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Abstract

Biosurfactants are emerging molecules in the 21st century. However, their production intensification is still required for the development 

of feasible bioprocesses. Therefore, this paper studies a new biosurfactant-producer, namely Geobacillus stearothermophilus DSM2313 

during statistical optimization via response surface methodology. After the statistical analysis the optimal pH = 7, glucose = 50 g/L and 

NH4NO3 = 2 g/L concentrations were determined. The biosurfactant production of the bacteria was predicted by our developed artificial 

neural network. The optimal harvesting time of the broth and the emulsification index values can be predicted simultaneously with the 

constructed artificial neural network. The best experiment was also kinetically described, and kinetic constants observed. Surface tension 

and emulsification activity were measured to characterize the formed products' efficiency. Based on these results, biosurfactants from 

Geobacillus stearothermophilus DSM2313 can act as bioemulsifier and can be applied for example in microbial enhanced oil recovery.
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1 Introduction
Biosurfactants are amphiphilic molecules consisting of 
hydrophobic and hydrophilic groups, which were produced 
by different microorganisms (bacteria, yeasts and filamen-
tous fungi), and can act on the interfaces between fluid 
phases with different degrees of polarity (oil/water) [1]. 
The widespread application of biosurfactants proved that 
they can substitute chemically synthesized surfactants. 
They can be applied in agriculture as pesticides [2, 3], in 
laundry detergents [4], in cosmetics formulations [5], in 
the food industry as emulsifiers [6], in the pharmaceutical 
industry as delivery systems [7, 8]. Due to their amphi-
philic properties, biosurfactants facilitate the remedia-
tion of petroleum from the ecosystem. They decrease the 
interfacial tension and disperse the oil particles into small 
droplets, turning them into non-toxic materials [9]. The oil 
recovery from the petroleum wells (microbial enhanced oil 
recovery (MEOR)) has been enhanced by biosurfactants 
and their transport through sand pack columns and metal 
pipes which technic has been applied in the field [10]. 
The application of biosurfactants has many advantages 
over chemically produced surfactants, such as high bio-
degradability and low ecotoxicity, as well as can be easily 

produced from renewable raw materials [3]. Most chemi-
cal surfactants are derived from the petrochemical indus-
try with a low production cost and high yield. However, 
this form of production is widely seen as unsustainable 
in the 21st century's circular ecosystem. Additionally, syn-
thetic surfactants often have toxicity and biocompatibil-
ity issues, and cause harm to ecosystems further limiting 
their application [11].

Based on findings, the genus Bacillus produces lipopep-
tide-type biosurfactants [12, 13]. Surfactin is a member of 
the lipopeptide group (among low molecular weight bio-
surfactants), which has an effective surface tension (ST) 
reducing effect [14, 15]. Geobacillus was reclassified from 
the genus Bacillus in 2001 [16]. Geobacillus species are 
aerobic or facultative anaerobic bacteria that prefer neutral 
or moderate alkaline pH for cell growth, in a wide tem-
perature range from 35 °C to 76 °C [17]. Geobacillus spe-
cies are having emerging potential applications in micro-
bial enhanced oil recovery [18]. According to some recent 
reports the biosurfactants synthesized by Geobacillus spe-
cies, are high molecular weight biosurfactants. Their main 
feature is rather good emulsification than surface tension 
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reduction [14, 15, 18]. These high molecular weight biosur-
factants are often considered bioemulsifiers, which do not 
have good surface activity, but their emulsifying proper-
ties are prominent. Bioemulsifiers are generally produced 
by bacteria in oil reservoirs with high temperatures [18].

As previously discussed, biosurfactants have several 
advantages and application fields that make them prom-
ising alternatives to chemically synthesized surfactants. 
However, they face some barriers related to low yields, 
high production costs associated with expensive raw mate-
rials, and optimization difficulties. These are the bottle-
necks of the large-scale economical production hindering 
biosurfactants to receive a commercially competitive posi-
tion [14, 19]. Cheaper substrates have several drawbacks in 
large-scale production, e.g., required special purification, 
the raw material composition may vary, and a large quantity 
of raw substrates is necessary. On the other hand, cheaper 
substrates are available in huge quantities, the commercial 
production cost can be reduced and additionally all compo-
nents could be ecologically friendly and safe [20, 21].

