yields.

In view of the importance of tetrahydroisoquinolonic acid 
derivatives, it is not surprising that several synthetic proce-
dures have been reported for the synthesis of these valuable 

compounds via multicomponent reaction in the presence of 
different catalysts, such as BF3-Et2O [19], ZnCl2, AlCl3-SiO2 
[20], Yb(OTf)3 [21], KAl(SO4)2 · 12 H2O [22, 23], silica sul-
furic acid [24], sulfonic acid functionalized silica [25], aspar-
tic acid [26] and even an  ionic liquid [27].

Our research group focuses on the elaboration of new 
heterogeneous catalytic methods using supported metal 
catalysts for the synthesis of various organic compounds. 
We've previously demonstrated the efficacy of numer-
ous supported metal catalysts in a wide range of organic 
reactions providing the desired products with high yields, 
for instance 4Å molecular sieves (4A) supported lantha-
num [28, 29], titanium [30, 31], zinc [32], iron [33] and cop-
per catalysts  [34,  35]. Herein we report a method for the 
one-pot three-component synthesis of 1,2,3,4-tetrahydro- 
isoquinolinone-4-carboxylic acids in the presence of a hetero-
geneous, 4Å molecular sieves supported lanthanum catalyst.

The methods described in the literature mainly apply 
acidic type catalysts for the one-pot three-component prepa-
ration of 1,2,3,4-tetrahydroisoquinolinone-4-carboxylic 
acid derivatives. Only very few examples can be found for 
the base catalysed synthesis of these compounds [36, 37], 
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although such a method could be useful in case of acid sen-
sitive starting materials. Thus, the development of novel 
methods for the synthesis of tetrahydroisoquinolonic acid 
derivatives still has great importance. Our La3+/4A catalyst 
has slightly basic properties, its pH value is 8.40. As this 
catalyst successfully promoted the synthesis of 2,3-dihy-
droquinazolin-4(1H)-ones  [28] and polyhydro-quino-
lines [29], for the synthesis of which compounds acidic cat-
alysts were also mainly used, we examined the reaction of 
homophthalic anhydride, various aromatic aldehydes, and 
ammonium acetate or an aralkyl amine as nitrogen source 
in the presence of this La3+/4A catalyst.

2 Results and discussion
The structure and physicochemical properties of the 
La3+/4A catalyst has been described earlier [28]. The char-
acteristic cuboctahedron shape of the molecular sieve did 
not change after the impregnation with the lanthanum salt 
(see Fig.  1). The lanthanum is evenly distributed on the 
surface of the support. EDS showed 3.65 w/w% lanthanum 
on the surface, while the lanthanum content determined 
by ICP-OES was 3.88 w/w%. This verifies that lanthanum 
is distributed mostly on the surface. From the nitrogen 
adsorption/desorption measurements the specific surface 
of the catalyst is 35 m2/g.

To optimize the reaction conditions, we investigated the 
model reaction of homophthalic anhydride, 4-chlorobenz-
aldehyde and ammonium acetate in the presence of differ-
ent 4A supported metal catalysts under different reaction 
conditions. The results are summarized in Table 1.

Beside La3+/4A, In3+/4A and Zn2+/4A catalysts were 
tested in the model reaction in refluxing acetonitrile 
(entries 1–3). In these reactions large amount of starting 

material remained in the system even after 14  hours. 
Heating the components without solvent at 150  °C 
(entries  4–6), within about 1  h the reaction mixture 
partly solidified that impeded the proper stirring lead-
ing to lower yields. The best result was obtained using 
La3+/4A; thus, we chose this catalyst for our further inves-
tigations. Considerable amount of starting material could 
be detected by TLC and 1H NMR, when the reaction was 
carried out in ethanol or toluene (entries 7 and 8). Based 
on our previous experience in the synthesis of 2,4,5-tri-
aryl-imidazoles [31], where the reaction was started neat, 
then after 1 h a small amount of toluene was added to aid 
the stirring of the reaction mixture as the product precip-
itated, we applied this approach in this reaction as well. 
When xylene (mixture of isomers) was added after 1  h, 
the reaction mixture darkened, and decomposition prod-
ucts were found (entry 9). Then we conducted the reaction 
neat, 150 °C for an hour, then the temperature was reduced 
to 110 °C followed by the addition of 1 mL toluene, and 
the mixture was stirred for further 5  hours (entry  10). 
This way the desired product was formed with 99% yield. 
The optimal amount of ammonium acetate was also inves-
tigated (1 mmol, 1.1 mmol, 1.3 mmol and 1.5 mmol); the 
best result was obtained when 1.3 mmol was applied.

