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Abstract

The sensing of formaldehyde, one of the volatile organic compounds used in chemical processes, is very important. In this study, 

the adsorption and sensing of formaldehyde molecule on Pd4 nanocluster decorated carbon nanotube (Pd4-CNT) was investigated 

by using DFT method. The WB97XD hybrid method was used in DFT calculations. The adsorption energy value was calculated as 

−8.1 kJ/mol. This low adsorption energy confirms the very short recovery time and the predominance of weak interactions. There was 

a decrease of approximately 20% in the HOMO-LUMO gap after the interaction. This result shows that the Pd4-CNT can be used as a 

sensor at room temperature.
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1 Introduction
Formaldehyde (HCHO) is one of the remarkable vola-
tile organic compounds with high chemical reactivity 
and thermal stability used as an intermediate in chemi-
cal processes [1]. HCHO, which is highly toxic and vola-
tile gas, is one of the leading indoor air pollutants [2, 3]. 
In addition to its use in constructive and decorative mate-
rials, it is practiced in pharmacology, medicine and other 
chemical industries [1–4]. Exposure to formaldehyde over 
100 ppb may cause serious disturbances in the respiratory 
system, eyes, nose, throat, nervous and endocrine sys-
tems [5]. For this reason, the detection of formaldehyde 
is part of today's research [5, 6]. Functional nanomaterials 
can improve the sensing sensitivity of sensors, shorten the 
sensing time, and further stabilize the physical and chemi-
cal properties of sensors, significantly improving the sens-
ing performance of sensors [7–9]. Nanomaterials such 
as graphene [10], phosphorene [11], boron nitride nano-
cage [12], MoS2 [13], and CNT [14], have been studied for 
detection and adsorption. 

CNTs, with their excellent physical and mechani-
cal properties, are used in the detection and adsorption 
of gases such as NO [15], NO2 [16], CO [17], NH3 [18], 
and HCHO [14]. However, it was found that the ability 
of pristine CNT to detect and adsorb gases is poor due 

to the Van der Waals interaction [19]. Hence, the stud-
ies have intensified to increase the ability to detect and 
sorption gases by modifying CNT with metals [20–22]. 
Zhou et al. [20] discovered that Al doped CNT had stron-
ger adsorption/interaction than defected CNT and charge 
transfer from CNT to HCHO. In another formaldehyde 
adsorption study, the doping of Pd and Si atoms signifi-
cantly improved the adsorption energy and electrical con-
ductivity of CNT [23]. Especially, Pd atom strongly affects 
the chemical reactivity of support materials against gases, 
thanks to their high catalytic activity. So, the modifica-
tion with Pd atom increases the interaction as well as 
improves the charge transfer process [24, 25]. In order 
to increase the catalytic effect of Pd atom, it is common 
to use nanoclusters in adsorption and catalytic studies of 
gases such as CO [26], CO2 [27], NO [28], H2 [29], and 
HCHO. Manna et al. [30] investigated HCHO adsorption 
in structures formed by functionalization of Pt, Au and Ag 
clusters on reduced graphene oxide (RGO). Additionally, 
in the research of the dehydrogenation mechanism of 
formaldehyde by DFT (density functional theory) method 
on Pt4 cluster, the energy barrier value being less than 
14 kcal/mol indicates the high catalytic feature of the Pt4 
cluster [31]. Considering the success of the use of noble 
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metals in literature, it is thought that the use of Pd4 cluster 
as formaldehyde adsorbent will be successful. In addition, 
Cuong et al. [32] revealed that the most stable state of the 
Pt4 nanocluster on CNT was the tetrahedral form used in 
this study. Another study in which the methane molecule 
was adsorbed was carried out by decorating Pt4 and Pd4 
nanoclusters on CNT in tetrahedral form [33]. 

In this study, the adsorption and sensing properties 
of HCHO on Pd4 tetrahedral nanocluster decorated CNT 
structure were investigated by DFT method.