The aim of this paper is to present a rational media opti-
mization approach to enhance the productivity of the bio-
surfactant production for Geobacillus stearothermophilus 
DSM2313 via response surface methodology. Two cen-
tral composite designs (CCDs) were carried out until the 
optimum finding with the highest efficiency. Based on the 
experimental results an artificial neural network (ANN) 
was built, tested and validated to predict the biosurfactant 
fermentation. In the developed ANN two outcome param-
eters were predicted simultaneously, namely the optical 
density (for biomass estimation) and the emulsification 
index (for assuming product formation). These findings 
contribute to the prediction of an efficient biosurfactant 
fermentation harvesting time.

2 Materials and methods
2.1 Bacteria and cultivation
Geobacillus stearothermophilus DSM2313 was purchased 
from the Leibniz Institute DSMZ-German Collection of 
Microorganisms and Cell Cultures GmbH.

In our experiments, the strain was maintained at 4 °C 
on Luria-Bertani agar (10.0 g/L tryptone, 5.0 g/L yeast 
extract, 10 g/L NaCl, 15.0 g/L agar).

2.2 Biosurfactant fermentation
A minimal medium was applied for the biosurfactant fer-
mentation, since its components do not affect the surface 
tension of the broth, hence the product formation can be 

monitored by stalagmometric ST measurements. Unless 
otherwise indicated, all chemicals were purchased from 
Reanal Laboratory Chemicals Ltd., Hungary. 1 L of mini-
mal media (pH=~6) consisted of 34.0 g glucose (Hungrana 
Ltd., Szabadegyháza, Hungary), 6.0 g KH2PO4, 2.7 g 
Na2HPO4, 1.0 g NH4NO3, 0.1 g MgSO4 ∙ 7H2O, 1.2 ∙ 10-3 g 
CaCl2, 1.65∙10−3 g FeSO4 ∙ 7H2O, 1.5 ∙ 10−3 g MnSO4 ∙ 4H2O 
and 2.2 ∙ 10−3 g Na-EDTA [22]. The biosurfactant fermen-
tations were conducted in 250 mL shaking flasks. The 
inoculum, of which media had the same composition as 
described above, was incubated for 2 days at 150 rpm and 
37 °C in a rotary shaker (New Brunswick Excella E24) 
resulting in an inoculation ratio of 10%. In terms of the 
applied temperature, but considering a future large-scale 
application, a lower temperature seemed to be more feasi-
ble therefore only 37 °C was applied. During the biosur-
factant fermentation, the starting total volume (including 
the inoculum as well) was 150 mL, and the fermentation 
parameters were the same, as in case of inoculum.

2.3 Analysis of biomass
The biomass concentration was followed with the opti-
cal density (OD) of the fermentation broth measured at 
a wavelength of 600 nm with a Camspec M501 spectro-
photometer against the sample's supernatant after centrif-
ugation at 12,000 rpm 5 min using Heraeus Biofuge Pico 
Z Eppendorf centrifuge (24∙1.5 mL).

2.4 Analysis of glucose
Isocratic high-performance liquid chromatography 
(HPLC) system (Breeze, Waters) was applied using a Bio-
Rad Aminex HPX-87H column at 65 °C with an eluent 
of 5 mM H2SO4 (CARLO ERBA Reagents, Milan, Italy) 
in ultrapure water (Simplicity, Millipore) and refractive 
index (RI) detector at 40 °C, an injection volume of 10 µL 
and mobile phase flow rate of 0.5 mL/min. Glucose cal-
ibration (R2 = 1.0) was prepared before HPLC measure-
ments with two-fold dilution series starting from 10 to 
0.3125 g/L, which resulted in the equation (Eq. (1)):

Glucose
g

L
Peak Area MV s

�
��

�
��
� � �� ���4 10 6 .  (1)

2.5 Isolation of the biosurfactant
The purification method of biosurfactants was adapted 
from Joshi et al. [23]. At the end of the fermentation the 
cells were removed by centrifugation using Janetzki MLW 
K23 D (20 mins, 4,000 rpm 4 °C). The pH of the cell-free 
supernatant was set below 2 with 6 N HCl and was kept in 
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fridge at 4 °C overnight. The next day this solution which 
contained the acid precipitate was centrifuged (20 mins, 
4,000 rpm, Janetzki MLW K23 D) to separate the acidified 
product from the supernatant. The supernatant was dis-
carded, the acid precipitate was resuspended, and its pH 
was set back to 7 by 6 N NaOH. Finally, this neutralized 
suspension (containing the biosurfactant) was lyophilized, 
which took approximately 1 day. After the freeze-drying 
the off-white powder was measured gravimetrically and 
considered as the isolated crude biosurfactants.

