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Abstract

The appropriate estimation of frictional losses in a pipeline system is essential. So far, little attention has been paid to determining the
friction factors with non-Newtonian fluids, especially in rough pipes. This study aims at calculating the friction factor using validated
three-dimensional Computational Fluid Dynamics models in Ansys CFX. Steady-state computations are performed with three different
incompressible Herschel-Bulkley fluids in rough pipes with relative roughness of the inner pipe surface € = 0.0005 - 0.01. A power-law
type bath gel as a test fluid is used for experiments to validate our numerical model. The numerical results are compared with the
measured values and also with numerous existing friction factor estimation models with the help of generalization of the Reynolds
number in the relevant engineering range of Re,, = 100 - 40,000. This paper shows that the existing approximations can not accurately

describe the friction factor with pseudoplastic fluids in rough pipes. On the contrary, in the case of Bingham plastic fluid, a new, explicit

calculation relation is found in a unified form accepted by the literature.
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1 Introduction

In a pipeline system, the friction factor has a key role in
hydraulic design, because knowing the losses, the systems
can operate more energy-efficient. In many industrial
fields, the delivered fluid has time-independent non-New-
tonian rheology, e.g., the activated sludge in wastewater
treatment technology [1, 2], juices [3] and pulps [4] in the
food industry, the drilling mud in the oil industry [5] and
chitosan ferrogel in pharmaceutical industry [6].

For Newtonian fluids, the Colebrook equation has
been demonstrated applicability in the turbulent range in
rough pipes and is the accepted standard of accuracy for
calculated friction factors [7]. However, this equation is
implicit, so it needs iteration. Therefore, numerous explicit
solutions to the formula have been developed. Brkic [8]
and Geni¢ et al. [9] presented extensive reviews of the
existing approaches and found many explicit approxima-
tions very accurate. Plascencia et al. [10] also compared
current methods; they discovered that some expressions
using Lambert's W function are also sufficiently precise.
Some recent, unified formulations are valid for all hydrau-
lic regimes for Newtonian fluids [11].

By introducing the generalized Reynolds number [12],
the Darcy equation is valid for power-law, Bingham and
Herschel-Bulkley laminar flows. On the contrary, there
is no widely accepted model to calculate the friction
factor in the turbulent regime for non-Newtonian flu-
ids. The available equations for smooth pipes were sum-
marized by Garcia and Steffe [13] and investigated by
El-Emam et al. [14]. Turian et al. [15] experimentally
investigated the friction factor with concentrated slur-
ries, Vajargah et al. [16], Subramanian and Azar [17] with
muds and Cabral et al. [18] with different liquid food
products. The researchers' findings were contradictory in
terms of the applicability of formulas for approximating
the friction factor.

Much less is known about the friction factor with
non-Newtonian fluids in rough pipes. Szilas et al. [19] and
Kawase et al. [20] developed models only for power-law
fluids, Reed and Pilehvari [21] and Sorgun et al. [22] for
Herschel-Bulkley fluids. The latter estimations needed
the wall shear stress, but no direct assessment of the wall
shear stress for turbulent non-Newtonian flow is available.
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In recent years, Computational Fluid Dynamics (CFD)
computations proved to be an accurate and affordable
way of modelling industrial problems [23], and non-New-
tonian flows [24-26]. Bartosik [27] modelled the turbu-
lent flow of Herschel-Bulkley fluids in a smooth hori-
zontal tube. The turbulence models for predicting flows
of Herschel-Bulkley fluids were compared by Lovato
et al. [28]. Singh et al. [29] conducted pipe flow simula-
tions for Bingham and Herschel-Bulkley fluids with vary-
ing yield stress. Recently, Sorgun et al. [30] investigated
the turbulent flow of viscoplastic materials in rough pipes
with CFD and experiments.

The present study uses CFD to calculate the friction fac-
tor in rough pipes with different non-Newtonian fluids. Our
paper provides numerical results compared to experimen-
tal ones with power-law fluids as validation. The paper also
suggests parameters of a unified friction factor equation for
Bingham fluids.

2 Materials and methods

2.1 Rheology

The rheological behaviour of the three investigated flu-
ids was described with the Herschel-Bulkley (HB) model
as v = 7, + Ky" where 7 [Pa] is the shear stress, 7, [Pa] is
the yield stress, K [Pas”] is the consistency index, n [-] is
the flow behaviour index and y[1/s] is the shear rate. The
power-law (PL) and the Bingham (B) descriptions can be
derived from the HB model; there is no yield stress in the
PL equation, and the B model is valid when the flow beha-
viour index is n = 1.

