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Abstract

Multivariate image analysis quantitative structure-activity relationship (MIA-QSAR) study aims to obtain information from a descriptor 

set, which are image pixels of two-dimensional molecule structures. In the QSAR study of protein P38 mitogen-activated protein (MAP) 

kinase compounds, the genetic algorithm application for pixel selection and image processing is investigated. There is a quantitative 

relationship between the structure and the pIC50 based on the information obtained. (The pIC50 is the negative logarithm of the 

half-maximal inhibitory concentration ( IC50 ), so pIC50  =  −log  IC50 .) Protein P38 MAP kinase inhibitors are used in the treatment of 

malignant tumors. The development of a model to predict the pIC50 of these compounds was performed in this study. To accomplish 

this, the molecules were first plotted and fixed in the same coordinates in ChemSketch. Then, the images were processed in the 

MATLAB program. Partial least squares (PLS) model, orthogonal signal correction partial least squares (OSC-PLS) model, and genetic 

algorithm partial least squares (GA-PLS) model methods are used to generate quantitative models, and pIC50 prediction is performed. 

The GA-PLS model has the highest predictive power for a series of statistical parameters such as root mean square error of prediction 

(RMSEP) and relative standard errors of prediction (RSEP). Finally, the molecular junction (docking) was done for predicted molecules 

in quantitative structure activity relationship (QSAR) with an appropriate receptor and acceptable results were obtained. These results 

are good and proper for the prediction of compounds with better properties.
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1 Introduction
Mitogen-activated protein kinases (MAPKs) are serine/
threonine kinases that have been studied in many areas due 
to the high levels of conservation of various eukaryotic cells 
and have been shown to play a key role in signal transduction 
from cell to nucleus as well as cell survival and death [1, 2]. 
MAPKs are divided into three subgroups based on amino 
acids found in the activation loop between the serine and 
threonine subunits [3]. Kinases are involved in almost every 
aspect of physiology. P38 mitogen-activated protein kinase 
(MAPK) is one of the important enzymes that inhibit the 
immune system to treat autoimmune diseases [4–6].

The study of the relationship between the properties of 
molecules and their structure is one of the most import-
ant fields of application for chemometric methods. These 
studies, known as the "Quantitative structure-activity 
relationship (QSAR)", investigate the relationship between 
activity and the various properties of molecules with their 

structural characteristics [7–10]. QSAR is widely used in 
drug design processes to improve the therapeutic indices 
of compound designation. QSAR models are mathemati-
cal equations written based on the chemical composition 
of compounds and their biological activity. The first com-
ponent in the definition of a quantitative structure-activity 
relationship (QSAR) model is the calculation of structural 
descriptors based on the composition's molecular struc-
ture. In general, various descriptors are used in QSAR 
modeling [11]. These descriptors are divided into different 
groups, including structural, geometric, spatial, quantum, 
chemical. Descriptors containing information are useful 
in ensuring that the model's predictive power is accept-
able at a satisfactory level. A QSAR study is a powerful 
tool for researching and analyzing the structure and activ-
ity of chemical compounds, and it is widely used in drug 
chemistry to investigate drug inhibition  [12–14]. Linear 
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methods such as principal component regression and par-
tial least squares are used in QSAR studies to model and 
predict the activity of drug compounds, as are nonlinear 
methods such as artificial neural networks.

Recently, computer-aided drug discovery has received 
attention and has been extensively employed in medical 
chemistry. Computational techniques are used in comput-
er-aided drug design to find, create, and study medicines 
and other physiologically active compounds. The quanti-
tative structure-activity relationship is among such strat-
egies. QSAR is one of the most significant Chemometrics 
applications, providing essential knowledge for the devel-
opment of novel compounds that operate on a particular 
target and have desirable features. The QSAR approach is 
now widely used in pharmaceuticals, drug design, toxicol-
ogy, geology, as well as remote sensing [15]. The QSAR 
approach provides a mathematical relationship between 
a compound's chemical structure and its physical, chem-
ical, or biological characteristics. Then, after analyzing 
the response between receptor and ligand, a novel com-
pound is designed. Compounds with comparable phys-
icochemical qualities have similar physiological activi-
ties. The QSAR technique for drug discovery establishes 
a relation between the structural features of possible drug 
candidates and their ability to block a given biological 
function. When compared to other QSAR approaches, 
multivariate image Computational modeling of analy-
sis (multivariate image analysis quantitative structure- 
activity relationship (MIA-QSAR)) offered a fast anal-
ysis result as accurate as of the most advanced methods 
available today, while also being inexpensive and simple 
to manage and predict any modeled response for a conge-
neric series of chemical structures without the need for 
3D alignment or conformational analysis. In this method, 
2D images of pixels suggest topo-chemical characteris-
tics of chemicals, and a model between such descriptors 
and a y-block comprised of independent variables is built. 
Multivariate image analysis QSAR is a non-invasive anal-
ysis that saves time and money while processing a large 
amount of data. The MIA-QSAR technique aims to cor-
relate numerous columns of individual variables to a sin-
gle column dependent variable, y. Various coordinates of 
pixels in the molecular drawing depict structural changes 
in the MIA-QSAR technique, and these changes were 
utilized to show variation in bioactivity for a congeneric 
group of drug-like compounds  [16,  17]. In  the model-
ing process, the substitution pattern, as well as the con-
generic series of compounds, may be used to predict the 

bioactivities of comparable compounds. The MIA-QSAR 
approach include the following steps:

•	 drawing molecule structures, creating images and 
aligning them;

•	 image denoising followed by image unfolding to a 
two-way array as well as descriptor generation;

•	 regression modeling and feature selection.

Modeling is one of the most critical procedures 
addressed. Multiple linear regression (MLR) [18], partial 
least squares [19], and artificial neural networks are some 
of the approaches that may be applied. MLR has been fre-
quently used in QSAR studies, despite its relatively low 
accuracy. Furthermore, MLR works well when the num-
ber of rows is higher than the number of columns. In most 
circumstances, artificial neural networks (ANN) demon-
strates enough accuracy; nevertheless, there is a risk of 
overfitting the training data and, as a result, not being able 
to extrapolate appropriate data information.