2.6 Surface tension measurements
In order to follow the product formation, stalagmometric 
surface tension measurements were applied [24]. The sur-
face tension of the samples was measured by a glass sta-
lagmometer (Wilmad Labglass LG5050-100). The formed 
biosurfactants decreased the surface tension of the broth 
in comparison to water's surface tension. Three parallel 
measurements were performed on each sample.

2.7 Emulsifying activity measurements
Emulsification activity was determined by the addition of 
2 mL of sunflower oil to the same volume of cell-free sam-
ple solutions in a test tube, which was mixed vigorously 
with a vortex for 2 min [25]. The tubes were incubated at 
25 °C, and the emulsification index (EI) and emulsification 
stability (E24) were determined after t = 1 hour and t = 24 
hours, respectively (Eq. (2)):

EIt e tH H� � � �/ ,100  (2)

where He and Ht are the height of emulsion and the total 
height of the liquid in the tube, respectively.

2.8 Statistical optimization
First, a randomized central composite design (CCD1) was 
built with the help of Statistica 13.5 software (StatSoft, Inc., 
Tulsa, USA). A statistical design with 3 factors on two lev-
els (8 corner points) plus two star points per axis (2 ∙ 3 = 6) 
and a centrum point with duplicates were generated as over-
all 16 runs. The overall design was carried out in triplicates 
resulting in an overall experiment of 48 runs. These were 
randomized and prepared in 12 flasks in 4 periods.

Since the estimated optimum was not in the investi-
gated range, a second CCD was generated with shifted and 
wider factor ranges based on CCD1.

The second randomized central composite design (CCD2) 
was also built with the help of Statistica 13.5 software. For 
the second design, 3 factors on two levels (8 corner points) 

plus two star points per axis (2 ∙ 3 = 6) and a centrum point 
with duplicates were generated as overall 16 runs again. In 
CCD2 the factors were investigated at the following low and 
high levels: glucose 50–80 g/L, NH4NO3 2–4 g/L and initial 
pH of 7–11. The overall design was carried out in duplicates 
resulting in the overall experiment of 32 runs. These were 
randomized and divided into 3 parts as 12 + 12 + 8 flasks.

In the media composition, the glucose and NH4NO3 con-
centrations as well as the initial pH values were altered. In 
order to fine-tune the optimum setup (observed from the 
response surface methodology), 4 additional combinations 
of the investigated factors were tested in 3 replicates for 
the bacteria (12 shaking flasks, Table 1).

2.9 Fermentation monitoring
Samples were taken daily to determine the OD and ST, EI 
and E24 values. Glucose concentrations were measured at 
starting and final points of the fermentation for the yield 
calculation. When the OD showed a decrement in the cell 
growth, it indicated that the cells started spore-forming, 
and the fermentations were stopped. The duration of the 
fermentations alternated between 3 and 7 days.

2.10 Kinetic modeling
Berkely Madonna 10.1.3 [26] was applied for kinetic mod-
eling. Curve fitting of Monod model's differential equations 
was used for the determination of kinetic parameters. Cell 
growth, glucose consumption and product formation are 
described in Eqs. (3) to (5), respectively. Monod equation 
for the substrate dependence of the specific growth rate is 
described in Eq. (6). In Eqs. (3) to (6) x is related to the opti-
cal density at 600 nm [-], µ to the specific growth rate [1/h], 
µmax to the maximal specific growth rate [1/h], Ks to the half 
saturation constant [g/L], Y to the biomass yield [-], S to the 
substrate concentration [g/L], k1 [1/h] and k2 [-] to the growth 
independent and growth associated product formation kinetic 
parameters. The product formation (Eq. (5)) is described by 
the Luedeking-Piret product formation kinetics.

dx dt µ x/ � �  (3)

dS dt Y µ x/ /� �� � � �1  (4)

