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Abstract

This work presents a robustness study of a previously developed empirical model that links Young's modulus to two key parameters of 

crystalline structure; crystallinity and lamellae thickness. The reliability of this modulus prediction model was tested by using different 

calorimeters and different polypropylene grades as well. Small samples were fabricated from injection-molded bars from different 

locations of the specimens in order to check the effect of structural inhomogeneity originated by the dynamic processing conditions. 

In addition, the standard deviation and consequently the accuracy of the prediction was tested by repeated calorimetric measurements. 

The crystalline structure and melting characteristics were measured by differential scanning calorimetry (DSC). The tensile properties 

of studied specimens were evaluated by standardized tensile tests. Although, the accuracy and reliability of the prediction model is 

dependent on the instrument used for thermal analysis, reasonably good agreement was found between the predicted and measured 

values in most cases. However, we may note that only well-calibrated calorimeters are suitable for reliable prediction of the modulus.
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1 Introduction
Better understanding and consequently optimization of 
mechanical properties of semicrystalline polymers have 
always been in the focus of extensive research [1–9]. 
Relying on the earlier studies, it is well established that a 
solid basis to estimate the mechanical properties of mate-
rials is grounded on the understanding and interpretation 
of their complex microstructure [10–15]. It should be high-
lighted, that prediction mechanical properties should be 
separated into two basic cases according to the mecha-
nism of deformation in the polymer part. The first case 
is the elastic deformation, which can be characterized by 
the tensile modulus, for example. In this case, the defor-
mation is energy elastic, and the elongation of the spec-
imen is very small. However, at larger deformations, if 
the segmental movement is liberated in the material, con-
formational changes appear also, and plastic deformation 
develops. The two cases should be separated, and the pre-
dictive models should be matched to these two crucially 
different deformation mechanisms. The handling of elastic 

behavior is simpler since the mathematical treatment of 
conformational changes is very complicated and requires 
mostly statistical approaches. In addition, other parame-
ters need to be considered, such as the number of tie mole-
cules, chain entanglements etc. [13]. Despite of the simpler 
nature of elastic behavior, it still remained a challenge to 
predict elastic modulus of semicrystalline polymers accu-
rately due to several complex influencing factors, includ-
ing their molecular architecture and processing condi-
tions. Our work also aims the prediction of the tensile 
modulus, thus we will summarize the previous pioneering 
researches in this area only. 

The results of many empirical approaches are convinc-
ing enough to reveal a qualitative relationship between 
crystalline structure and mechanical properties of semic-
rystalline thermoplastic polymers; basic end-use elastic 
behavior is highly affected by microscopic architecture. 
Nevertheless, it is also worth noting that, in literature, the-
oretical or mathematical clarification of this correlation 
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between density or crystallinity and modulus from a quan-
titative point of view is relatively insufficient [3, 12, 16–18].

Several micromechanical models and multiscale simu-
lations have been developed and applied to predict elastic 
properties of semicrystalline polymers [19–24]. In different 
models the semi-crystalline morphology is approached by 
holding different assumptions. Mostly, the reported mod-
els are based on Mori–Tanaka type model and its general-
ized form [25, 26], Self-consistent model [27] and Double 
Inclusion model [28]. In a study concerning comparison of 
micromechanical prediction models, it was concluded that 
Generalized Mori–Tanaka model and the Self-Consistent 
Composite-Inclusion model presented comparably accu-
rate outcomes [29]. In another report, by comparing the 
estimated results to experimentally obtained data, it was 
stated that three-phase models show more precision than 
two-phase models [30]. The main disadvantage of some 
of these approaches is that they are only valid in case of 
volume fractions (of crystalline phase) up to 30%, which 
is not relevant for most of the semicrystalline materials, 
since the crystallinity usually reaches up to 70% [24].

Inaccuracies of some of the developed models stem 
from the fact that these methods treat modulus as the func-
tion of crystallinity only, which means that only the vol-
ume fraction of the crystalline phase is considered, but its 
regularity or level of perfection is not. In fact, the stiff-
ness of semicrystalline polymers can be altered by just 
rearrangement of lamellas, even if overall crystallinity 
remains unchanged [31]. Additionally, another issue in 
most of the reported models is that they require indepen-
dent structural variables and different material-specific 
constants. The required parameters and constants, which 
are not identified for most of the polymers, make these 
approaches difficult to apply widely. 