2 Computational methods
The DFT method was used to perform the theoretical cal-
culations in this study [34]. Gaussian09 software was used 
for all theoretical calculations [35]. The WB97XD (includ-
ing dispersion) hybrid approach was used to account for 
the effects of exchange and correlation in DFT calcula-
tions [36]. The zigzag model (6,0) [35] single-wall CNT 
(SWCNT) structure (semi-metallic tube) which has been 
modeled as the cluster including 108 carbon atoms with 
48 honeycomb rings has been utilized for DFT calcula-
tions in this research. Hydrogen (H) atoms are attached 
to the ends of the free carbon bonds of the nanotube. Pd4 
tetrahedral nanocluster was placed or decorated on the 
surface of the CNT structure. All atoms have been kept 
relaxed during all theoretical calculations utilized in 
this study. While the basis set of 6-31G(d,p) was utilized 
or the C, O and H atoms, the LANL2DZ basis set was 
used for Pd atoms. 6-31G(d,p) basis set for C, H and O 
atoms [37–39] and LANL2DZ basis set for metal atoms 
including Pd atom [38, 40, 41] are widely used in the lit-
erature. In addition, Yu et al. [39] proved that the results 
obtained by using 6-31G(d,p) basis set for the fenton reac-
tion on the rGo-4-PP-Nc structure were in agreement with 
the experimental data. Equilibrium geometries (EGs) and 
energies were obtained as a result of DFT calculations. 
In present study, the correction for basis-set superposi-
tion error (BSSE) which have been utilized by the coun-
terpoise method has not been taken into account in theo-
retical calculations utilized since this error generally gives 
small effects on these type DFT calculations. It has been 
reported in a theoretical study where DFT calculations 
have been utilized for carbon nanosheet, nanocone, nano-
tube and fullerene structures that the BSSE correction for 
the WB97XD hybrid method with 6-31G(d) basis set has 
been calculated as quite small (it has been approximately 
reported as 1 kcal/mol more negative) and the BSSE does 
not play important role [42, 43]. Furthermore, it has been 

stated in the literature that the BSSE has an effect in the 
range of 0.5–2 kcal/mol in DFT calculations and the BSSE 
is more important for MP2 theory levels [44, 45]. On the 
other hand, in present study, zero point energy (ZPE) cor-
rections for energy values have been taken into account. 
These energy values were computed as follows: 

E E E E E� � � � �
electronic vibrational rotational translational

ZPE ,  (1)

H E RT� � .  (2)

Here E stands for the sum of electronic, zero-point, and 
thermal energies, H stands for the sum of electronic and ther-
mal enthalpies, R is the global ideal gas constant, and T is 
temperature (298.15 K). Below equation was utilized to cal-
culate the relative adsorption energy and adsorption enthalpy 
values for formaldehyde adsorption on Pd4-CNT structure.

� E H E H E H E H� � � � � � � � � � ��� ��System Formaldehyde Pd -CNT4

 

(3)

(E/H)System , (E/H)Formaldehyde and (E/H)Pd4-CNT were the ther-
mal/enthalpy energy of adsorbate on the structure, formal-
dehyde molecule and the Pd4-CNT structure, respectively. 
The convergence criteria applied in DFT calculations uti-
lized in Gaussian software are 18 × 10−4 bohr for max dis-
placement, 12 × 10−4 radian for gradients of root-mean-
square (rms) displacement, 45 × 10−5 hartree/bohr for max 
force and 3 × 10−4 hartreee/radian for rms force during 
DFT computations utilized in this study. In addition, the 
SCF convergence criteria applied in DFT calculations 
utilized in Gaussian09 software [35] for rms change in 
the density matrix and maximum change in the density 
matrix were 1 × 10−8 and 1 × 10−6, respectively. Moreover, 
no imaginary (negative) frequency was found in Hessian 
matrix for all DFT calculations. Multiwfn software has 
been used to obtain the Reduced Density Gradient (RDG) 
scatter graphs and isosurfaces of RDGs [46]. The Density 
of States (DOS) plots have been received by GaussSum 
software [47]. Additionally, NBO atomic charges were 
obtained by using Natural Bond Orbital (NBO) popula-
tion analysis. The cartesian coordinates of all structures 
are given in Supplementary Material.