Genetic algorithm (GA) employs several fitness criteria 
and genetic functions [20]. It is shown that preprocessing 
prior to partial least squares (PLS) regression eliminates 
unnecessary information and gives adequate input for 
PLS, hence improving model quality. Prior studies [21, 22] 
have explored orthogonal signal correction (OSC). 

Freitas et al. [23] proposed a simple and comprehensi-
ble approach established on 2D image analysis. A library 
of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]- 6-methoxyben-
zamides with an affinity for the dopamine D2 receptor 
subtype was used to select 40 calibration compounds and 
18 test compounds. The pixels of the 2D structures were 
used to build descriptors for each molecule. For regression, 
they used bi-linear PLS (conventional), and for leave-one-
out cross-validation, they used the nonlinear iterative  par-
tial least square (NIPALS) approach. A Q2 value of 0.58 
for the test chemical series was predicted and exhibited 
a similar estimation ability for additional data sets [23].

Furthermore, Freitas  [24] used a QSAR technique 
based on multivariate image analysis (MIA) descriptors 
to a series of anti-human immunedeficiency virus-1 (anti-
HIV-1) active 2-amino-6-arylsulfonylbenzonitriles and 
thio and sulfinyl analogs. Two models, as well as a col-
lection of molecules, were constructed utilizing a range 
of sketching tools to assess the technique's ability in 
modeling. Both models had sufficient predictive perfor-
mance, with Q2 values of 0.712 and 0.624 for cross-valida-
tion and Q2 values of 0.823 and 0.747 for external valida-
tion. To anticipate absorption patterns for prospective new 
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therapies for the listed drugs, the topological polar surface 
area (TPSA) and variables originating from the rule of five 
were applied [24].

Goodarzi and Freitas  [25] employed the MIA-QSAR 
coupling method principal component analysis adaptive- 
network-based fuzzy inference systems (PCA-ANFIS) 
to estimate the anti-HIV efficacy of transcriptase inhib-
itors in high-activity, well-absorbed chemicals in 2010. 
The  MIA-QSAR/PCA-ANFIS model was compared to 
the N-PLS MIA-QSAR/PLS model using the PLS and 
N-PLS regression models. The multilinear PLS models 
are called N-PLS models in general. N-PLS is an algo-
rithm of the PLS family adapted to multimodal data (ten-
sor variables). The outcomes demonstrated that the afore-
mentioned approach worked superior to the other two 
regression procedures [25].

Cormanich  et  al.  [26] utilized the MIA-QSAR model 
to relate the 2,5-diaminobenzophenone's 2D chemical 
structure to its biological activity. They used 74 calibra-
tion series and 18 test series out of a total of 92 poten-
tial combinations. The calibration series was subjected to 
cross-validation to identify the optimal number of hidden 
variables for the partial least squares (PLS) regression cal-
ibration model. The image analysis technique model out-
performs 3D QSAR methods with an R2 score of 0.91 and 
a Q2 score of 0.56 [26].

Nunes and Freitas  (2013)  [27,  28] used MIA-QSAR 
to mimic the sweetness of disaccharide molecules. They 
chose 40 images of disaccharides with similar molecular 
structures for the calibration series, 30 compounds for the 
test series, and 10 compounds for the test series. To fore-
cast log Reed–Solomon (log (RS)), they used a chemical 
structure model. The calibration set's R2 was 0.97, the test 
set's R2 was 0.94, and the test set's root mean square error 
of cross-validation (RMSECV) was 0.86 [27]. The MIA-
QSAR approach  [28], which uses pixels of two-dimen-
sional chemical structures as descriptors, was used to sim-
ulate inhibitors of chemokine receptors.

In 2015, Duarte  et  al.  [29] used a series of quinolone 
derivatives (an antimalarial drug) and two methods of nor-
mal image analysis and color image analysis to model the 
activity of the drug. They also performed a multivariate 
linear regression study between the two methods. The sta-
tistical results of the color image analysis method per-
formed by PLS are R2 equal to 0.807, R2

CV equal to 0.664 
and R2

pred equal to 0.969, indicating that when using the 
color image analysis method compared to the conventional 
method used better prediction [29].

In 2017, Akrami and Niazi  [30] linked the two-dimen-
sional chemical structure to activity and used the MIA-
QSAR model to predict the inhibitory activity of dihydro-
pyridine (DHP) derivatives. Of the 35 compounds studied, 
24 compounds were selected as training series and 11 com-
pounds as test series. The value of Q2 was obtained by the 
wavelet transform - genetic algorithm - partial least squares 
(WT-GA-PLS) method for the test series of 0.92, which indi-
cates the suitability of the selected model for prediction [30].

Benzamide herbicides consists of a class of photosyn-
thetic system II (PSII) inhibitors used to control weeds. 
Pereira et al.  [31] used MIA-QSAR for modeling. These 
powerful and predictable models help to estimate pIC50 of 
new chemical options available in agriculture. The pIC50 
is the negative logarithm of the half-maximal inhibitory 
concentration ( IC50 ), so pIC50 = −log IC50 . Chemical prop-
erties affecting the activities of herbicides were analyzed 
using MIA contour maps [31].

This study aims to create an MIA-QSAR model for MAP 
KIMASE inhibitors, estimate their pIC50 using the GA-PLS 
model, and ultimately develop novel compounds based on 
this model. The pIC50 is one of the metrics used to describe 
a measure of a substance's potency in inhibiting a given bio-
logical or biochemical activity, demonstrating the lowest 
molar concentration required to inhibit 50% of the enzyme.

The QSAR model in this paper was built using 
1409  descriptors. A model for defining kinase inhibitor 
activity was developed using a combination of GA, OSC, 
and PLS. The main objective of this study is to develop 
models for predicting the activity of pharmaceutical deriv-
atives of P38 MAP kinase using the partial least squares 
(PLS) model, orthogonal signal correction partial least 
squares (OSC-PLS) model, and genetic algorithm partial 
least squares (GA-PLS) model methods. In addition, the 
predictive power of models has been investigated using 
the standard methods in studies using intersectional and 
external evaluation models.