In a pioneering study, an empirical model equation 
reported by Pukánszky et al. [32] connecting the stiff-
ness of polypropylene with crystallization characteris-
tics: enthalpy and peak temperature of crystallization. 
The major advantage of this simple empirical approach 
was that it considered crystallinity proportional to the 
enthalpy and lamella thickness proportional to crystalliza-
tion temperature as independent variables. This empirical 

method makes the approximate estimation of tensile mod-
ulus possible based on a simple calorimetric curve and 
shows that the principal structural parameters which influ-
ence the stiffness are crystallinity and lamella thickness. 
Despite of its reasonably good accuracy, this approach can 
be used only in a limited crystallinity range within 30 and 
60%, which range overlaps completely the crystallinity 
range of iPP samples in the industrial practice.

Based on the findings of Pukánszky et al. [32] 
an improved approach was introduced which also predicts 
tensile stiffness using experimental values proportional to 
crystallinity and lamellar thickness. This improved model 
equation is applicable in entire crystallinity range [33]. 
Considering the difficult and time-consuming aspect of 
the evaluation of lamellar thickness, later the equation 
was simplified by replacing lamellar thickness with a 
temperature value (average melting temperature), which 
can be determined easily from a simple melting curve, 
and which is strictly proportional to lamella thickness. 
This approach can be easily applied for polymers with 
less known thermodynamic constants [34]. According to 
these results the improved prediction equation was suc-
cessfully applied to predict the modulus of polyamide-6 
and poly(lactic-acid) as well [34, 35]. 

Our present work aims to validate the robustness of our 
newest modulus prediction model [34], which was devel-
oped in our previous studies. This method was optimized to 
predict tensile stiffness of ISO 527-1:2019 injection-molded 
dumbbell shaped specimens [36]. Furthermore, in this 
work, we focus on improving the model equation further 
by transforming it into logistic function which can pre-
dict the modulus values in very high crystallinity range 
more precisely and consequently, it can be better used for 
prediction of stiffness of unique crystalline structure pre-
pared by annealing, for example. 

2 Experimental
2.1 Materials and sample preparation
Three different grades of polypropylene were tested during 
the reliability study of this prediction model, one of which 
was homopolymer and the two other random copolymers. 
Their characteristics are shown in the Table 1. It can be 

Table 1 The iPP grades used in the study

Notation in article Trade names PP grade MFR values (g/10 min) Supplier

H1 TIPPLEN H649FH Homopolymer 2.5 MOL Petrochemicals Co. Ltd.

R1 TIPPLEN R351F Random copolymer 8.5 MOL Petrochemicals Co. Ltd.

R2 BorPure RG466MO Random copolymer 30 Borealis AG
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seen that the selected polymers differ in their molecular 
structure as well as in their molecular mass and they are 
obtained from different producers either. We have selected 
these samples in order to demonstrate that how much the 
robustness depends on the selection of the material grade. 

Standard dumbbell shaped specimens (ISO 527-
1:2019 [36]) were prepared by using DEMAG IntElect 
560/330-100 type electronic injection molding machine. 
The temperature profile of the process was 180–190–200–
210 °C and mold temperature was 40 °C. Injection pres-
sure was set to 1600 bar with holding pressure of 420 bar. 
Holding and cooling times were 35 s and 15 s, respectively. 
Due to the physical ageing, in the newly produced speci-
mens, modulus changes may occur during the first few days 
of fabrication. Therefore, the ready materials were set aside 
for a week to avoid the potential post crystallization effects.

For the calorimetric measurements, small pieces were 
cut from the core of the injection molded bars. The sample 
mass was kept between 3 and 5 mg and hermetically sealed 
aluminum crucibles were used as sample holder. We may 
note that the small pieces of the samples were cut from the 
core of the products, since in these ISO 527-1:2019 dumb-
bell shaped specimens [36] with 4 mm thickness, the elas-
tic properties are governed by the core structure, not by 
the skin. This fact will be revealed in the further section 
concerning the microscopic studies.

For the microscopic studies thin slices with 70 microns 
were cut from the standard bars to present the skin-core 
structure of these cross sections. The cuts were prepared 
using Reichert-Jung Polycut Sliding Microtome machine 
with automatic cutting sequence. 

2.2 Characterization techniques
Young's modulus values were evaluated by Instron 5566 
type tensile testing machine (Instron, Germany) with 
ISO 527-1:2019 [36]. Gauge length was 115 mm and 
crosshead speed of 0.5 mm/min was applied until 0.3% 
deformation occurs, in which range the modulus values 
were measured.