Table 1 Fine tuning the optimum set up for G. 
stearothermophilus DSM2313

pH [-] NH4NO3 [g/L] Glucose [g/L]

9 3 70

11 3 70

9 2 50

7 2 50
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dP dt k x k µ x/ � � �� �1 2
 (5)

µ µ S S KS� � � �� ��max /  (6)

The optimized fermentation datasets were used for the 
kinetic investigation to determine the kinetic constants 
from Eqs. (3) to (6), e.g., Y [-], µmax [1/h], Ks [g/L], k1 [1/h] 
and k2 [-]. During the kinetic analysis, the initial values for 
x [g/L], S [g/L] and P [g/L] were set according to the mea-
surement of the initial samples in the experiments.

2.11 Artificial neural network modeling
Neural networks have universal approximation properties, 
which means that they can approximate any function in 
any dimension and up to a desired degree of accuracy. For 
the ANN modeling, we used Neural Designer 4.2.0 soft-
ware [27].

The optimization algorithm (Quasi-Newton method) 
determines how the adjustment of the parameters in the 
neural network takes place. The optimization algorithm 
stops when a specified condition is satisfied. The next 
step is model selection, which minimizes the error on 
the selected instances of the data set (the selection error). 
After setting these parameters the training can be started.

Based on the results of CCD 1 and 2 an artificial neural 
network was created to predict the optimal or the ending 
time of the fermentation at a certain level of the factors 
which were investigated in the response surface meth-
odology. The ANN was built for G. stearothermophilus 
DSM2313 with two outcome parameters, namely OD and 
EI. Emulsification index values provide quickly avail-
able information about the emulsifying capability of the 
sample, therefore we chose that as an outcome parame-
ter instead of E24 values. While E24 values are generally 
applied, we omitted that from the prediction due to the 
small changes in the emulsion height with time. 

The data set for the biosurfactant production with Geo- 
bacillus stearothermophilus DSM2313 consisted of 396 in- 
stances. For training 238 (60.1%), for testing 79 (19.9%) and 
for selection 79 (19.9%) instances were used.

We chose the minimum-maximum method for the scal-
ing and unscaling. The perceptron layer comprised 4 lay-
ers (3 hidden and 1 output). The hidden layers had hyper-
bolic tangent activation function, and the output layer had 
linear activation function. In the training strategy, we set 
the mean square error for the error method. We applied 
regularization with a strong weight. We applied the Quasi-
Newton method as the optimization algorithm, where the 
training accuracy was medium (default set). 1,000 were 

the maximum number of iterations. We set the order selec-
tion in incremental order, and we selected the inputs in 
a growing way. With these settings, we managed to reach 
as high correlation coefficient for the two outcome param-
eters as we can.

For the validation of the ANN, four additional different 
settings were tested (Table 2) in three replicates.

3 Results and discussion
3.1 Media optimization
Throughout the optimization shaking flask experiments, 
the withdrawn samples were analyzed for OD, ST, emul-
sification activity and glucose consumption. Before the 
statistical analysis, the data distribution was checked. The 
residuals plots indicated that the differences between the 
measured and fitted values are exhibiting normal distri-
bution and constant variance and are independent of each 
other (not shown here).

First optimizing design (CCD1) could not conclude to an 
optimum, therefore only its maximal product formation is 
introduced here as follows: 1.36 g/L of crude product could be 
extracted from the best setup of pH = 7, NH4NO3 = 2.38 g/L, 
glucose = 34 g/L. During its fermentation, the maximal sur-
face tension reduction was 8.47 mN/m, meanwhile maximal 
EI = 58.3% and E24 = 54.7% could be observed, respectively. 
These results suggested, that the produced surface active 
agent is rather bioemulsifier, than biosurfactant, which is 
in good agreement with other Geobacillus strains' already 
described polymer type biosurfactants [14]. Since the high-
est biomass and product amount was observed in CCD1 at 
the highest values of the factors, we extended the variables' 
range in these directions for CCD2.

Fig. 1(A–I) represents the surface plots of CCD2 com-
prising all parallel runs' results. Each datapoints represents 
the lowest surface tension value (Fig. 1(A–C). The opti-
mal factor's values are pH = 9, NH4NO3 = 4–4.5 g/L and 
the highest setting (around 90 g/L) is the best for glucose 
concentration.