Fig. 1 SEM image of the catalyst

Table 1 Optimization of the reaction conditionsa

 
Entry Catalyst Reaction conditions Yield [%]b

1 La3+/4A CH3CN, reflux, 14 h –c

2 In3+/4A CH3CN, reflux, 14 h –c

3 Zn2+/4A CH3CN, reflux, 14 h –c

4 La3+/4A neat, 150 °C, 6 h 78

5 In3+/4A neat, 150 °C, 6 h 67

6 Zn2+/4A neat, 150 °C, 6 h 63

7 La3+/4A EtOH, reflux, 10 h 42

8 La3+/4A toluene, reflux, 10 h 38

9 La3+/4A neat, 150 °C, then 
xylenes, 140 °C, 9 h –d

10 La3+/4A neat, 150 °C, then 
toluene, 110 °C, 6 h 99e

a Reaction conditions: 1 mmol homophthalic anhydride, 1 mmol  
4- chlorobenzaldehyde, 1.5 mmol ammonium acetate, 0.1 g catalyst, 
3 mL solvent. In entries 9 and 10, 1 mL solvent was used.
b Isolated yield.
c The reaction was incomplete, large amount of starting material 
remained in the reaction mixture.
d Complex reaction mixture was formed.
e 1.3 mmol ammonium acetate was used.
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We examined the reaction using a wide range of aro-
matic aldehydes under the optimized reaction conditions. 
The  results are summarized in Table 2. Substituted aro-
matic aldehydes were reacted with homophthalic anhy-
dride and ammonium acetate in the presence of the La3+/4A 
catalyst to provide the corresponding 1,2,3,4-tetrahydro- 
isoquinolone-4-carboxylic acids with good to excellent 
yields. The ortho- and meta-substituted aldehydes gave 
generally lower yields (entries 2, 4, 9) that can be explained 
by steric effects. Using 3-tolylaldehyde, the desired prod-
uct was formed with good yield (entry 5) probably because 
of the smaller size of the methyl group. When benzalde-
hydes substituted in the para-position were used, the prod-
ucts were formed generally with good yields, except for 
4-methoxybenzaldehyde (entry 8). No significant substit-
uent effect could be observed in the reactions; aromatic 
aldehydes containing both electron-donating and elec-
tron-withdrawing groups gave similar results. Applying 
heteroaryl aldehydes, no product formation could be 
detected probably due to a polymerization-type side reac-
tion of the aldehydes.

To further investigate the scope of the reaction, we 
applied different aralkyl amines instead of ammonium 
acetate in the reaction. The results are shown in Table 3. 
In all cases, the desired products were formed with good 
yields, which prove the effectiveness of our method.

According to the reported mechanisms by Yu et al. [19] 
and Wang et al.  [21], we propose a plausible mechanism 
for the formation of the 1,2,3,4-tetrahydroisoquinolonic 

acid derivatives (Scheme 1). Though the bulk phase of the 
catalyst is slightly basic, lanthanum located at the surface 
of the 4A support forms acidic sites that may facilitate the 
reaction through coordination with the heteroatoms in the 
transition states. In the first step, the reaction of the alde-
hyde 2 with the amine component 3 affords an imine inter-
mediate  A, which is stabilized by the La3+/4A catalyst. 
Subsequently, the homophthalic anhydride 1 is activated 
by the catalyst, leading to intermediate B. The nucleop-
hilic attack of the nitrogen of the imine intermediate A on 
the carbonyl group of intermediate B provides intermedi-
ate C and finally the desired product 4.

In our previous experiments [28] it was shown that the 
La3+/4A catalyst was stable, no leaching of lanthanum 
during the reaction was observed. This was confirmed 
also in these experiments when the catalyst was filtered 
out from the reaction mixture and the filtrate was sub-
jected to an XRF examination.