The experimental validation was performed with a bath
gel as a test fluid (Gelli Baff, compounds in [31]), a pseu-
doplastic material modelled with the power-law relation-
ship. An Anton Paar Physica MCR301 rotational viscome-
ter was used to determine the rheology. Our measurement
range was 0.1-500 1/s, and the instrument was used with
a cone-plate layout with a gap of 0.054 mm.

Two additional liquids from the food industry were
investigated. Sani et al. [3] examined the rheology of melon
juice (Cucumis melo L. var. Inodorus) as the function of
the temperature and the total soluble solids. The properties
at a temperature of 35 °C and a soluble solid 40°Brix were
applied. The flow behaviour index of the pulp was nearly
one, so it was considered a Bingham plastic material.

The rheology of the red guava pulp (Psidium guajava L.)
was determined by Diniz et al. [4]. Our work used the red
guava pulp at a temperature of 70 °C and a soluble solid
5.7°Brix, described with the Herschel-Bulkley model.
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Table 1 Rheological parameters of the investigated fluids

Fluid Test fluid Melon juice [-3] Red guava pulp. [4]
(bath gel) (35 °C; 40 °Brix) (70 °C; 5.7 °Brix)

p [kg/m?] 998 1216 963

7, [Pa] 0 0.863 1.963

K [Pa-s"] 0.150 0.075 1.311

n[-] 0.57 1 0.45

R? 0.991 0.999 0.997

Type PL B HB

Table 1 summarizes the material properties and the types
of the three investigated fluids.

2.2 Friction factor formulations
The friction factor (f [-]) for rigid, straight cylindrical
pipes was modelled with the Weisbach equation

__ A
f_£BV2’ (1)

D2

in which Ap [Pa] is the total pressure drop in the pipe sec-
tion, p [kg/m?] is the fluid density, L [m] is the length of
the investigated section, D [m] is the inner diameter of the
pipe, and v [m/s] is the mean velocity. In general, the fric-
tion factor depends on the Reynolds number Re [-] and the
relative roughness of the inner pipe surface ¢ [-].

The Reynolds number is Re = pvD/u for Newtonian
materials, where u [Pas] is the dynamic viscosity of the
fluid. A modified non-Newtonian Reynolds number can be
written based on Metzner and Reed [32] as
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but this expression does not include yield stress. Madlener
et al. [12] defined another generalized Reynolds number
for Herschel-Bulkley fluids:
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where m [-] is the local exponential factor.

In the Newtonian laminar regime, the formula for the
friction factor is the theoretical Darcy equation: /= 64/Re.
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For hydraulically smooth pipes in the turbulent zone, the

025 yalid for

Blasius equation is known, where /= 0.316/Re
4 x 10°<Re < 10°.

For the turbulent flows in rough pipes, the well-known
implicit Colebrook equation [7] is valid for 4x10° <Re < 10®

and 0 <¢<0.05 as
e 25 ) (5)
Jr 37 Re f

The Brki¢ expression is based on a new approach using
Lambert's W function [8]:
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Some unified friction factor formulations are valid
for Newtonian fluids for all regimes from laminar to
fully turbulent flow [11]. The Colebrook-Churchill for-
mula is based on the Churchill approximation [33] of the
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and the Colebrook-Swamee approximation is given by
Swamee and Jain [34] as
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which is closest to the conventional formulas. Furthermore,
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Chernikin also gave a unified equation [35]:
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In this study, the Reynolds number was substituted
with a generalized Re number due to Madlener et al. [12]
in Eq. (3).

For non-Newtonian fluids in smooth pipes, Dodge and
Metzner [36] developed the most widely used implicit
expression for the Fanning friction factor f,.. For power-law
fluids the Metzner-Reed Reynolds number (Eq. (2)) is used
in their approach as:

1 4 21 04
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The relationship between the Fanning and the Weisbach
friction factors is simple: 4 f, = f.

Only a few friction factor correlations were introduced
for non-Newtonian fluids in rough pipes. The Sorgun
et al. [22] model was experimentally validated with some
Herschel-Bulkley fluids in the range of and and it includes
the wall shear stress:
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where N [-] is the function of the flow behaviour index,

Jr= (12)

the yield stress and the wall shear stress N = f(n, 7, 7).
The Sorgun formula simplifies with PL fluids: when the
flow behaviour index # can be used instead of N.