On Fig. 1(D–F) each datapoints represents the highest 
emulsification index (EI) values as the outcome function 

Table 2 New validation settings for Geobacillus 
stearothermophilus DSM2313

Initial pH [-] NH4NO3 [g/L] Glucose [g/L]

8 4 40

8 1.5 10

10 2 40

10 4 50
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of the investigated parameters. The optimum can be found 
at the same setup as for surface tension decrement.

On Fig. 1(G–I) each datapoints represents the highest 
emulsification stability (E24) values at different levels of 
the investigated factors. The optimum can be found again 
at the same setup as for surface tension decrement and 
emulsification index.

To summarize the result of CCD2 one can conclude, that 
since the highest EI value (70.5%) decreased slightly after 
24 h (E24 = 68.3%) the produced bioemulsifier can form 
stable emulsions. These highest EI and E24 values were 
observed at initial pH of 12.5, initial glucose concentration of 
65 g/L and initial ammonium-nitrate concentration of 3 g/L.

Despite the result of CCD1 and CCD2 the suggested opti-
mum setups have some application issues, since either lag 

phase was very long, or residual glucose remarkable at the end 
of the fermentations. Therefore, fine-tuning of the optimum 
setups were carried out via designing new runs (Table 1) 
considering both the CCD's results (with special focus on 
E24 as shown on Fig.1. (G–I)) and lowest residual glucose 
concentration as well as shortest lag-phase (Table 3) together 
with the easiest broth treatment (i.e., centrifugation).

The time-course of the three parallel runs of the best 
setup among the four re-designed experiments are pre-
sented in Fig. 2.

This fermentation took 4 days, but the glucose ran out 
of the media after around 70 hours. The cell growth initi-
ated on the 1st day and stopped after 3 days. The ST slowly 
but decreased during the fermentation, it went down from 
73 to 60–64 mN/m. The emulsification index increased 

Fig. 1 Surface plots of 2nd central composite design: A-C: Lowest surface tension, D-F: emulsification index, G-I: emulsification stability as outcome 
parameter (ST: surface tension [mN/m], EI: emulsification index [%], E24: emulsification stability [%])
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from 54% to 65%, confirming that the biosurfactant is an 
appropriate candidate as an emulsifier. The E24 values 
increased parallel with the EI values, which indicates the 
formation of a stable emulsifier in the broth.

Compared to the handful reports on biosurfactant pro-
duction with G. stearothermophilus, the UCP 986 strain 
was able to synthesize a 2.3 g/L surface-active product 
(isolated with an acetone precipitation method) on corn 
steep liquor and palm oil, which was able to reduce the ST 
from 72 to 31 mN/m. The product's average emulsification 
index alternated between 30–35 % (against corn oil, diesel 
and vegetable fat post frying oil) and 85 % (against engine 
burning oil) [1]. Compared to our results the DSM2313 

strain has a better emulsification activity on vegetable 
oil. Another G. stearothermophilus SR-1 strain was culti-
vated on a rich medium containing mainly glucose, yeast 
extract and peptone for about 15 days. Its product was able 
to reduce the ST, with about a ∆STmax of 33 mN/m. The 
cell-free supernatant of this strain had an emulsification 
index of EI = 60% against crude oil, which was evaluated 
by the authors as a good bioemulsifier [18]. Furthermore, 
G. stearothermophilus strain A-2 has also shown potential 
bioemulsifier production and hydrocarbon degradation. 
It was able to emulsify oil on a basal salts medium supple-
mented with yeast extract [28].

To conclude our investigated G. stearothermophilus 
DSM2313 strain proved to be an effective emulsifier pro-
ducer compared to other reports. During its fermentation, 
the emulsification index rose from 50% up to 65% against 
vegetable oil.