3 Results and discussion
HCHO molecule adsorption on CNT structure deco-
rated with Pd4 nanocluster was investigated using DFT 
calculations. First of all, in order to obtain the EG of the 
CNT structure, DFT calculations utilizing different Spin 
Multiplicity (SM) values were made by taking the total 
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charge as zero. The SM of the CNT structure was deter-
mined as singlet. After the CNT structure was optimized, 
four Pd atoms were attached on its surface in tetrahedral 
form by DFT calculation utilizing triplet SM. Then the 
Pd4-CNT structure was also optimized. The optimized 
geometries of the pristine CNT and Pd4-CNT structures 
were obtained, and they are shown in Fig. 1.

When the structural parameters in the optimized struc-
ture obtained by decorating the Pd4 cluster on the CNT 
were examined, the Pd-Pd bond lengths in the Pd4 clus-
ter were calculated to be 2.67 Å and 2.71 Å, and the Pd-C 
bond lengths were computed as 2.06, 2.13 and 2.13 Å. 
These structural characters are in agreement with the 
values found in the other Pd4-CNT studies (2.65 Å [48], 
and 2.67 Å [49], for Pd-Pd bond lengths and 2.08 Å [48], 
for Pd-C bond length). The CNT structures used in these 
studies are (8,0) SWCNT and (5,5) SWCNT.

After the EG of the Pd4-CNT structure was obtained, 
the HCHO molecule was attached to the Pd4 surface of 
Pd4-CNT structure. The optimized geometry of the 
HCHO/Pd4-CNT system was obtained by performing 
DFT calculations and it is represented in Fig. 2. After 
HCHO adsorption, the adsorption energy (∆E) was calcu-
lated as −8.1 kJ/mol and the adsorption enthalpy (∆H) was 
computed to be −10.5 kJ/mol. This result shows that the 
HCHO molecule adsorption on the Pd4-CNT structure is 
an exothermic process at ambient conditions. For the opti-
mized HCHO molecule, the C=O and C-H bond lengths 

are 1.20 and 1.11 Ǻ. These values are in agreement with 
the results in the literature [50, 51]. After the adsorp-
tion process, the C=O and C-H bond lengths of HCHO 
molecule were found to be 1.26 and 1.10 Ǻ, respectively. 
The elongation of the C=O bond after adsorption indicates 
the effect of the interaction. Additionally, the frequency 
values of νCO , νCH2 (rock) and νCH2 (wag) in the gas phase 
of HCHO were calculated as 1856, 1266 and 1198 cm−1, 
respectively. The harmony of these frequencies with the 
experimentally found values is remarkable (νCO : 1746, 
νCH2 (rock): 1249 and νCH2 (wag): 1167 cm−1) [52]. After 
adsorption of HCHO on Pd4-CNT structure, the frequen-
cies of νCO , νCH2 (rock), νCH2 (wag) were obtained as 1612, 
1222 and 1051 cm−1. These results support the interaction 
found between HCHO and Pd4-CNT structure.