 The reusability of the catalyst was also examined in 
the reaction of homophthalic anhydride, 4-chloro-benz-
aldehyde, and ammonium acetate. After 6  h reaction 
time, the reaction mixture was worked up as described in 

Table 2 Synthesis of 1-oxo-3-aryl-1,2,3,4-tetrahydroisoquinoline-4-
carboxylic acids catalyzed by La3+/4Aa

 
Entry R1 Product Yield [%]b

1 H 4a 65

2 3-Br 4b 40

3 4-Cl 4c 99

4 2-Me 4d 35

5 3-Me 4e 72

6 4-Me 4f 80

7 3-MeO 4g 78

8 4-MeO 4h 38

9 3-NO2 4i 30

10 4-NO2 4j 74
a Reaction conditions: 1 mmol homophthalic anhydride, 1 mmol 
aldehyde, 1.3 mmol ammonium acetate, 0.1 g catalyst, 150 °C, neat for 
1 h, then 1 mL toluene, 110 °C, further 5 h.
b Isolated yield.

Table 3 Synthesis of 3-aryl-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-
carboxylic acids from aminesa

 
Entry Amine Product Yield [%]b

1 Bn-NH2 4k 80

2 4-Cl-Bn-NH2 4l 75

3 Ph(CH2)2-NH2 4m 65

4 Ph(CH2)3-NH2 4n 62
a Reaction conditions: 1 mmol homophthalic anhydride, 1 mmol 
aldehyde, 1 mmol amine, 0.1 g catalyst, 150 °C, neat for 1 h, then 1 mL 
toluene, 110 °C, further 5 h.
b Isolated yield.

Scheme 1 Proposed mechanism of the reaction
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Experimental, then the catalyst was heated at ca. 150 °C 
for 1 h. It was reused in two more runs without signifi-
cant loss of its activity. The isolated yields in the two suc-
cessive runs were 97% and 94%, respectively, this clearly 
demonstrates the recyclability of the catalyst. ICP-OES 
examination of the used catalyst showed no significant 
loss in the lanthanum content (3.81%).

3 Experimental
3.1 General methods
Melting points were determined on a Gallenkamp appara-
tus and were uncorrected. 1H and 13C NMR spectra were 
made on a BRUKER Avance-500 instrument in DMSO-d6 
using TMS as an internal standard. 

All compounds and solvents were purchased from 
Merck Hungary Ltd.

3.2 Catalyst preparation
The catalyst was prepared according to the method 
described in  [28]; 1  mmol of La(NO3)3 · 6H2O was dis-
solved in 100 mL of deionised water and stirred with 1 g 
powdered 4A at room temperature for 24 h. The solid was 
filtered, washed with deionised water and with acetone, 
then dried in an oven at 150  °C for 1 h. Samples of the 
catalyst were heated at 120 °C for 1 h before the reactions.

3.3 General procedure for the synthesis of 3-substituted-
1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid 
derivatives
A typical reaction was carried out in a 10  mL flask. 
Homophthalic anhydride (0.16  g, 1  mmol), aldehyde 
(1  mmol), amine component (ammonium acetate (0.1  g, 
1.3 mmol) or aralkyl amine (1 mmol)) and La3+/4A (0.1 g) 
were stirred at 150 °C. After 1 h, the reaction mixture was 
cooled down to 110 °C and 1 mL toluene was added, then 
the mixture was stirred for further 5 h. The progression 
of the reaction was monitored by TLC. After completion 
(6 h), the mixture was cooled to room temperature and the 
catalyst was filtered out and washed with acetone, then 
the filtrate was evaporated. The residue was dissolved in 
5 mL dichloromethane and was extracted with 4 × 5 mL 
saturated sodium bicarbonate solution. The aqueous 
phases were combined, and the pH was adjusted to acidic 
(pH 2–3) with 25% HCl solution under vigorous stirring 
because of the gas evolution. The precipitated solid prod-
uct was filtrated off, washed with water, and dried in air 
overnight. The obtained product was pure and did not 

require further purification. The product was analyzed by 
1H and 13C NMR spectroscopy and by comparison of its 
melting point to literature value:

•	 1-Oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4-
carboxylic acid (4a):
White solid, m.p. 177–178 °C (lit.: 181–182 °C [26]). 
1H  NMR (500  MHz, DMSO-d6): δ  =  4.16 (s, 1H); 
5.11  (s, 1H); 7.11–7.21 (m, 6H); 7.31 (t, J = 7.0 Hz, 
1H); 7.37 (t, J = 6.5 Hz, 1H); 7.84 (d, J = 7.5 Hz, 1H); 
8.46 (d, J = 3.0 Hz, 1H); 12.98 (brs, 1H).