3.2 Kinetic investigation
Based on the raw data of Fig. 2, a kinetic analysis was 
performed (Fig. 3) applying Berkeley Madonna soft-
ware. Table 4 represents the initial value of model param-
eters, which were changed during the curve fitting anal-
ysis. During the curve fitting, the constant parameters 
were adjusted by the software to reach the smallest root 
mean square (RMS) value. RMS indicates the difference 
between the fitted functions and the measured data points. 
This value started at 5.9 and decreased to 3.8 at the end of 

Table 3 Experimental settings and results for CCD2

Standard 
run

Glucose 
[g/L]

NH4NO3 
[g/L]

Initial 
pH

Lowest ST 
[mN/m] EI [%] E24 [%] Lag phase 

length [h] Residual glucose [g/L]

1 50 2 7 70.5 ± 0.5 55.35 ± 0.92 53.8 ± 1.84 0 8.21 ± 0.82

2 50 4 7 67.9 ± 0.7 56.7 ± 1.70 55 ± 0.57 0 0

3 80 2 7 65.2 ± 0.4 59.1 ± 4.38 53.95 ± 1.91 24 0

4 80 4 7 60.9 ± 0.9 57.65 ± 0.64 55.65 ± 0.07 24 0

5 50 2 11 71.0 ± 2.8 58.45 ± 5.44 55.05 ± 4.03 24 0

6 50 4 11 68.1 ± 1.2 57.6 ± 5.80 56.1 ± 0.57 24 0

7 80 2 11 64.5 ± 3.2 56.15 ± 1.20 53.2 ± 0.99 23 0.64 ± 0.01

8 80 4 11 65.9 ± 2.6 62.65 ± 2.76 57.5 ± 4.38 23 0.65 ± 0.01

9 65 3 9 63.7 ± 3.2 59.65 ± 0.35 57.85 ± 0.35 0 0

10 65 3 5.47 69.7 ± 1.9 55 ± 1.41 55.05 ± 0.49 95 1.25

11 65 3 12.53 70.7 ± 0.8 61.6 ± 12.59 59.4 ± 12.59 47 0.40 ± 0.56

12 38.54 3 9 67.0 ± 0.4 56.8 ± 0.42 53.25 ± 2.76 0 0

13 91.46 3 9 65.6 ± 0.2 64.9 ± 1.70 59.2 ± 3.54 0 0

14 65 1.24 9 66.5 ± 6.9 66.2 ± 6.65 60.75 ± 8.41 27 6.37 ± 3.62

15 65 4.76 9 55.8 ± 12.2 60.9 ± 0.28 57.3 ± 3.68 0 0

16 65 3 9 66.9 ± 1.7 61.55 ± 3.75 57 ± 1.70 0 0.11 ± 0.15
* ST: surface tension, EI: emulsification index, E24: emulsification stability

Fig. 2 Optimum setting for G. stearothermophilus DSM2313 (50 g/L 
glucose, 2 g/L NH4NO3, pH = 7), where OD: optical density, ST: surface 

tension, EI: emulsification index and E24: emulsification stability)
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the curve fitting, which indicates, that the model describes 
the fermentation with small variation. Biosurfactant pro-
duction proved to be evaluated as a growth associated 
product formation according to the kinetic parameters, 
since the growth associated (k2) is significantly higher 
than zero, meanwhile and the non-growth-associated (k1) 
parameter is very close to zero.

Some reported initiatives modeled the biosurfactant 
production by Bacillus species. In a study with Bacillus 
circulans two media were compared, where the biomass 
yield (Y) was at about 0.2 and the product formation was 
parallel with the cell growth as well [29]. In terms of spe-
cific growth rate 0.2–0.3 1/h is generally observed on inor-
ganic media for many different Bacilli in different product 
formations. However, on inorganic media for B. licheni-
formis biosurfactant fermentation 0.026 1/h growth rate 
was observed [30]. According to a study with B. subtilis, 
the surfactin production is described as partial growth 
associated [31]. Monod and Luedeking-Piret models are 
frequently applied for the determination of cell growth 
and biosurfactant product formation, however in some 

cases some modifications required (combination with 
logistic model) [30, 32–34].

3.3 Artificial neural network
The quasi-Newton method training strategy is applied 
to the neural network to obtain the best possible loss. 
Fig. 4(A) shows the training and selection errors in each 
iteration. The blue line represents the training error and 
the orange line represents the selection error, where both 
errors were similar. The initial training error value of 
7.903 decreased to 0.076 after 551 epochs. Meanwhile, the 
initial value of the selection error decreased from 7.512 
to 0.101. Incremental order (Fig. 4(B)) is used here as an 
order selection algorithm in the model selection, the blue 
line represents the training error and the orange line sym-
bolizes the selection error. The optimum order was num-
ber 3 based on the small difference between the training 
and selection errors; where the optimum training error 
was 0.080, and the optimum selection error was 0.105, and 
the iteration number was 9.