Carneiro and Cruz [53] found the adsorption energy of 
−55.2 kJ/mol for the HCHO adsorption on the Pd4 tetrahe-
dral cluster with the DFT method. The adsorption energy 
of HCHO on the Pd (111) surface was experimentally 
found in the range of −50.2 to −61.1 kJ/mol [54]. In addi-
tion, the energy value of HCHO on Pd doped CNT was 
reported as −112.9 kJ/mol [23]. Considering these results 
in the literature, it is seen that the Pd4 nanocluster and the 
Pd doped CNT structure give better adsorption results 
with respect to sensor applications. The reason why the 
Pd4 nanocluster on the CNT gives worse adsorption values 
than the single Pd atom on the CNT is due to the inter-
action of the Pd atoms with each other. Additionally, the 
reason why the Pd4 nanocluster gives better results with-
out the CNT structure is due to the interaction of the Pd4 
nanocluster and the CNT structure. B3LYP hybrid method 
was used in the study of Carneiro and Cruz [53]. To com-
pare the methods and to see if the Pd4 nanocluster really 
supports the CNT structure in the adsorption processes; 
HCHO adsorption was carried out on the Pd4 nanocluster. 
The EG of HCHO on Pd4 is shown in Fig. 3.

(a)

(b)

Fig. 1 The optimized geometries of (a) the pristine CNT structure and 
(b) Pd4-CNT structure

Fig. 2 The optimized geometry of HCHO/Pd4-CNT system
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Because of the calculations, the ∆E value was calcu-
lated as −58.4 kJ/mol and the ∆H value as −60.8 kJ/mol. 
As mentioned before, the adsorption energy was reported 
as −55.2 kJ/mol on Pd4 tetrahedral cluster in a theoretical 
study [53]. The reason for small difference between the 
results (−58.4 kJ/mol vs. −55.2 kJ/mol) was using different 
DFT methods (WB97XD vs B3LYP). As stated also before, 
the WB97XD method includes the dispersion effects. 
It takes into account the London dispersion forces result-
ing from instantaneous dipoles. Thus, the results were 
close to each other with the WB97XD hybrid method and 
the B3LYP hybrid method. Certainly, the WB97XD and 
B3LYP hybrid methods are different hybrid methods. It may 
be more accurate to compare the WB97XD and WB97X 
(without dispersion) and B3LYP and B3LYP-D3 (with dis-
persion) methods among themselves. But the difference 
between the B3LYP-D3 method and the WB97XD method 
is very small. Mounssef et al. [55] performed H2 adsorp-
tion on two different clusters (6MR and 8MR clusters) 
of Cu-SSZ-13 zeolite and calculated their energy values. 

The adsorption energies on the 6MR cluster were calcu-
lated as −5.0 kcal/mol and −4.8 kcal/mol for the B3LYP-D3 
and WB97XD methods, respectively. For the 8MR clus-
ter, these values were determined as −15.0 kcal/mol  
and −14.8 kcal/mol [55]. According to these results, we 
can see the WB97XD and B3LYP-D3 hybrid methods as 
similar methods. Therefore, we can say that the differ-
ence between the WB97XD and B3LYP methods is the 
dispersion effects. In addition, the binding energy of the 
Pd4 nanocluster to the CNT structure was calculated as 
−351.2 kJ/mol. This value shows that Pd4-CNT is a very 
stable structure. 

The effect of the Hartree-Fock (HF) percentages of the 
functionals is another important issue. Range Separated 
(RS) functionals vary the percentage of HF and DFT 
exchange for long-range and short-range interactions and 
are used in cases involving charge transfer excitation. 
WB97XD is an example of RS functionals. WB97XD 
is comprised of 22% HF exchange at the short range and 
100% HF at the long range [56]. Global hybrid function-
als use a constant percentage (20% for B3LYP) of exact 
HF exchange for both short-range and long-range. Since 
short-range interaction took place in this study, the HF 
percentages of the WB97XD and B3LYP functions are 
very close. Considering the energy results and the disper-
sion effects of the WB97XD method, we can say that the 
effect of these two functionals is the same when the HF 
percentages are the same. 