The relationship between the wall shear stress and the
apparent wall shear rate (8D/v) for non-Newtonian fluids
can be written in the following form [37]:

8v d
=m'| = , 13
7, ’”(DJ (13)

where m' and n' are rheology-dependent quantities. For
power-law fluids, it is known that m' = K(3n + 1)/4n and
n'=n are constants in the laminar regime.

2.3 Simulation details

The geometry for the simulations is a straight, circular
pipe section with an inner diameter of D = 0.3 m and 60D
length, which is sufficiently long for a properly developed
velocity profile [37]. To reduce the solver runtime, only
a 9° sector of the circular cross-section was used for most
simulations [24] using the symmetry boundary conditions
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3 Results

The rheological properties were used in CFD simulations
to compute the friction factors. The results were com-
pared with analytical values and the measured friction
factors for smooth pipes to validate our model. Results for
rough pipes were collated with the estimations detailed in
Section 2.2.

3.1 Flows in smooth pipes

To validate our computations, first, the axial velocity pro-
file was normalized with the mean velocity and presented
along the dimensionless radius in Fig. 3 in laminar flow.
The developed velocity profiles show the plug flow region
for fluids with yield stress (B and HB fluids), which coin-
cide with the analytically calculated dimensionless plug
radius values [37], also shown in Fig. 3.

Another way to verify our numerical results is to see
the wall shear stress 7, as the function of the nominal shear
rate (8v/D) in a smooth pipe. The bottom plot in Fig. 4
shows this relationship as representing the flow behaviour
of the non-Newtonian fluids. The diagram also presents
the curve fit for the three investigated fluids separately in
the laminar and turbulent regimes. For our power-law test
fluid in the laminar case, m'= 0.1783 and n'= 0.57 were in
Eq. (12), presented with a green dotted curve (Analytical)
in the figure. The numerical results matched this analytical
curve with the coefficient of determination of R? = 0.9884.
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Fig. 3 Normalized axial velocity profiles in smooth pipe for the power-
law, Bingham, Herschel-Bulkley fluids and with water at Re = 100.
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The top panel of Fig. 4 shows the rheograms of the fluids,
which confirms the crossing of the melon juice's and red
guava pulp's wall shear curves. However, for the Bingham
and the Herschel-Bulkley model the m' and n' parameters
are considered not constants but dependent on the wall
shear stress [37]; the coefficient of the determination of
the fit shows that the fit assuming m'and »' constant can be
acceptable approximations in these cases, too.

3.2 Validation with experiments
Since the experiments were performed in a smooth tube,
the CFD results were also compared with measured and
predicted friction factors with the test fluid in smooth pipe.
Fig. 5 shows these friction factors of the test fluid and indi-
cates a good agreement in the range of 100 <Re,, < 8000
with the present experiments, with the maximum difference
of £10%. The Dodge-Metzner curve was below our exper-
imental and numerical results, as EI-Emam et al. [14] and
Sorgun et al. [22] also found; while our numerical results
were below the Blasius equation, in which Eq. (3) was used.
The Newtonian models containing the relative rough-
ness were very close to each other in the fully turbulent
region of 4000 <Re, . (For smooth cases, it was calculated
with & = 0 as suggested by the Colebrook equation.) With
our PL test fluid in a smooth pipe, the Sorgun model did not
prove appropriate.
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fluid in laminar zone (green dotted)
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3.3 Results for rough pipes

The friction factors for rough pipes were compared with
the formerly introduced estimation models. All the inves-
tigated approximations include the rheology using the gen-
eralized Reynolds number except for the Sorgun equation.
The needed wall shear stress in the Sorgun model was esti-
mated based on the fit presented in Fig 4. and was assessed
only at ¢ = 0.001, for which value this model has been vali-
dated [22]. The numerical friction factors compared to the
estimation methods are presented in Fig. 6, where (a)—(f)
panels show the results in pipes with the decreasing rel-
ative roughness of ¢ = 0.01; 0.005; 0.002; 0.001; 0.0005
and 0 (smooth pipe). The friction factors obtained with the
three type of fluids were remarkably different.
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'v\f.y‘:'f ’ R i s s XX dx
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Fig. 6 Numerical and estimated friction factors with the bath gel (PL), the red guava pulp (HB) and the melon juice (B) in pipes with different
roughness. a) ¢ = 0.01; b) e = 0.005; ¢) ¢ = 0.002; d) ¢ = 0.001; e) ¢ = 0.0005; {) smooth pipe