Melting characteristics were analyzed by DSC. Five 
different differential scanning calorimeters were imple-
mented where three out of them were power compensa-
tion types: Perkin Elmer DSC 7, Perkin Elmer Diamond 
DSC-IC, Perkin Elmer DSC-8500, and the remaining two 
were heat-flux instruments: Q2000 DSC, Perkin Elmer 
STA6000. All the instruments were calibrated by high 
purity gallium, indium and tin reference standard materials. 
In all measurements, single heating run from 30 to 220 °C 

was performed with heating rate of 10 °C min−1. As purge 
gas, high purity nitrogen atmosphere (20 mL min−1) was 
applied. We have to highlight here that the single heating 
run deviates from the usual calorimetric protocol from the 
study of melting and crystallization of polymeric materi-
als, because polymers are usually studied after elimina-
tion of the thermal and mechanical prehistory. However, 
in our case we are interested in the crystalline structure 
of the injection molded specimen, so we must use the first 
heating run for evaluation. 

Moreover, it is necessary to add that to obtain accurate 
experimental results the temperature and heat flow calibration 
of the calorimeters were checked as well. Indium Calibration 
Standard is used to re-check the calibration of all DSC instru-
ments. Indium has a transition point (onset temperature) of 
156.60 °C and its enthalpy of fusion is 28.45 ± 0.2 J g−1. 
Accordingly, the onset temperature and fusion enthalpy 
results of each calorimeter (Tonset,av. = 156.88 ± 0.21 °C and 
ΔHfusion,av. = 28.57 ± 0.1 J g−1) were compared to these refer-
ence values and based on the displayed results it was con-
cluded that our DSC apparatuses are well-calibrated.

Supermolecular structure of the injection molded bars 
was characterized by polarized light microscopy (PLM) 
using a Zeiss Axisocope equipped by a Leica DMC 320 
digital camera. The images were recorded using Leica 
IM50 software. All thin films were placed between crossed 
polarizers and an additional λ-plate located diagonally was 
used to enhance the contrast of the image. 

2.3 Estimation methods of modulus
As it is mentioned before, our approach calculates modu-
lus values from crystallinity and lamellar thickness data 
obtained from calorimetric measurements, similarly to the 
pioneering model of Pukánszky et al. [32]. The mathemat-
ical form our empirical equation is an exponential func-
tion [34] given in Eq. (1): 

E E E E ea c a

X
X

T T
T
m av

m� � � ��
�

��
�
�

�
�
� �

��

�
��

�

�
��

�

�

�
�

�

�

�
�

1
0

0

� � �

, (1)

where Ea and Ec are the tensile modulus values for com-
pletely amorphous and perfectly crystalline polymer, 
respectively. Tav is the average melting temperature, X is 
the crystallinity, Tm

0 is the equilibrium melting tempera-
ture and α, β, γ are iterative constants.

Ea , the minimum stiffness or the stiffness of the amor-
phous iPP is in between 0.01–0.02 GPa and 0.01 GPa is 
used in this study, since we always used this value during 
our previous works [33, 34]. 
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All constants used for the calculations are summarized 
in the Table 2 [34, 37]. We have to consider that these 
constants are material-specific, however, by following an 
estimation protocol [34], these constants can be obtained 
for other polymers as well. In the previous studies con-
cerning this model, the constants were calculated for iPP, 
PA6 and PLA [34, 35].

Since the necessary constants are already known, only 
two parameters are required to evaluate from calorimet-
ric curves: crystallinity and average melting temperature. 
Crystallinity values can be calculated from the enthalpy of 
fusion data by Eq. (2): 

X H
H
m

m

�
�
� 0 . (2)

∆Hm is the experimentally obtained enthalpy of fusion 
based on the melting curve and ∆Hm

0 is the equilibrium 
enthalpy of fusion. ∆Hm

0 is taken from the literature, which 
is 148 J/g [37]. 

The other parameter to be determined is average melt-
ing temperature and it can be calculated directly from the 
melting curve by using the Eq. (3): 

T
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As it seems from Eq. (3), the average melting point can 
be evaluated in two simple steps. The temperature is mul-
tiplied with the heat flow curve generated by calorimetry 
and the area under the curve should be determined. Then 
the computed value needs to be divided by the area under 
heat flow curve. Examples of the aforementioned curves 
are given in Fig. 1.