In order to reveal the importance of the CNT struc-
ture, HCHO adsorption was also performed on the pris-
tine CNT structure. The EG of HCHO on pristine CNT is 
shown in Fig. 4. According to the result of the adsorption 
study, the ∆E value was calculated as −12.4 kJ/mol and the 
∆H value was computed to be −14.9 kJ/mol for HCHO on 
pristine CNT. These results show that the CNT structure 
and the Pd4 nanocluster reduce each other's adsorption 
abilities, especially the CNT structure is more dominant 
in this negative effect.

(a)

(b)

Fig. 3 The optimized geometries of (a) Pd4 tetrahedral nanocluster and 
(b) HCHO adsorbed Pd4 tetrahedral nanocluster

Fig. 4 The optimized geometry of HCHO adsorbed pristine CNT
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HOMO (Highest Occupied Molecular Orbital) and 
LUMO (Lowest Unoccupied Molecular Orbital) energies 
were calculated and the change in HOMO-LUMO gap 
energy ( Eg ) values were analyzed to evaluate the elec-
tronic characteristics of Pd4-CNT structure, Pd4 nano-
cluster and CNT structure against HCHO molecule. Thus, 
the electronic sensor property of the Pd4-CNT structure 
was determined and the effects of the Pd4 nanocluster 
and the CNT structure were also revealed in this study. 
The HOMO and LUMO energies, Eg , ΔEg and %ΔEg val-
ues of the Pd4-CNT structure, Pd4 nanocluster and pristine 
CNT structure before and after adsorption are tabulated in 
Table 1 for both α and β of the molecular orbitals (spin up 
and spin down, respectively).

The Eg value is calculated using Eq. (4): 

Eg � � 
LUMO HOMO

.  (4)

Changes in the Eg values of the constructs indicate 
approximately 20% reduction in the Pd4-CNT structure. 
This magnitude reduction indicates that the Pd4-CNT 
structure could be an electronic sensor against the HCHO 
molecule. On the other hand, the pristine CNT structure 
and Pd4 nanocluster were virtually unchanged. Thus, it 
has been revealed that the Pd4 nanocluster and the pristine 
CNT structure cannot be electronic sensors separately, and 
they come together and change their electronic properties. 
Because Eg has been shown many times to be a good indi-
cator for determining the sensitivity of nanosensors [57]. 
There is also a relation between Eg and electrical conduc-
tivity (σ), which has also been mentioned [58, 59]: 

� �� � � ��� ��AT E Tg
3 2

2exp . (5)

Here κ is the Boltzmann's constant, A (electrons/m3K3/2) 
is a constant value and T is temperature. Equation (5) 
points to that the reducing in Eg increases the population 
of conduction electrons exponentially. Therefore, because 
of the chemical which is existed in the environment, it 
causes an increase in electrical conductivity. The sensor 
response factor (R) is defined in Eq. (6) to predict the mag-
nitude of the electrical change [60]: 

R E E T

E T

g g

g

� � � �� � � �� ��
�

�
�

� �� �
� � �

�

2 1 2 1
2

2

exp

exp �
. (6)

Here σ1 and σ2 are the electrical conductivity signals 
of the Pd4-CNT structure and HCHO adsorbed Pd4-CNT 
structure, respectively. It was determined that the R val-
ues calculated for α and β molecular orbitals and the ΔEg 
values were proportional. Accordingly, the R values are 
6.93 and 3.79 × 106 for α and β, respectively. According to 
this result, it can be said that the Pd4-CNT structure has a 
high sensitivity to the HCHO molecule. In addition, NBO 
atomic charge distributions were calculated in this study. 
After HCHO on the Pd4-CNT structure, the NBO total 
charge of the HCHO molecule was calculated as −0.200e. 
While the NBO total charge of the Pd4 nanocluster in 
the Pd4-CNT structure was +0.399e before adsorption, it 
was calculated as +0.501e after HCHO adsorption. These 
results indicate that the charge transfer is occurred from 
the HCHO molecule to the Pd4 nanocluster on the surface 
of the CNT structure. 