2 Materials and methods
2.1 Instrumentation
ChemSketch  [32] was used to draw the structure of the 
molecules in this work in 2022. Ratul Bhowmik et al. [33] 
studied the design of new florfenicol analogues for bacte-
rial acetyltransferase which have better medicinal prop-
erties and fewer side effects. Using the base florfenicol 
framework, they applied primary and secondary modifica-
tions by ChemSketch software. All of these modified mol-
ecules were screened according to drug similarity rules. 
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Accordingly, absorption, distribution, metabolism, excre-
tion and toxicity (ADMET) analysis was performed on the 
modified molecules. Based on findings of this study, the 
molecules are designed as main molecules in inhibition 
of bacterial chloramphenicol acetyltransferase enzymes, 
which are used to treat vibriosis [33].

Shivaleela et al. [34] studied the design of Thalidomide-
based small molecule inhibitors for tumor necrosis factor 
alpha (TNF-α), which is mainly secreted by monocytes 
and macrophages, as an important therapeutic target for 
several diseases. They [34] also designed several thalido-
mide analogues by ChemSketch. This program is a com-
prehensive package for drawing, editing, and transform-
ing two-dimensional structures into three-dimensional 
structures. The application of ChemSketch in the litera-
ture shows the good performance of the program. Paint 
was used to center the images and convert the structure 
of molecules to images. MATLAB was used to perform 
statistical calculations, create descriptors and models [35]. 
MATLAB is a type of computer program that performs 
mathematical computations. Arrays and matrices serve as 
the foundation of the data in this program. The same fea-
ture enables the user to solve numerical calculation and 
transform it into matrices and arrays.

2.2 Data set
The first step in the QSAR is to select the appropriate 
data set. A valid model can only be created with a proper 
data set. All compounds' experimental values of the stud-
ied quantity should be measured under the same condi-
tions. The chemical compounds investigated in this work 
were obtained from the literature [36]. These data include 
46 different protein P38 MAP kinase inhibitor combina-
tions, with biological activity expressed as pIC50 . In this 
study, first, molecules are drawn in ChemSketch (Table 1). 
Then, the Paint program is used to select the pixel points 
common to all of the molecules and fix all of the molecules 
in points. The calibration set and the test set were used 
to divide the data from the Kennard-Stone algorithm [37], 
and 37  combinations were chosen as the calibration set 
and 9 combinations as the test set based on the algorithm. 
The  selected calibration samples completely show the 
space of variables in the Kennard-Stone algorithm, and 
test samples are placed in space. 

2.3 Multivariate image analysis
Analog image data must be converted to digital data 
to establish a relationship between biological activity 
and molecule images in QSAR modeling. In this study, 

molecules are first drawn in ChemSketch, then saved as 
BMP files and opened in Paint. The images are adjusted so 
that the common point of all molecules is fixed at 80 × 80 
coordinates. The two-dimensional images of the chemical 
structures of the 46 compounds were then placed in the 
unfolding phase (as seen in Fig. 1).

For each composition, 30400 image descriptors were cal-
culated in MATLAB by converting pixels to binary numbers. 
Pixels were obtained for each of the 46 combinations inves-
tigated, resulting in a matrix with dimensions of 46 × 30400. 
Preliminary processes must be performed to communicate 
quantitatively between the input data and the activity vector.

3 Results and discussion
3.1 Multivariate image analysis descriptors
The descriptors in multivariate image processing are pixels 
of the structural form of the molecules in question, with two 
or three dimensions. These pixels correspond to our depen-
dent variables, which are used in the QSAR model's design. 
Statistical methods are used to select descriptors. The major-
ity of variable selection methods are based on reducing the 
predicted error. As a result, it is critical to calculate the valid-
ity of a model derived from a data set that was ineffective 
in the model's construction and its predicted error. There are 
many methods for modeling, including multivariate calibra-
tion, multiple linear regression, principal component regres-
sion, partial least squares regression, and exploratory ran-
dom search methods (genetic algorithm) [38].

3.2 Principal component analysis of the data set
The principal component analyses  [39,  40] (PCA) is 
a strong method for extracting valuable data and lowering 
the quantity of data from PCA applications such as assess-
ing the link between data, the potential of more remote 
data, the presence of categories between data, and scoring 
and downloading. PCA aims to reduce the number of vari-
ables by drawing a line along the axis with the largest data 
diversity. The first principal component (PC1) is the line 
that includes the greatest information. The first princi-
pal component determines the data's greatest variation. 
The second principal component (PC2), which is orthog-
onal to PC1, describes the largest amount of variation 
remaining in the data. As a result, the amount of varia-
tion of the data that is vertically aligned with all preceding 
PCs is defined by each new PC. The Score matrix on PC1 
is produced by scoring the data points from the primary 
space X on PC1. These variations can be viewed on a sec-
ond axis that is perpendicular to the first and on which the 
data is shown, termed Score on PC2. 
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No. Structure pIC50

7

 

6.14

8

 

>5

9

 

5.89

10

 

6.80

11

 

>5

12

 

5.89

13

 

6.14

14

 

8.46

No. Structure pIC50

1

 

6.49

2

 

6.72

3

 

7.03

4

 

6.06

5

 

6.05

6

 

6.31

Table 1 Structures and inhibitory activity of P38 MAP kinase derivatives (Structures were made by the authors with ChemSketch [32])
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Table 1 Structures and inhibitory activity of P38 MAP kinase derivatives (Structures were made by the authors with ChemSketch [32]) (continued)

No. Structure pIC50

15

 

7.70

16

 

6.32

17

 

5.84

18

 

7.36

19

 

7.04

20

 

7.09

21

 

5.62

No. Structure pIC50

22

 

6.38

23

 

6.62

24

 

7.15

25

 

>5

26

 

>5

27

 

7.32

28

 

7.1
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No. Structure pIC50

29

 

6.59

30

 

>5

31

 

>5

32

 

7.49

33

 

7.49

34

 

7.96

35

 

7.85

No. Structure pIC50

36

 

7.52

37

 

6.89

38

 

6.55

39

 

7.02

40

 

7.05

41

 

6.70

42

 

7.17

Table 1 Structures and inhibitory activity of P38 MAP kinase derivatives (Structures were made by the authors with ChemSketch [32]) (continued)
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No. Structure pIC50

43

 

6.6

44

 

6.67

No. Structure pIC50

45

 

6.85

46

 

6.59

Table 1 Structures and inhibitory activity of P38 MAP kinase derivatives (Structures were made by the authors with ChemSketch [32]) (continued)

The verticality of variables indicates that the least 
amount of collinearity exists among them.