3 Results and discussion
3.1 Estimation of raw data for modulus calculations
Evaluation of Ec value for iPP by simple tensile experi-
ments is not possible. According to van Krevelen and 
te Nijenhuis [38], estimation of the stiffness of perfectly 
crystalline polymer can be achieved theoretically by mea-
suring the propagation velocity of longitudinal sound 
waves in the material. The advantage of this method is 
that it handles the polymer as a polycrystalline material 

instead being a single crystal. The single crystals usually 
have direction dependent properties due to the symme-
try and geometry of their unit cell. However, polycrystal-
line polymers contain supermolecular units (spherulites 
for example) and they have random orientation without 
any external shearing force. Consequently, the proper-
ties of the polycrystalline materials are uniform in every 
direction, and this is much closer to the reality in prac-
tice. Although, structures formed in injection molding 
cannot be handled as polycrystalline structure without 
any orientation, its properties (modulus for example) are 
mainly deterned by the core structure, in which no pro-
nounced orientation develops and usually can be treated as 
non-oriented polycrystalline structure. Therefore, to use 
sound wave propagation was the most accurate approach 
to model the theoretical mechanical properties of injection 
molded structure in a realistic way, because the propaga-
tion of the sound wave is also dependent predominantly on 

Table 2 Necessary constants in Eq. (1) for the estimation of 
modulus [34, 37]

Samples Tm
0 

(K)
∆Hm

0 
(J/g)

Ea 
(GPa)

Ec 
(GPa) α β γ

H1, R1, R2 481 148 0.01 6.6 0.32 0.51 2.43

Fig. 1 Heat flow curve (a), Heat flow ∙ Temperature curve (b)

(b)

(a)
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the supermolecular structure of the core. By considering 
the dependence of group velocity of longitudinal sound 
waves on crystallinity, the generated experimental data 
can be linearly extrapolated to 100% crystalline polymer. 
Calculations are carried out by using the Eq. (4): 

E uc l cr� 2� . (4)

Where ul is the group velocity of the longitudinal sound 
wave, ρcr is the density of crystalline phase is 936 kg/m3.

The linear extrapolation was done based on two mate-
rials, homopolymer (H1) and random copolymer (R1) 
samples. We have selected a homopolymer and a random 
copolymer grade because the ethylene content in the ran-
dom copolymer may have an influence on the propagation 
rate, but theoretically the two materials should provide 
the same value for the perfect crystal since it is a perfect 
iPP crystal. Linear lines fitted and the propagation rate to 
X = 1 for both materials were extrapolated. The estimated 
values were 2608 and 2560 m/s for R1 and H1 respec-
tively, which values are very close to the original litera-
ture value, that was 2650 m/s [38], meaning that the way 
of estimation of Ec and the results are reliable (see Fig. 2). 
Since the original work contained much more data than 
our verification experiment, we used the literature value 
of 2650 m/s for our calculation, which was taken from the 
book of van Krevelen and te Nijenhuis [38]. Accordingly, 
the obtained Ec is found to be 6.6 GPa. The experimental 
results were in very good agreement with our expectation 
that propagation rate decreases steeper in R1 due to its less 
regular chain structure and reduced crystallinity. 

Before interpreting the location dependency results, 
it is important to understand skin-core structure of 

polymers. Skin-core is a typical crystal morphology in 
injection molded products. For these specimens, based 
on PLM evaluations (illustrated in Fig. 3) core consti-
tutes around 85% of the whole optimized injection molded 
specimens. Even the lowest core composition is predom-
inantly accountable for small deformations. Therefore, as 
stated before, the samples were taken from only core of 
the specimens.

Fig. 3 PLM images of samples – (a) H1, (b) R1, (c) R2

Fig. 2 Propagation velocity of sound waves as a function of crystallinity  
(RR1

2  = 0.86; RH1
2  = 0.73). * Propagation velocity of longitudinal sound 

waves (u) for perfectly crystalline polymer (X = 1) according to 
van Krevelen and te Nijenhuis [38]
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First, location dependency of the calculated modulus 
values was evaluated to see if taking samples from differ-
ent arbitrary points of the specimen has any considerable 
effect on the results. Thus, samples were cut out from dif-
ferent points of the dumbbell shape specimen as illustrated 
in Fig. 4 and calorimetric measurements were performed, 
subsequently, by employing DSC 7. Based on the generated 
melting curves, crystallinity and average melting tempera-
ture were estimated via Eqs. (2) and (3), respectively.