•	 3-(3-Bromophenyl)-1-oxo-1,2,3,4-tetrahydroiso-
quinoline-4-carboxylic acid (4b):
White solid, m.p. 178–180  °C (lit.: –). 1H  NMR 
(500 MHz, DMSO-d6): δ = 4.29 (s, 1H); 5.19 (s, 1H); 
7.23–7.47 (m, 8H); 7.90 (d, J = 7.8 Hz, 1H); 8.55 (d, 
J = 4.2 Hz, 1H); 13.01 (brs, 1H).

•	 3-(4-Chlorophenyl)-1-oxo-1,2,3,4-tetrahydroiso-
quinoline-4-carboxylic acid (4c):
White solid, m.p. 223–224 °C (lit.: 227–228 °C [26]). 
1H  NMR (500  MHz, DMSO-d6): δ  =  4.23 (s, 1H); 
5.17 (s, 1H); 7.26 (t, J = 8.0 Hz, 3H); 7.33 (d, J = 8.0 Hz, 
2H); 7.39 (t, J = 7.0 Hz, 1H); 7.46 (t, J = 7.0 Hz, 1H); 
7.89  (d, J = 7.0 Hz, 1H); 8.53 (d, J = 4.0 Hz, 1H); 
13.04 (brs, 1H). 13C  NMR (125  MHz, DMSO-d6): 
δ  =  50.5; 55.0; 127.2; 128.3; 128.6; 128.8; 129.3; 
129.7; 132.4; 132.6; 135.0; 140.8; 164.3; 172.6. Anal. 
Calcd. for C16H12ClNO3: C 63.68, H 3.98, N 4.64%, 
found: C 63.57, H 4.08, N 4.56%.

•	 1-Oxo-1,2,3,4-tetrahydro-3-o-tolylisoquinoline-4-
carboxylic acid (4d):
White solid, m.p. 166–168  °C (lit.: –). 1H  NMR 
(500  MHz, DMSO-d6): δ  =  2.44 (s, 3H); 4.05 (s, 
1H); 5.37 (s, 1H); 6.82 (d, J = 7.5 Hz, 1H); 6.99 (t, 
J = 7.0 Hz, 1H); 7.10 (t, J = 7.0 Hz, 1H); 7.17–7.24 (m, 
2H); 7.41–7.45 (m, 2H); 7.95 (d, J  =  6.5  Hz; 1H); 
8.29 (s, 1H); 13.08 (brs, 1H).

•	 1-Oxo-1,2,3,4-tetrahydro-3-m-tolylisoquinoline-4-
carboxylic acid (4e):
White solid, m.p. 198–200  °C (lit.: –). 1H  NMR 
(500 MHz, DMSO-d6): δ = 2.21 (s, 3H); 4.19 (s, 1H); 
5.11 (s, 1H); 6.96–7.00 (m, 2H); 7.05 (s, 1H); 7.13 (t, 
J  =  7.5  Hz, 1H); 7.25 (d, J  =  7.0  Hz, 1H); 7.37 (t, 
J  =  7.0  Hz, 1H); 7.44 (t, J  =  7.0  Hz, 1H); 7.88 (d, 
J = 7.0 Hz, 1H); 8.45 (d, J = 3.5 Hz, 1H); 12.95 (brs, 
1H). 13C NMR (125 MHz, DMSO-d6): δ = 20.8; 50.0; 
54.9; 122.9; 126.4; 126.5; 127.5; 127.7; 128.0; 128.8; 
129.0; 131.7; 134.4; 137.3; 141.1; 163.7; 172.1.
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•	 1-Oxo-1,2,3,4-tetrahydro-3-p-tolylisoquinoline-4-
carboxylic acid (4f):
White solid, m.p. 200–201 °C (lit.: 203–204 °C [26]). 
1H  NMR (500  MHz, DMSO-d6): δ  =  2.19 (s, 3H); 
4.16 (s, 1H); 5.12 (s, 1H); 7.05 (d, J = 7.5 Hz, 2H); 
7.09 (d, J  =  7.5 Hz, 2H); 7.24 (d, J  =  7.0 Hz, 1H); 
7.37  (t, J  =  7.0  Hz, 1H); 7.43 (t, J  =  7.0  Hz, 1H); 
7.88 (d, J = 7.5 Hz, 1H); 13.00 (brs, 1H). 13C NMR 
(125  MHz, DMSO-d6): δ  =  20.5; 50.5; 55.0; 126.0; 
126.6; 127.7; 128.9; 129.0; 129.3; 131.9; 134.8; 136.4; 
138.4; 164.0; 172.5.