Collinearity classification was used to classify these 
PCs based on their strongest link to the activity of P38MAP 
KINASE derivatives. Then, starting with the PCs with the 
highest order, we insert them into the principle component 
regression (PCR) model one by one until the PC enters the 
model. Then, we put the PCs with the highest order into 
the PCR model and keep doing so until there is no change 
in the improvement of the statistical parameter under 
study when the PC is put into the model (R2 was consid-
ered equal to 0.98). More information on variations in the 
activity of MAP KINASE P38 derivatives may be found in 
high collinearity PCs. The Kernard Stone algorithm was 
used to partition the data into calibration and test series, 
with 37 and 9 combinations were chosen as calibration and 
test series, respectively. Examining two different compu-
tational approaches (comparative molecular field analysis 
(CoMFA) and comparative molecular similarity indices 

analysis (CoMSIA)) to identify the necessary structural 
conditions in a three-dimensional chemical space to reg-
ulate the inhibitory activity of dipeptidyl peptidase IV 
(DPP-IV) derivatives of trifurophenyl. Sharma et al. [41] 
used data set models containing 87 compounds and exper-
imental set consisting of 21  compounds of triforphenyl 
and obtained suitable results for the design of new com-
pounds with DPP-IV inhibitory activity.

Bhattacharya  et  al.  [42] used an integrated computa-
tional approach in relation to sodium/glucose cotrans-
porter 2 (SGLT2) inhibitors to develop new adiabatic com-
pounds. Using various drug design tools, they performed 
computational analysis to obtain the best possible mol-
ecules from a dataset of 90 C-aryl glucoside analogues. 
Atom-based analysis 3D-QSAR (CoMFA, CoMSIA) 
was performed using 63 molecules as a training set and 
another 27  molecules were used as experimental sets to 
determine the role of different fields and atoms in develop-
ing the model [40].

Fig. 1 2D-images and unfolding step of the 46 chemical structures to give the X-matrix
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In development of 3D-QSAR models, El-Mernissi 
et al. [43] used 2-oxoquinoline Arylaminothiazole deriv-
atives; to generate 3D QSAR model, they used a train-
ing set consisting of 20 compounds and an experimental 
set containing 5 compounds for validation. The devel-
oped QSAR models were effective in designing new com-
pounds and predicting their pIC50 .

The new variables are defined solely in the space of the 
original variables when using the PCA technique to min-
imize the amount of the data. Data classification is one 
feature of score diagrams, which display the position of 
descriptors in the new coordinates.

PCA was performed on the matrix of independent vari-
ables using the partial least squares regression approach, 
with the result having the best collinearity with the score 
of the dependent variable matrix. When the collinearity 
of a variable with the activity was less than 0.1, PCA was 
conducted on two-dimensional image descriptors in this 
study. The three primary components account for 90% 
of the change, according to PCA data (PC1  =  46.24%, 
PC2 = 28.5% and PC3 = 16.38%). As shown in Fig. 2, the 
compounds are not classified in any particular way.

3.3 PLS and OSC-PLS modeling
The partial least squares regression technique outperforms 
other multivariate calibration methods. This method has a 
wide range of applications in QSAR studies. The nonlinear 

iterative partial least square (NIPALS) algorithm is designed 
for the direct calculation of vectors and eigenvalues in this 
method. The main objective of linear regression is to deter-
mine the relationship between independent and dependent 
variables. PLS is used in MIA-QSAR to establish relation-
ships between activity matrices as dependent variables and 
matrix pixels as independent variables. The leave-one-out 
method is used to validate the model, and the root mean 
square error is calculated (Tables 2 and 3).

Orthogonal signal correction (OSC) is a principal com-
ponent analysis-based preprocessing method for remov-
ing information that does not depend on independent vari-
ables. Wold et al. [44] first proposed this method in 1998. 
To improve calibration efficiency, the OSC is an appropri-
ate preprocessing for PLS calibration. As a result, differ-
ent scientists offer various algorithms for reducing model 
complexity and eliminating orthogonal signals. Using OSC 
preprocessing eliminates the system's perpendicular noise.

3.4 GA-PLS modeling
The calibration model variables are selected with the least 
error in each generation and have the best characteristics 
in the genetic algorithm (GA) method  [44]. These selec-
tive variables improve the model's ability to predict. One 
of the issues in this study is the selection of a set of pixel 
descriptors. The genetic algorithm was used as a variable 
selection technique to solve this problem. We choose the 
variables in the category to improve the efficiency of the 
genetic algorithm. The appropriate variables are chosen in 
each category, and then another genetic algorithm is run 
among the variables chosen to select the best variables. 
Although this method is a powerful technique for select-
ing variables  [45–50], the main issue is the randomness 
of the variable selection process. As a result, if this algo-
rithm is used only once to select a descriptor (pixel), there 
is a risk that the first-generation variables are not good and 
are trapped at the local minimum due to the randomness 
of the method. So, to solve the problem, this algorithm is 
run several times to eliminate the defect. As a result, GA 
was performed ten times, and the frequency of variable 
selection in the executions was calculated, and finally, 
98 variables with higher frequencies advanced to the next 
stage. The genetic algorithm is optimized by changing and 
selecting the fitness function value, and the selected pixel 
descriptors are then used to run the partial least squares 
algorithm (PLS). As shown in Fig. 3, the number of latent 
variables in the GA-PLS model is reduced to three, and 
the number three is chosen as the optimal latent variable 
for the training set in the GA-PLS model. According to the 

Fig. 2 Principal components analysis of the 2D image descriptors for 
the data set; (a) PC1 versus PC2; (b) PC1 versus PC3

(a)

(b)
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findings, the genetic algorithm is an appropriate method 
for selecting variables in image analysis. The results of 
PLS and OSC-PLS and GA-PLS are shown in Fig. 3.