Interpreting the obtained results, and it can be clearly 
seen that no significant effect of localization was observed. 
The average and the standard deviation of the results are 
given in Table 3. The standard deviation for the crystallin-
ity, and average melting temperature was small and they 
were originated from the standard experimental inaccura-
cies of a calorimetric measurements.  This fact implies that 
injection molding was carried out well and if so, it should 
not matter from which location the samples were cut. 

In the next step, tensile modulus of the materials was 
evaluated with tensile testing machine. Load-deformation 
data was extracted from apparatus, and modulus values 
were calculated manually by using Eq. (5) based on the 
raw specimen data for each sample: 

E l
A

� �0 slope . (5)

Where l0 is the length of the specimen, A is the cross-sec-
tion area, that is the multiplication of width and thickness 
of the specimen.

As it is demonstrated in Fig. 5, the equation of the fit-
ted line is evaluated in the initial stage of elongation, pre-
cisely, in the 0.1–0.3 percentage deformation range and the 
slope was determined. Length, width, and thickness val-
ues were constant, being 115, 10, and 4 mm respectively.

The manual calculation was preferred in order to evade 
possible inaccuracies and errors of automated results in the 
favor of more precise results. The experimental modulus 

values evaluated based on the tensile test specimen raw 
data are shown in Table 4. The manually deduced data is 
taken as reference for further comparison to predicted val-
ues with model Eq. (1). 

Also, to be confident about the consistency of tensile 
test evaluations, the correlation between yield stress val-
ues and moduli was checked. Based on Fig. 6, the results 
can be counted as reliable.

3.2 Calculation of modulus based on calorimetric data
We have to note that Eq. (1) predicts tensile moduli with 
reasonable accuracy [33–35], however the shape of the 

Table 4 Manually evaluated modulus values for each material

iPP grade name Modulus values (manual) 
(GPa) Standard deviation

H1 1.48 0.02

R1 0.80 0.01

R2 1.01 0.01

Table 3 Obtained results for different location points of the specimens

∆Hm (J/g) X (%) Tave (°C)

H1 85.50 ± 3 0.60 ± 0.02 156.20 ± 1

R1 78.60 ± 3 0.52 ± 0.02 130.10 ± 1

R2 82.38 ± 5 0.56 ± 0.04 131.30 ± 2

Fig. 4 Location of measurement points

Fig. 6 Modulus as a function of yield stress for used materials

Fig. 5 Evaluation of slope of the force-elongation curve
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correlation is an exponential function instead of an S-type 
curve. Accordingly, in higher crystallinity ranges, around 
X = 99%, the decrease in crystallinity is accompanied by 
steep decrease of modulus. However, we may speculate on 
this question, since a very small decrease in crystallinity 
should not result in large drop of modulus, similarly that 
small increase in crystallinity does not enhance modulus 
in the amorphous region. Accordingly, we have two fixed 
points at Ec and Ea , moreover, a lot of experimental points 
in a relatively wide crystallinity range between Ec and Ea . 
This function should give an S-type curve, thus the previ-
ous form of the equation was transformed into a new one 
(Eq. (6)). This new mathematical form represents an S-type 
logistic function curve and allows the prediction of moduli 
in higher crystallinity values mathematically possible.
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The next open question is how to obtain modulus val-
ues in the high crystallinity range, which can assist the fit-
ting of Eqs. (1) and (6). The problem with this crystallinity 
range is that experimentally recorded modulus cannot be 
obtained here. We have assumed that the modulus value 
can be calculated using Eq. (4) and the slope of the linear 
correlation represented in Fig. 2 for H1 (H649F). We have 
used the slope of homopolymers, since this can be closer 
to the ideal crystal structure than the data of random copo-
lymers. The iterative constants of Eq. (6) are presented in 
Table 5 and the results of the fitting procedure is given in 
Fig. 7. Both of the equations, Eqs. (1) and (6) are fitted and 
compared in the Fig. 7. An insertion about the high crys-
tallinity range demonstrates the major difference between 
the two equations. It should be noted that all material con-
stants, like Ea , Ec , Tm

0 remained the same as in Table 2. 
The fitting of Eqs. (1) and (6) were done on data points 

published earlier [33–35], and the R-square of the fitting 
was always larger than 0.995. Both equations give almost 
similar trends in the range of crystallinity between 0.4 and 
0.8, which covers mostly the practical range of most fre-
quent PP samples in the practice. It can be seen clearly 
that Eq. (6) fits much better to the simulated results at high 
crystallinity range. Although, we have to note that the 
simulated points cannot be handled as an evidence, but 

the trend presented by Eq. (6) seems to be more realistic 
according to our assumption described above.