A graphical representation of the resulted deep archi-
tecture is in Fig. 4(E). It contains a scaling layer, a neural 
network and an unscaling layer. The yellow circles repre-
sent scaling neurons, the blue circles the perceptron neu-
rons and the red circles the unscaling neurons. The number 
of inputs is 4, and the number of outputs is 2. The complex-
ity, represented by the number of hidden neurons, is 6:6:3.

After training of ANN, the linear regression analysis 
was performed. On the linear regression chart of optical 
density (Fig. 4(C)), the predicted values are plotted versus 

Fig. 3 Kinetic fermentation profile of G. stearothermophilus DSM2313 (Measured values: green circles-EI, yellow circles-glucose concentration, 
purple circles-OD. Fitted functions: blue line-EI, black line-glucose, red line-OD). S (substrate) [g/L] is the fitted function for glucose [g/L], 
P (product) [g/L] is the fitted function for EI (emulsification index) [%] and x (biomass) [g/L] is fitted function for OD (optical density) [-].

Table 4 Kinetic parameters after 
curve fitting

Parameter After curve fitting

µmax [1/h] 0.31

KS [g/L] 59

Y [-] 0.115

k1 [1/h] 0.018

k2 [-] 0.731
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the measured ones. In Fig. 4(D) the linear regression chart 
of EI is presented. In Fig. 4(C) and (D), the black lines were 
indicated as the best linear fit according to the build ANN.

The measured and the predicted parameters are repre-
sented in Fig. 5. The correlation value for biomass growth 
was quite acceptable (0.877). Despite the low correlation 

Fig. 4 Artificial neural network with Geobacillus stearothermophilus DSM2313; A: Quasi-Newton method errors history; B: Incremental error plot; 
C: Linear regression chart for optical density (OD) (intercept:0.513; slope:0.813; correlation:0.877); D: Linear regression chart for emulsification index 

(EI) (intercept:41.6; slope:0.261; correlation:0.5); E: Artificial neural network structure for OD and EI
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value (0.5) for EI in the case of G. stearothermophilus 
DSM2313, the ANN predicts the EI changes quite well 
during the fermentation.

Analyzing the data distribution and the box plots in 
Fig. 6(A–D) it can be seen that the optical density val-
ues have a wide data distribution in the whole range (i.e., 
between minimum and maximum value of OD). Therefore, 
the correlation values can be higher than in the case of the 
emulsification index values, where only a narrow range 
is covered by most of the EI data, which suggests, that EI 
is not a sensitive parameter against the examined factors.

MATLAB is a frequently applied software for building 
artificial neural networks [35] and machine-learning mod-
els [36]. Among the research papers with artificial neural 

networks both for biosurfactant production and any other 
fermentation product, usually, only one outcome parame-
ter is investigated [37], and if one would like to predict any 
additional fermentation result parameter, another ANN is 
built instead of applying two or more outcome parameters 
simultaneously [38], like in the case of biosurfactant pro-
duction with Klebsiella sp. FKOD36 [39].

Here we have presented a software for building an arti-
ficial neural network, of which application in the field of 
biosurfactant production has not been published yet else-
where. Neural Designer is easy to use tool for modeling and 
predicting two outcome parameters simultaneously, namely 
the cell growth together with surface tension or emulsifi-
cation index alteration during the fermentations. These 

Fig. 6 Data distribution and box plots for optical density (OD) and for emulsification index (EI); A: OD histogram; B: OD box plot; C: EI 
histogram; D: EI box plot

Fig. 5 Fermentation prediction for optical density (OD) and emulsification 
index ( EI)
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results contribute to the forward prediction of the product 
efficiency and the harvesting time of the fermentation broth, 
which can enhance the fermentations' productivity.

4 Conclusion
The research has shown that Geobacillus stearothermo-
philus DSM2313 is an appropriate producer of an effec-
tive tensio-active, which was here first characterized as 
bioemulsifier. With the help of response surface method-
ology and artificial neural network we are able to predict 
simultaneously the product and biomass formation, addi-
tionally, the harvesting time of the fermentation. These 
findings may contribute to the microbial enhanced oil 

recovery. Further improvement needs to be done before 
large-scale application to solve the foaming problem in 
fermenters.
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