3.5 Model validation and prediction of pIC50

Here, the predictive ability of the PLS, OSC-PLS, GA-PLS 
approaches was evaluated. Table  2 shows the structures 
of nine compounds whose inhibitory action has been pre-
dicted based on their predicted designs. The capacity to 
forecast must also be confirmed in QSAR investigations 
as an important step. The appropriateness of the models 
was assessed using various statistical metrics.
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In Eqs. (1) and (2), yi,pred is the anticipated value of pIC50 
using various models, yi,obs is the actual value of pIC50 , and 
n is the number of evaluation or estimation sets. The root 
mean square error of prediction (RMSEP)/relative stan-
dard errors of prediction (RSEP) values for the prediction 
of pIC50 for P38 MAP kinases are presented in. Table  3 
presents additional statistical metrics (R2, Q2) used to 
assess the models appropriateness to forecast the activity 
of the chemicals under study.

The R2 parameter measures the models quality, whereas 
the Q2 parameter assesses its external predictive poten-
tial. The linear regression of pIC50 laboratory findings has 
a correlation coefficient based on the models anticipated 
education and screening set value. However, the minimum 
partial squares with error (−1.20, 0.24) were found in the 
genetic algorithm for the inhibitory effect of kinase deriv-
atives. Other statistical variables, such as the cross-vali-
dation coefficient (Q2 and R2), were used to suppress the 
activity of kinase derivatives. The following is a list of the 
variables in Table 3.

Such variables have favorable statistical features. Fig. 4 
shows the anticipated inhibitory activity for each model 
compared to the actual values.

Table 2 Observation and calculation values of pIC50 using PLS, OSC-PLS and GA-PLS models

Number of 
compounds

Observation 
pIC50

PLS OSC-PLS GA-PLS

predicted error predicted error predicted error

1 6.49 6.39 −0.09 6.58 0.09 6.73 0.24

5 6.05 5.93 −0.11 5.89 −0.15 5.81 −0.23

7 6.14 6.14 0 6.44 0.30 6.17 0.04

17 5.84 6.65 −0.38 7.42 0.03 7.10 0.06

21 5.62 7.24 0.62 6.90 0.28 5.41 −1.20

27 7.32 7.76 0.27 8.20 0.71 7.65 0.16

28 7.1 7.87 −0.08 8.40 0.44 7.86 −0.09

33 7.49 6.48 −0.53 7.19 0.17 7.08 0.06

36 7.52 6.24 −0.92 7.82 0.65 7.19 0.03

LVs* 5 4 3
* Latent variables (LVs)

Table 3 Validation of models

Model RMSEc* RMSEp R2 Q2 R2
pred r2

m
CR2

P

PLS 0.31 0.34 0.91 0.83 0.78 0.68 0.78

OSC-PLS 0.28 0.30 0.94 0.84 0.81 0.74 0.79

GA-PLS 0.19 0.20 0.98 0.96 0.90 0.79 0.82
* Root mean square error of calibration (RMSEc)

Fig. 3 The RMSECV versus number of latent variables
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Table  2 displays the anticipated pIC50 values and the 
relative error estimation using the PLS, OSC-PLS, and 
GA-PLS techniques. Fig.  4 indicate the model-predicted 
pIC50 values concerning the empirical data. The  relation-
ship between the actual result and the anticipated pIC50 
by model GA-PLS is satisfactory, with R2 equaling 0.97. 
The data in Table 3 indicates that the GA-PLS model pro-
vides  a low relative error percentage and high statistical 
quality with appropriate statistical quality. In contrast, the 
other two models have more ideal hidden variables.
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3.5.1 Y-randomization test
This is a widely used technique to ensure the robustness of 
a QSAR model. In this test, the dependent-variable vector, 
Y-vector, is randomly shuffled and a new QSAR model is 
developed using the original independent-variable matrix. 
The process is repeated three times the average of the 
three measurements showed low R2 values 0.214, 0.272 
and 0.296 and Q2 values 0.192, 0.202 and 0.261 for the 
PLS, OSC-PLS and GA-PLS, respectively. If all QSAR 
models obtained in the Y-randomization test have rela-
tively high R2 and Q2, it implies that an acceptable QSAR 
model cannot be obtained for the given data set by the cur-
rent modeling method [51, 52].

3.5.2 Validation by using r2
m criteria

We used Q2 criterion to show the results of internal valid-
ity and predictable criterion of R2 ( Q2

ext(F1) ) to show the 
external validity. The calculated measure of R2

pred by using 
external validation, is used as a parameter for choosing of 
QSAR model with statistical sense. Significant part of the 
parameter is higher than the 0.5 threshold, however likely, 
it doesn't necessarily show the propinquity of predictable 
activity quantities with observed data. Probably this can 
be explained by the fact that the denominator term for cal-
culating R2

pred equation is Ytest − Ȳtraining. This indicates as 
the difference between observed activity of test set combi-
nation and averaged quantity of the said set increases, R2

pred 
increases, too. If the difference is reasonably significant, 
regardless of predicted quantity of test set combination, 
the R2

pred amount increases. Therefore, it's likely that there 
is a significant difference between predicted quantity of 
activity and observed quantity of test set combinations; 
though it's possible that they are able to maintain their 
general correlation [53]. In order to devaluate the error and 
better demonstration of predicted activity of the observed 
test set, corrected amounts of r2 ( r2

m ) and the threshold of 
0.5 have been calculated (as in Eq. (5):

r r r rm
2 2 2

0

2
1� �� � �� � .	 (5)

(a)

(b)

(c)

Fig. 4 Plots of predicted versus actual pIC50 with (a) PLS, (b) OSC-PLS 
and (c) GA-PLS
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The evaluation of the QSAR model was also carried out 
by the mentioned statistical parameter and the results are 
shown in Table 3.