Modulus prediction was done for all materials included 
in Table 1 using both Eqs. (1) and (6). The characteristic 
data of crystallization was determined using five differ-
ent calorimetric instruments, that mentioned in the experi-
mental part in detail. The goal was to verify the robustness 
of the prediction model by checking it with various calori-
metric devices that have different working principles. 

Based on the results, that are summarized in Table 6 and 
visually demonstrated in Fig. 8, it can be claimed that gen-
erally, a reasonably good agreement was found between 
the estimated results and experimentally measured ones, 
which was valid in the case of each instrument and each 
material. However, some instruments showed more accu-
racy than others. Unsurprisingly, DSC 7 and DSC Diamond 
performed the best among all, since these particular instru-
ments with power compensation working principles are 
known to be comparably accurate in general.

The visual depiction of the results (Fig. 8) evidently 
shows that the exponential and the logistic model equa-
tions presented similar outcomes, except the latter one 
being relatively more accurate in case of copolymers. 

In fact, there are other factors that have an influence on 
the outcomes, such as the calibration of the instruments, the 
internal architecture of the devices, the precision of proper 
baseline setting meanwhile evaluating the melting curves 
et cetera. Moreover, the aforementioned two calorimeters 
were comparably more accurate due to the fact that the 
introduced model with its constants was adjusted to these 
instruments, meaning that there is a direct link between the 
calibration of these instruments and the model.

Table 5 New iterative constants of Eq. (6)

Samples α β γ

H1, R1, R2 0.33 0.35 4.80

Fig. 7 Fitting results of Eqs. (1) and (6)
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4 Conclusions
This study aims to verify the reliability of a modulus pre-
diction model for semicrystalline polymers. The reliabil-
ity analysis was carried out by inspecting the dependency 
of the results on the implemented instruments and test 

location of the specimen. The details regarding the model 
are described in the paper step by step to make it repro-
ducible for other materials. Moreover, the modified model 
equation that is applicable to estimate tensile modulus in 
case of high crystallinity values (X ≈ 99%) is introduced. 
It is also significant to note that estimation of completely 
crystalline iPP based on the propagation velocity of sound 
waves was performed and turned out be well-matched 
with the value in the literature. In general, reasonably 
good agreement was found between predicted and mea-
sured modulus values in case of both versions of the model 
equation. It was revealed that some instruments, namely, 
power compensated type calorimeters. are more reliable 
for this study than the others and also if injection molding 
is done properly, then it doesn't matter where the samples 
are taken from the specimen.
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Table 6 Comparison of predicted moduli with 5 calorimetric instruments to experimentally measured values

Name of the 
instrument

H1 R1 R2

Exponentiala (GPa) Logisticb (GPa) Exponentiala (GPa) Logisticb (GPa) Exponentiala (GPa) Logisticb (GPa)

DSC 7 1.40 ± 0.10 1.36 ± 0.09 0.82 ± 0.08 0.86 ± 0.06 0.93 ± 0.13 0.95 ± 0.11

DSC Diamond 1.36 ± 0.06 1.31 ± 0.06 0.73 ± 0.07 0.78 ± 0.06 0.99 ± 0.11 0.99 ± 0.10

DSC Q2000 1.23 ± 0.07 1.19 ± 0.07 0.70 ± 0.13 0.76 ± 0.11 0.89 ± 0.12 0.91 ± 0.11

DSC 8500 1.26 ± 0.07 1.25 ± 0.05 0.65 ± 0.07 0.70 ± 0.06 0.70 ± 0.07 0.75 ± 0.06

STA6000 1.25 ± 0.11 1.21 ± 0.08 0.61 ± 0.06 0.68 ± 0.05 0.77 ± 0.10 0.82 ± 0.05

Experimental 
values 1.48 ± 0.02 0.80 ± 0.01 1.01 ± 0.01

a Predicted Modulus with exponential function and b Predicted Modulus with logistic function

(a)

(b)

Fig. 8 Visual representation of instrument dependency of the modulus 
estimations based on logistic function (a), and exponential function (b)
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