•	 3-(3-Methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroiso-
quinoline-4-carboxylic acid (4g):
White solid, m.p. 197–198  °C (lit.: –). 1H  NMR 
(500 MHz, DMSO-d6): δ = 3.66 (s, 3H); 4.23 (s, 1H); 
5.12 (s, 1H); 6.74–6.77 (m, 3H); 7.17 (t, J = 7.5 Hz, 1H); 
7.26 (d, J = 7.2 Hz, 1H); 7.37–7.47 (m, 2H); 7.88 (d, 
J = 7.2 Hz, 1H); 8.48 (d, J = 4.2 Hz, 1H); 12.99 (brs, 
1H). 13C NMR (125 MHz, DMSO-d6): δ = 49.8; 54.7; 
111.9; 112.1; 118.0; 126.3; 127.5; 128.7; 129.1; 129.2; 
131.7; 134.5; 142.8; 158.9; 163.6; 172.0. Anal. Calcd. 
for C17H15ClNO4: C 68.67, H 5.05, N 4.71%, found: 
C 68.53, H 5.13, N 4.63%.

•	 3-(4-Methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroiso-
quinoline-4-carboxylic acid (4h):
White solid, m.p. 233–234 °C (lit.: 235–236 °C [26]). 
1H  NMR (500  MHz, DMSO-d6): δ  =  3.67 (s, 3H); 
4.16 (s, 1H); 5.09 (s, 1H); 6.81 (d, J = 8.5 Hz, 2H); 
7.12 (d, J  =  8.5 Hz, 2H); 7.25 (d, J  =  7.0 Hz, 1H); 
7.38  (t, J  =  7.0  Hz, 1H); 7.45 (t, J  =  7.0  Hz, 1H); 
7.89  (d, J = 7.5 Hz, 1H); 8.44 (d, J = 3.5 Hz, 1H); 
12.93 (brs, 1H).

•	 3-(3-Nitrophenyl)-1-oxo-1,2,3,4-tetrahydroiso-
quinoline-4-carboxylic acid (4i):
White solid, m.p. 194–195  °C (lit.: –). 1H  NMR 
(500 MHz, DMSO-d6): δ = 4.38 (s, 1H); 5.33 (s, 1H); 
7.29 (d, J = 7.2 Hz, 1H); 7.38–7.50 (m, 2H); 7.59 (t, 
J =  7.8  Hz; 1H); 7.72 (d, J  =  7.5  Hz, 1H); 7.91 (d, 
J = 6.9 Hz, 1H); 8.07 (d, J = 8.1 Hz, 1H); 8.12 (s, 1H); 
8.67 (d, J = 4.2 Hz, 1H); 13.07 (brs, 1H).

•	 3-(4-Nitrophenyl)-1-oxo-1,2,3,4-tetrahydroiso-
quinoline-4-carboxylic acid (4j):
Yellow solid, m.p. 220–221  °C (decomp.) (lit.: –). 
1H  NMR (500  MHz, DMSO-d6): δ  =  4.32 (s, 1H); 
5.32 (s, 1H); 7.27 (d, J = 6.9 Hz, 1H); 7.40–7.47 (m, 
2H); 7.52 (d, J = 8.7 Hz, 2H); 7.90 (d, J = 7.2 Hz, 1H); 
8.13 (d, J = 8.7 Hz, 2H); 8.64 (d, J = 4.5 Hz, 1H); 
13.09 (brs, 1H). 13C  NMR (125  MHz, DMSO-d6): 
δ = 31.2; 50.2; 55.2; 124.1; 127.3; 128.1; 128.5; 129.2; 

129.9; 132.7; 134.7; 147.2; 149.5; 164.3; 172.3. Anal. 
Calcd. for C16H12N2O5: C  62.54, H  3.85, N  8.97%, 
found: C 62.56, H 3.76, N 8.86%.