3.5.3 Randomization
To examine ability of advanced QSAR model, they 
have been validated by using randomization method. 
Y-randomization method is used by hashing the data in 
Y-column and descriptive matrix (X-Matrix) is remained 
intact. Each time, the models are developed with hashed 
data and correlation coefficient is calculated. If squared cor-
relation coefficient of original QSAR model (R2) is higher 
than averaged squared correlation coefficient of random 
models ( R2

r ), then it is probable that advanced model is con-
sidered as a sufficient one. In this paper, a randomization 
model with 98% confidence is used. In randomization of 
model, Y-hashing examines specificity of advanced QSAR 
model by the descriptive element in the model. However, 
there is no strategy provided for showing the right differ-
ence between R2 and R2

r to have a valid statistical model. 
So, to determine the difference between R2 and R2

r , the cri-
teria showing advanced QSAR model validity, we used 
another parameter, namely R2

p . This parameter eliminates 
R2 because of the insignificant difference between R2 and 
R2

r . The threshold for R2
r is 0.5 and, if QSAR model sur-

passes this threshold, it may result in considering the model 
as a sufficient one and this cannot happen by chance [54]. 
To show the R2

r quantity, so far, we have used Eq. (6):

R R R RP r
2 2 2 2� �� � .	 (6)

Nonetheless, in ideal situation, average quantity of R2 
for random models must be zero (0); in fact, R2

p must be 
zero (0). As a result, in this position, R2

p must be equivalent 
to R2 in advanced QSAR model. Therefore, the corrected 
equation of R2

p ( CR2
P ) suggested by Todeschini is formu-

lated (Eq. (7)):
C

P rR R R R2 2 2� �� � .	 (7)

The QSAR model was evaluated by the statistical 
parameter, and the result are presented in Table 3.

3.6 Molecular design
The role of computation in molecular design has grown 
steadily since the late 1960s  [55,  56]. In the early days 
emphasis was on statistical and computational approaches 
aimed at quantifying the relationship of chemical structure to 
biological properties. In addition, recent modeling by com-
putational approaches has become a critical tool in the drug 
discovery process. As an application of proposed method, 

we investigated GA-PLS model to predict the inhibitory 
activity of five new p38 MAP-KINASE compounds whose 
biological tests were not performed with them yet. Table 4 
shows the chemical structure of five new compounds and 
their inhibitory activity calculated by this proposed method.

Table 4 Structural modification of P38 MAP kinase and predicted pIC50 
by GA-PLS (Structures were made by the authors with ChemSketch [32])

Number 
of design Chemical structure Predicted pIC50 

calculated by GA-PLS

1

 

7.16

2

 

7.23

3

 

7.89

4

 

6.91

5

 

5.88
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3.7 Examination of compounds by Lipinski's rule
Lipinski and his co-workers in 2001, presented a guideline 
for the prediction of absorption of the orally active com-
pounds through the definition of the rule of 5. The rule of 5, 
based on the calculation of the distribution of properties 
of several thousand drugs, predicts that low absorption or 
penetration happens in some cases when an intended mol-
ecule has the following properties [57, 58]. Extensive effort 
is progressing with the goal of discovery development and 
getting better of new drugs in the early stages of research 
and development processes for identification of drug-like 
properties in molecules. Although, there are different 
approaches for this problem, probably the most convenient 
and common approach is the very developed approach 
by Chris Lipinski and his co-workers in Pfizer Company 
that generally is known as Lipinski's rule or the rule of 5 
(ROF). The rule of 5 is based on four features which 
include these items: molecular weight (MW), logarithm P 
(logP), the number of hydrogen bond donors (HBD) which 
is equivalent to the number of OH and NH groups, and 
the number of hydrogen bond acceptors (HBA) which is 
equivalent to the number of oxygen and nitrogen atoms. 
This rule is true when the molecular weight of a mole-
cule is greater than or equal to 500, its HDB number is 
greater than or equal to 5, its HBA number is greater than 
or equal to 10 and its logP is greater than or equal to 5 (the 
quantity logP is the logarithm of octanol/water partition 
coefficient, or the amount of water and oil solubility that 
is used to the prediction of the solubility rate) [59]. In this 
research, we investigated MlogP. Moriguchi's calculation 
always gives the right answer and this value is presented 
on the ADME Swiss server by Lipinski et al. [60]. ADME 
is an abbreviation in pharmacokinetics and pharmacology 
for "absorption, distribution, metabolism, and excretion". 
Sometimes, the potential or real toxicity of the compound 
is taken into account (ADME-Tox or ADMET). Since the 
values of the parameters for all these features are multi-
ple of 5, the set of mentioned rules is known as the rule 

of 5. Total values (ROF score) are variable between 0 to 4. 
The molecules with a ROF score larger than 1 are less con-
sidered for researches. As Lipinski and his colleagues have 
pointed out, these molecules do not have to be removed 
necessarily from investigations. Instead, they should have 
lower priority in the research and development processes. 
Finally, it should be noted that as you know, many drugs 
exceed the values of the rule of 5. But since the rule of 5 
had been initially designed as a tool for the study of drug 
similarities, however, the application of this rule for this 
purpose has made it very practical and effective [61].

The polar surface area (PSA) of the molecule is another 
significant factor that has a direct role in the permeability 
of bioactive compounds. By definition, the polar surface 
area is the surface of the molecule that has oxygen, nitro-
gen, or hydrogen connected to these two. Based on studies 
on various structural banks, it has been specified that per-
meability of compounds increases with mass increase and 
also with reduced polar surface area. Based on the results 
of these studies, compounds with a polar surface area more 
than 140, do not show good permeability [62, 63]. Five sug-
gested compounds in the present study follow Lipinski's 
rules. Therefore, they can be placed in the group of phar-
maceutical compounds with proper absorption and penetra-
tion. Lipinski's parameters of these compounds are shown 
in Table 5. Lipinski's rules and physicochemical properties 
of compounds were predicted by the ADME Swiss server.