The HOMO-LUMO representations of Pd4-CNT struc-
ture and HCHO adsorbed Pd4-CNT structure have been 
presented in Figs. 5 and 6. As shown in Figs. 5 and 6, the 
most significant interaction between the Pd4-CNT struc-
ture and the HCHO molecule after adsorption occurs in 
the β MOs spin. It is also the spin at which Eg decreases the 
most. In addition, the presence and changes of HOMOs 
and LUMOs around the Pd4 nanocluster before and after 
adsorption reveals the importance of the Pd4 nanocluster 
for the interaction with HCHO molecule.

Chemical hardness (η), chemical potential (µ), elec-
tronegativity (χ) and electrophilicity (ω) values of the  
Pd4-CNT structure were calculated and listed in Table 2. 
After adsorption, the chemical hardness of the Pd4-CNT 
structure slightly decreased. Thus, it has become a softer 
structure. The increase in the chemical potential of the 
structure shows that there is a slight increase in the chem-
ical reactivity, and the decrease in the electronegativ-
ity at the same rate indicates that the stability is slightly 

Table 1 Electronic properties of HCHO adsorbed Pd4-CNT structure, 
Pd4 nanocluster and pristine CNT structure (values are in units of kJ/mol)

Structure ϵHOMO ϵLUMO Eg ΔEg %ΔEg

Pd4

α MOs −708.6 −35.6 673.0 – –

β MOs −669.9 −115.8 554.0 

HCHO/Pd4

α MOs −729.4 −63.2 666.8 −6.8 −1.0 

β MOs −711.8 −150.3 561.5 7.5 1.3

Pd4-CNT
α MOs −569.1 −194.1 374.9 – –

β MOs −584.3 −192.3 391.9

HCHO/
Pd4-CNT

α MOs −577.5 −212.2 365.2 −9.6 −2.5

β MOs −527.1 −210.7 316.3 −75.6 −19.2

Pristine 
CNT α + β MOs −432.7 −238.8 194.3 – –

HCHO/
Pristine 
CNT

α + β MOs −432.8 −239.9 192.9 −1.4 −0.7
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decreased. The electrophilicity of the structure, which 
refers to the sensor property, is in a significant increase.

The density of states (DOS) of Pd4-CNT structure and 
HCHO molecule adsorbed Pd4-CNT structure have been 
presented in Fig. 7. The DOS plots show the changes in the 
Eg for both α MOs and β MOs. Accordingly, the decrease 
in Eg , especially the decrease in β MOs, is very clearly 
seen. This result implies that the electrical conductivity 
increases in the Pd4-CNT structure after HCHO adsorp-
tion. The sensor capabilities of CNT structures in humid-
ity mediums have been investigated in previous research. 
CNT structures functionalized with MoSe2 were found to 
be sensitive to dimethylformamide and ammonia in humid-
ity environment studies [61, 62]. In addition, Liu et al. [63] 

experimentally observed that the carbon nanotube-based 
sensor is capable of successfully detecting formaldehyde 
in relative humidity environments. These results show that 
the Pd-doped CNT structure will also give good results 
under humidity conditions.

Table 2 The η, µ, χ and ω values for the optimized Pd4-CNT before and 
after HCHO adsorption (values are in units of kJ/mol)