80 | Csizmadia et al.
Period. Polytech. Chem. Eng., 67(1), pp. 74-82, 2023

Calculated friction factors with the Bingham type
(n=1) melon juice perfectly aligned with the Blasius equa-
tion in the smooth cases and with the Colebrook and Brki¢
predictions for all the pipes in the turbulent range. The
unified approaches also seemed to be good; still, a shift in
the location of the critical zone can be observed between
the numerics and the estimations. Unlike the other mod-
els, the Sorgun approximation did not prove to be accurate
for our Bingham fluid. The applied k—w SST turbulence
model proved to be feasible with our weakly non-Newto-
nian (n > 0.8 and 7,/z,, < 10%) fluid for smooth and rough
pipes as well.

The best-known Colebrook-Swamee unified approxi-
mation was used to fit the Bingham results for all the inves-
tigated pipes. The exponents and the well-known parts of
the equation (64/Re and ¢/3.7) remained unchanged while
the generalized Reynolds number in Eq. (3) was applied.
So the fit extended to the parameters A, B and C in Eq. (14):

8
64
Regen
- 1-16

B &
f= In| ——+—— , (14)
8 Re?? 3.7

gen
+A4

6
| C
Re gen

and the curve fitting resulted in 4 = 12.61, B = 4.874
and C = 1375 with the goodness of fit of R?> = 0.988
and RMSE = 0.002316 in the range of 0 < & < 0.01 and
260 <Re, <45000, as seen in Fig. 7.

The other two fluids were shear-thinning; the flow
behaviour index was n = 0.57 for PL and n = 0.45 for the
HB fluid. As the exponent decreased, the curves moved

lower in Fig. 6. However, the two liquids' flow behaviour
differed also due to the Hedstrom number, which is an
order of magnitude of 10* for HB and zero for the pow-
er-law fluid. These two properties together result in red
guava pulp behaving quite differently from the others.
Because of the pseudoplastic characteristics of these fluids,
the friction factors can not be described accurately with
the known estimations, interestingly including the Sorgun
equation, even though it includes the wall shear stress.
Towards the zone of complete turbulence, the friction
factors seemed to converge. At the highest pipe roughness,
the complete turbulence occurs at lower Reynolds number
values, where the friction factors agreed for all three fluids.

0.2
o CFD 0.0005 A CFD 0.002
® CFD 0.005 x CFD 0.01
—Fit unified 0.0005 ----Fit unified 0.002
—_ — —Fitunified 0.005 - Fit unified 0.01
prng
=
o
=t
3]
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=)
=]
B
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=
=
0.02
200 2000 20000

Generalized Reynolds number, Reg,, [-]

Fig. 7 Fit of the unified Colebrook-Swamee equation to the
CFD results with the Bingham fluid for the rough pipes of
&=0.01; 0.005; 0.002; 0.0005

4 Conclusions

With a validated CFD model, three-dimensional steady-
state simulations were performed in Ansys CFX in a wide
range of parameters on incompressible non-Newtonian
fluids and achieved the following main results.

The pipe friction factor was determined for rough pipes
for three Herschel-Bulkley fluids in the relevant engineer-
ing Re number and relative roughness ranges. With the
generalization of the Re number, the formulas valid for the
Newtonian case were extended, and thus the results were
included in the literature.

For the flow of a Bingham plastic fluid in a rough pipe,
aunified formula in the form accepted in the literature was
defined, with which the pipe friction factor can be explic-
itly estimated in both laminar and turbulent regions. This
result shows the applicability of the unified Colebrook-
Swamee estimation for Bingham fluids.
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Nomenclature

A -] constant of the fit in Eq.(14)
B[-] constant of the fit in Eq.(14)
Cl-] constant of the fit in Eq.(14)
D [m] pipe inner diameter

fI-] Weisbach friction factor

Fanning friction factor

S []



K [Pa-s"] consistency index

L [m] pipe section length

m [-] local exponential factor in Eq.(3)

m'[-] rheology-dependent parameter in Eq.(13)
n[-] flow behaviour index

n'[-] rheology-dependent parameter in Eq.(13)
N[-] flow behaviour function

p [Pa] pressure

T e [m] plug radius

R [m] pipe inner radius

Re [-] Reynolds number

Re,, [-] generalized Reynolds number

v [m/s] mean flow velocity

L] parameter in Eq.(6)
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