3.8 Molecular docking studies
In this research, in order to the investigation of anticancer 
properties of the suggested pharmaceutical compounds, 
the  tendency of these compounds to the interaction with 
respective receptor was examined by molecular docking 
studies. According to Hadaji  et  al.  [36], the studied com-
pounds have an inhibitory function on P38 MAP kinase 
protein and by inhibition of this protein, they cause decreas-
ing of kinase enzyme activity. Also, they are effective in the 
control of cancer progression and the growth of cancerous 

Table 5 Lipinski's parameters of five suggested compounds

Compounds Hydrogen bond donors
(≤5)

Hydrogen bond acceptors
(≤10) Molecular mass < 500 MlogP > 4.15 High lipophilicity

(i logP < 5) Lipinski

1 0 3 416.25 5.40 3.85 Yes; 
MlogP > 4.15

2 2 5 420.84 4.03 3.08 Yes; 0 violation

3 2 9 450.36 3.58 3.56 Yes; 0 violation

4 2 6 482.86 5.14 3.26 Yes; 1 violation: 
MlogP > 4.15

5 2 9 470.38 3.24 4.30 Yes; 1 violation: 
MlogP > 4.15
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tumors. Expansion of artificial kinase inhibitors needs to 
use of the chemical syntheses for creating a small molecule 
that blocks kinase active site and stops its operation. Kinase 
inhibitors which are marked with tinib suffix in the bill of 
materials (BOM) can stop the kinase operation with sev-
eral different mechanisms. The most prevalent mechanism 
is the blocking of an ATP connection point that prevents the 
binding of phosphate residues which is essential for phos-
phorylation. These  kinase inhibitors utilize as anti-cancer 
agents for targeting tumor or vascular endothelial cells. 
This method is named Targeted Therapy. Because kinase 
inhibitors have a specific and well-known performance 
contrary to the conventional chemotherapy wherein, they 
make no difference relative to tumor tissues cells which are 
rapidly dividing. In view of the mentioned items above, this 
protein was considered as a receptor in our docking studies. 

Diverse crystallographic structures of mitogen-activated 
protein kinase were investigated in the protein DataBank 
station and the desired structure was selected by pdb ID: 
1OVE. Also, the structures of five proposed compounds 
were drawn by Marvin Beans software [64] and were con-
sidered as ligands. All molecular docking studies were per-
formed by Schrodinger maestro software [65].

Investigation of molecular docking results exhibited 
that five proposed compounds have the acceptable ability 
in mitogen kinase enzyme inhibition and their inhibitory 
properties are different depending on the functional groups 
in the structure and the bonding energies are variable from 
−50.36 to −85.65 kcal mol−1. Linked free energies determine 
the amount of tendency of the proposed compounds (ligands) 
to the interaction with the enzyme active site. It is clear that 
the more negative values are indicative of more tendencies 
and the formation of the more stable ligand-receptor 
complex. The obtained results from docking studies included 
docking scores and the binding free energies for different 
poses of each of the five compounds are displayed in Table 6. 
The best POSE with better and displayable interactions in 2D 
and 3D spaces have been shown in highlights of Table 6, and 
relevant 2D and 3D images of ligand-receptor complexes to 
them have been shown in Fig. 5.

3.8.1 Investigation of the results of molecular docking 
studies
Different obtained results of docking such as appropriate 
values of bonding energies and docking scores (Table 7), 
the suitable number of involved amino acids as well as 
the existence of various electrostatic interactions, hydro-
gen bonds, halogen bonds, and etc. between ligand and 

receptor revealed that all suggested compounds make 
a good and convenient connection with mitogen kinase 
enzyme active site.

As shown in Table 7, the number of amino acids engaged 
in interaction for each of the proposed compounds has 
been very convenient and acceptable. Fig. 5 shows that all 
of these compounds are in the right position in the active 
site of the mitogen kinase enzyme. Based on the 2D fig-
ures of ligand-receptor complexes, amino acids GLY110, 
MET109, ASP168, LYS53 have the most role in the inter-
action between the proposed compound number 1 and 
kinase enzyme. Amino acids LYS53, MET109, GLY110, 
and TYR35 have a more important role in the case of the 
proposed compound number 2. Regarding compound num-
ber 3, more effective amino acids in interaction are LYS53 
and TYR35. In compound number 4, amino acids LYS53, 
and ASP168 and in compound number  5, amino acids 
TYR35, LYS53, GLY110, and MET109 play an important 
role in the bond created between ligand and receptor.

Also the examination of ligand-receptor complexes 
of docking exposed that the oxygen of carbonyl group 

Table 6 The obtained results from docking studies for different poses of 
five proposed compounds

Pose Docking score  
(kcal mol−1)

MMGBSA*  
(kcal mol−1)

1 −10.898 −73.33

1 −10.095 −60.09

2 −13.495 −61.12

2 −12.815 −85.65

2 −10.627 −60.07

2 −10.146 −75.37

2 −10.040 −75.23

3 −10.093 −64.55

3 −10.058 −62.93

3 −10.032 −67.07

3 −9.875 −69.69

3 −9.730 −69.15

3 −9.289 −65.29

4 −9.471 −50.36

4 −9.113 −53.11

4 −8.891 −52.67

4 −8.600 −53.71

5 −12.676 −76.44

5 −10.588 −62.89

5 −10.187 −62.35

5 −9.650 −61.64

5 −9.645 −74.03
* Molecular mechanics generalized born surface area (MMGBSA)
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Fig. 5 2D and 3D images of ligand-receptor complexes related to highlighted poses in Table 6

Table 7 The interaction between amino acids and five proposed compounds

Compounds Ligand-interacting amino acids MMGBSA  
(kcal mol−1)

1 GLY110, MET109, ASP168, LYS53, TYR35, LEU104, ALA111 −73.33

2 LYS53, MET109, GLY110, LEU75, TYR35, ALA111, ASP112, LEU167 −85.65

3 LYS53, TYR35, ASP168, LEU104 −67.07

4 LYS53, ASP168, SER154, ILE84, LEU167 −52.67

5 TYR35, LYS53, GLY110, MET109, ALA111, LEU167, ASP168, LEU75, LEU104 −76.44

in the proposed compound number 1 establishes hydrogen 
bond (H-Bond) with amino acids MET109 and GLY110. 
Likewise, the chloride functional group in this compound 
participates in the halogen bonds formation with amino 
acids ASP168 and LYS53. The oxygen of carbonyl group 
in compound number 2, like compound number 1, gives 
hydrogen bond (H-Bond) with the amino acid MET109. 