Structure  η µ χ ω

Pd4-CNT
α MOs 187.47 −381.66 381.66 388.50

β MOs 195.95 −388.35 388.35 384.81

HCHO/Pd4-CNT
α MOs 182.64 −394.86 394.86 462.83

β MOs 158.16 −368.93 368.93 430.29

Fig. 5 HOMO/LUMO distributions for the Pd4-CNT structure

Fig. 6 HOMO/LUMO distributions for the HCHO/Pd4-CNT system
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The analysis for reduced density gradient (RDG) has 
been proposed by Johnson et al. [64], which allows obtain-
ing the type of interactions occur between two species. 
RDG analysis has been used to examine the many non-co-
valent interactions remaining in the molecules, the reduced 
gradient of the density as a function of the electron den-
sity multiplied by the sign of the second eigenvalue of the 
matrix of Hessian matrix. The greatest eigenvalue in the 
Hessian matrix is known to be λ2 . It describes the variations 
of the density in the vicinity of the critical point. It could be 
used to differentiate between the different kinds of nonco-
valent interactions. Fig. 8 presents RDG scatter graph and 
isosurface of RDG for HCHO adsorbed on Pd4-CNT struc-
ture. Strong attractive interactions, weak interactions and 
repulsive interactions have been represented in blue color, 
in green color and in red color, respectively. Based on the 

RDG analysis, VdW interactions are shown with near-zero 
values marked in green. The RDG scatter plot and isosur-
face map tells us that the interaction between the HCHO 
molecule and the Pd4-CNT structure is typically governed 
by weak VdW-type interactions. 

Likewise, the electrostatic potential (ESP) distribution 
map for the Pd4-CNT structure and the HCHO/Pd4-CNT 
system is presented in Fig. 9. The positive and negative 
areas of the Van der Waals surface are defined in blue and 
red colors on the ESP maps [64, 65]. The ESP decreases by 
different colors in order to red < yellow < blue. According 
to Fig. 9, it is seen that red colors are formed on the side of 

(a)

(b)

Fig. 8 RDG analysis (a) RDG scatter graph for optimized geometry 
of HCHO/Pd4-CNT system and (b) isosurface of RDG for optimized 

geometry of HCHO/Pd4-CNT system

(a)

(b)

Fig. 7 The DOS plots for the (a) Pd4-CNT structure and  
(b) HCHO/Pd4-CNT system
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the HCHO molecule after adsorption. Therefore, it shows 
that the ESP decreases and negative fields are formed on 
the side of the HCHO. This result refers to the negative 
total charge of the HCHO in charge transfer.

There is a relationship between the adsorption energy 
and desorption of the adsorbate. The greater the adsorp-
tion energy, the longer the traditional transition theory 
predicts a recovery time. Equation (7) can be used to 
explain this situation: 

� � �� � � �� ��
0

1
exp E Tad . (7)

Here the recovery time is τ , adsorption energy is Ead , 
adsorption temperature is T (298.15 K), κ is the constant of 
Boltzmann (~8.368 × 10−3 kJ/mol) and the ν0 is attempt fre-
quency (~1012 s−1) [16]. More negative Ead values increase 
the recovery times exponentially, according to Eq. (7). 
The recovery time was calculated as 10−10 s for Pd4-CNT 
structure. This is an expected result due to the low Ead .

4 Conclusions
In this study, HCHO on Pd4-CNT structure was investi-
gated by DFT method. The results show that the Pd4-CNT 
structure with negative adsorption energy can be used as 
an adsorbent. In addition, it was revealed that a Pd4 nano-
cluster was decorated into the CNT structure and lower 
adsorption energy was found in the study. This result 
shows that Pd atoms interact with each other in the Pd4 
nanocluster. According to the sensor properties obtained 
by DFT calculations, it shows ~20% reduction in Eg of 
the Pd4-CNT structure, so that it can be used as a sensor 
against HCHO molecule at room conditions. In addition, 
it was determined that Van der Waals interactions were 
effective between the Pd4-CNT structure and the HCHO 
molecule. The effects of Pd4 nanocluster and CNT struc-
ture on this powerful sensor property were also investi-
gated. In the studies performed with the Pd4 nanocluster 
and the pristine CNT structure, no sensor properties were 
observed. Thus, it was observed that the Pd4 nanocluster 
and the CNT structure came together and changed their 
electronic properties positively and supported each other. 
It has been consequently mentioned that carbon structures 
decorated with nanoclusters will give better sensor prop-
erties in detecting formaldehyde-like chemicals.
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