•	 2-Benzyl-3- (4 -ch lorophenyl) -1-oxo-1,2 ,3,4 -
tetrahydroisoquinoline-4-carboxylic acid (4k):
White solid, m.p. 178–179 °C (lit.: 180–181 °C [22]). 
1H  NMR (500  MHz, DMSO-d6): δ  =  4.01 (d, 
J = 15.0 Hz, 1H); 4.09 (s, 1H); 5.17 (d, J = 15.0 Hz, 
1H); 5.33 (s, 1H); 7.04 (d, J  =  8.0  Hz, 2H); 7.20–
7.28  (m, 9H); 7.43 (t, J  =  5.5  Hz, 2H). 13C  NMR 
(125  MHz, DMSO-d6): δ  =  49.6; 51.3; 61.0; 127.0; 
127.7; 127.9; 127.9; 127.9; 128.1; 128.5; 128.8; 129.5; 
131.9; 132.0; 134.0; 137.1; 138.5; 163.5; 172.1.

•	 2-(4-Chlorobenzyl)-3-(4-chlorophenyl)-1-oxo-
1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (4l):
White solid, m.p. 255–256 °C (lit.: 258–260 °C [4]). 
1H  NMR (500  MHz, DMSO-d6): δ  =  3.96 (d, 
J = 15.0 Hz, 1H); 4.12 (s, 1H); 5.18 (d, J = 15.0 Hz, 
1H); 5.31 (s, 1H); 7.06 (d, J  =  8.4  Hz, 2H); 7.21–
7.23 (m, 1 H); 7.29–7.32 (m, 6H); 7.44 (t, J = 3.3 Hz, 
2H); 7.98–8.01 (m, 1H); 12.99 (brs, 1H). 13C NMR 
(125  MHz, DMSO-d6): δ  =  31.2; 49.3; 51.0; 61.1; 
127.5; 128.5; 128.6, 129.1; 129.2; 130.1; 13.6; 132.3; 
132.6, 132.7, 133.9; 136.8; 138.6; 163.8; 172.3.

•	 3-(4-Chlorophenyl)-1-oxo-2-phenylethyl-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic acid (4m):
White solid, m.p. 196–198  °C (lit.: –). 1H  NMR 
(500  MHz, DMSO-d6): δ  =  2.76–2.78 (m, 1H); 
3.03–3.09  (m, 1H); 4.11–4.15 (m, 1H); 4.2 (s, 1H); 
5.5.7 (s, 1H); 7.13 (d, J = 8.0 Hz, 2H); 7.19–7.21 (m, 
1H); 7.21–7.32 (m, 7H); 7.39–7.45 (m, 2H); 7.95 (d, 
J = 6.5 HZ, 1H); 13.10 (brs, 1H). 13C NMR (125 MHz, 
DMSO-d6): δ = 33.6; 48.0; 50.4; 60.2; 126.2; 126.8; 
127.9; 128.1; 128.4; 128.5; 128.6; 128.9; 129.6; 131.9; 
132.1; 133.5; 138.6; 138.9; 162.7; 171.9. Anal. Calcd. 
for C24H20ClNO3: C 74.02, H 4.93, N 3.45%, found: 
C 73.88, H 4.81, N 3.31%.

•	 3-(4-Chlorophenyl)-1-oxo-3-phenylpropyl-1,2,3,4-
tetrahydroisoquinoline-4-carboxylic acid (4n):
White solid, m.p. 160–162  °C (lit.: –). 1H  NMR 
(500 MHz, DMSO-d6): δ = 1.83–1.86 (m, 2H); 2.51–
2.56 (m, 2H); 2.84–2.87 (m, 1H); 3.45 (s, 1H); 3.87–
3.89 (m, 1H); 5.52 (s, 1H); 7.02–7.29 (m, 12H); 7.86 (d, 
J  =  6.9  Hz, 1H). 13C  NMR (125  MHz, DMSO-d6): 
δ = 29.7; 33.3; 46.6; 55.4; 62,6; 126.1; 126.3; 126.6; 
128.2; 128.7; 128.9; 130.5; 131.2; 131.9; 138.7; 141.9; 
142.5; 163.8; 172.6. Anal. Calcd. for C25H22ClNO3: 
C  71.34, H  5.23, N  3.33%, found: C  71.16, H  5.27, 
N 3.21%.
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