The ring with chlorine and fluorine functional groups gives 
Pi-Cation interaction with the amino acid LYS53. Also, 
the ring with two fluorine groups in this compound forms 
Pi-Pi stacking interaction with the amino acid TYR35. 
In the proposed compound number 3, amino acid LYS53 
gives a hydrogen bond (H-Bond) with the oxygen of car-
bonyl group and participates in the Pi-Cation interaction 
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Table 9 Docking score regarding pIC50 for the first 8 combinations

No. pIC50 (nM) Docking score (kcal mol−1)

1 6.49 −10.812

2 6.72 −10.702

3 7.03 −11.485

4 6.06 −10.142

5 6.05 −9.692

6 6.31 −10.461

7 6.14 −9.787

8 5.89 −9.602

Table 8 Physicochemical properties of five proposed compounds

Compounds Chemical formula Polar surface area (PSA ≤ 140 Å) Solubility Digestion

1 C22H13Cl2F2NO 22 Å² 1.94e-04 mg ml−1 Low

2 C20H12ClF3N2OS 82.01 Å² 1.02e-06 mg ml−1 Low

3 C22H15F5N2O3 75.17 Å² 2.07e-06 mg m−1 Low

4 C26H15ClF4N2O 56.71 Å² 2.78e-09 mg m−1 Low

5 C21H12F6N2O2S 91.24 Å² 5.68e-07 mg ml−1 Low

Fig. 6 Docking score regarding pIC50 for the first 8 combinations

with a ring that has two fluorine groups. Also in this com-
pound, the amino acid TYR35 forms Pi-Pi stacking inter-
action with a ring that has three fluorine groups. In com-
pound number 4, amino acid ASP168 creates the halogen 
bond with the chloride functional group and amino acid 
LYS53 takes part in the Pi-Cation interaction with a ring 
that has a working group. In the proposed compound num-
ber 5, amino acids MET109 and GLY110 make hydrogen 
bonds with the oxygen of the carbonyl group. Also, amino 
acid LYS53 participates in the Pi-Cation interaction with 
a ring that has four fluorine groups. In this compound, the 
amino acid TYR35 institutes Pi-Pi stacking interaction 
with a ring that has two fluorine groups.

3.8.2 Investigation of physicochemical properties of the 
proposed compounds
Having the convenient physicochemical properties makes 
the compound more effective and picks it up as a suitable 
drug candidate. Then, in this research in addition to lipo-
philicity in Lipinski, other features such as water solubility, 
the amount of gastrointestinal absorption, and the polarity 
of the five proposed compounds were studied. The results of 
these investigations have been shown in Table 8 (the results 
were predicted by the ADME Swiss server).

In general, the results of this study indicate that the pro-
posed compounds have appropriate physicochemical prop-
erties such as high gastrointestinal absorption, relatively 
good solubility, and a high degree of polarization. Also, 
the results of molecular docking studies for five proposed 

compounds showed the good tendency of these com-
pounds to interact with mitogen kinase protein. Therefore, 
more investigations regarding these compounds in the lab-
oratory environment and the examination of the inhibitory 
effect of these compounds in the in vivo and in vitro con-
ditions can confirm the high potential of these compounds 
in the control of cancer tumors progression and their treat-
ment with more confidence.

3.8.3 Studying binding energy
The binding energy among combinations was examined, 
and the results for 8  structures (1–8) is showed in  the 
table (Table 9). The pIC50 chart has been made drawing 
on binding energy (Fig. 6). The appropriate R2 shows that 
these parameters have linear relation and our ducking 
method is valid.

The free binding energy was calculated for 1 to 8 com-
pounds, the values of which are shown in Table 10, and 
the free energy diagram was plotted in terms of pIC50 , as 
shown in the Fig.  7. Appropriate R2 indicates that there 
is a linear relationship between the two parameters and 
the results show that these compounds have good perfor-
mance and acceptable bond energy. Based on these dia-
grams and their line equations, pIC50 was calculated for 
the test series, the values of which are shown with the 
actual values of Observation in Table 11. The pIC50 was 
also calculated for the proposed compounds. Its values 
are shown in Table 12 according to the appropriate QSAR 
model (GA-PLS), docking score and free energy.
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4 Conclusion
Image processing has made remarkable progress in the-
oretical and practical aspects in recent decades, and its 
application can be seen in a wide range of sciences and 
industries. QSAR studies are an important application of 

image processing because they provide an acceptable pre-
diction of compound activity, and the results can be chem-
ically interpreted. The GA-PLS model was used in this 
study to investigate QSAR inhibitory activity. The mod-
el's RMSEC and RMSEP values are 0.19 and 0.20, respec-
tively. As a result, incorporating the GA method into 
the PLS model improves the predictive validity of the 
QSAR model.

Table 10 MMGBSA values and pIC50 for the first 8 compounds

No. pIC50 (nM) MMGBSA (kcal mol−1)

1 6.49 −75.69

2 6.72 −71.69

3 7.03 −79.58

4 6.06 −67.55

5 6.05 −44.67

6 6.31 −47.16

7 6.14 −63.69

8 5.89 −58.96

Fig. 7 MMGBSA regarding pIC50 plot for the first 8 compounds

Table 11 Predicted pIC50 values by docking scores for test set

No. pIC50 (nM) observation pIC50 (nM) predicted based 
on docking score

1 6.49 6.63

5 6.05 5.93

7 6.14 5.99

17 5.84 6.62

21 5.62 5.12

27 7.32 6.23

28 7.1 6.47

33 7.49 6.36

36 7.52 6.35

Table 12 Predicted pIC50 table values for proposed compounds

No.
Docking 

score 
(kcal mol−1)

MMGBSA 
(kcal mol−1)

pIC50 (nM) 
predicted 
based on 
docking 

score

pIC50 (nM) 
predicted 
based on 

MMGBSA

pIC50 (nM) 
predicted 

by 
GA-PLS

1 −10.898 −73.33 6.68 6.78 7.16

2 −12.815 −85.65 7.88 7.35 7.23

3 −10.032 −67.07 6.15 6.49 7.89

4 −8.891 −52.67 5.44 5.83 6.91

5 −12.676 −76.44 7.8 6.92 5.88
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