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Abstract

A compartment/population balance model is presented for de-

scribing heat transfer in gas-solid fluidized bed heat exchangers,

modelling the particle-particle and particle-surface heat trans-

fers by collisions. The results of numerical experimentation, ob-

tained by means of a second order moment equation model indi-

cate that the model can be used efficiently for analysing fluidized

bed heat exchangers recovering heat either by direct particle-

fluid heat exchange or indirect tube-in-bed operation mode. The

population balance model is validated with physically measured

data taken from the literature [6].
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Introduction

Fluidized bed heat exchangers, widely used in the metallurgi-

cal and process industries are important tools for recovering heat

from hot solid particles [1]–[7]. In these systems heat exchange

with the wall usually is modelled by means of suspension-wall

heat transfer coefficients which, in principle, are aggregates of

two transfer components: gas-wall and particle-wall heat trans-

fers. However, because of intensive motion of particles, the

particle-wall, and also the particle-particle heat transfers are col-

lision induced processes thus it seems to be significant to model

these processes by themselves. Using such modelling approach

the gas-wall and particle-wall components can be separated that

allows understanding the transfer mechanisms involved.

For modelling and simulation of collision heat transfer pro-

cesses in gas-solid systems, an Eulerian-Lagrangian approach,

with Lagrangian tracking for the particle phase [8]–[11], and a

population balance approach [12]–[16] have been applied. The

population balance model, involving both the collision particle-

particle and particle-wall heat transfers, was extended by Süle

et al. [17, 18] for describing the spatial distributions of temper-

atures in deep or long fluidized beds developing a compartment

model.

The aim of the paper is to extend the compartment population

balance model to describe the heat transfer processes in fluidized

bed heat exchangers in which the heat of hot solid particles is

used to heat water flowing in tubes immersed in the bed. We ap-

ply a two-phase model of gas-solid fluidisation assuming that no

bubbles are formed in the bed. The particle-particle and particle-

tube heat transfers are modelled by collisions, while the gas-

particle, gas-tube and tube-water heat transfers are described as

continuous processes using linear driving forces.

Physical model

Consider a shallow fluidized bed in which particles trans-

ported horizontally through the bed are fluidized by cross-flow

air fed into the system in equally distributed gas streams along

the bed. Cold water to be heated is flowing inside a tube im-

mersed in the bed. The fluidizing air induces intensive particle-

particle and particle-tube collisions, and heat transfer between

the gas, particles and water through the wall of the tube.
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The assumptions concerning the system are as follows: 1)

The particles are of constant size and are not changed during the

process; 2) The system is operated under steady state hydrody-

namic conditions, and the influence of thermal changes on the

hydrodynamics is negligible; 3) There is no heat source inside

the particles. 4) The heat transfer by radiation is negligible.

The structure of the compartments, as well as of the mass and

heat flows of the system is shown in Figure 1. In this system the

following mass transport processes are distinguished.

Fig. 1. The scheme of the system

(1) Volumetric cross-flow qg of the fluidizing gas through the

ideally mixed cells between which some cross-mixing occurs.

The temperature of gas in the kth cell is denoted by Tg,k, and

there occurs continuous heat transfer between the gas and par-

ticles, and the gas and wall, characterised by the heat transfer

coefficients hgp, and hgw, respectively.

(2) Dispersed plug flow of particles through the bed modelled

by the cells-in-series with back-flow model. Here, nk(Tp, t) de-

note the population density function for the kth cell by means

of which nk(Tp, t)dTp provides the number of particles from the

interval (Tp,Tp + dTp) in a unit volume of the cell at time t.

Inter-particle heat transfer occurs by collisions, and is described

by the random variable Ωpp with probability density function

fpp, while the particle-wall heat transfer also occurs by colli-

sions that are characterised by the random variable Ωpw with

probability density function fpw.

(3) The heat in the wall of the tube is transported by conduc-

tion, and the continuous wall-liquid heat transfer is characterised

by the heat transfer coefficient hwl.

(4) The volumetric flow ql of water inside the tube is modelled

also by the cells-in-series with back-flow model. It is assumed

to be counter-current one with respect to the volumetric flow of

particles.

In the present model, as it is illustrated in Figure 1, all com-

partments (cells) describing the shallow fluidized bed are of the

same volume Vk, while, for the sake of computational simplicity,

the number of discrete elements of the tube wall and of the cells

of model of flowing liquid, although their volumes are quiet dif-

ferent, are the same as that of the bed compartments along the

axial direction x.

Mathematical model

Under these conditions, the mathematical model of the heat

transfer processes of the system is formed by a mixed set of par-

tial integral-differential, partial differential and ordinary differ-

ential equations. The population balance equation, which gov-

erns the variation of the population density function of particle

population in the individual cells, is a partial integral differential

equation and can be written as

∂nk(Tp, t)

∂t
+

agphgp

cpmp

∂
[(

Tg;k(t) − Tp

)
nk(Tp, t)

]
∂Tp

(1)

=

(
1 + S kRp

)
qp

Vk

nk−1(Tp, t) +
S k+1Rpqp

Vk

nk+1(Tp, t)

−

(
1 + ZkRp

)
qp

Vk

nk(Tp, t) − S pwnk(Tp, t) − S ppnk(Tp, t)

+ S pw

1∫
0

nk

(
Tp − pwωpwTw;k

1 − pwωpw

, t

)
fpw(ωpw)

1 − pwωpw

dωpw

+
2S pp

M0;k

Tp max∫
Tp min

1∫
0

fpp(ωpp)

ωpp

nk

(
2(Tp − τ)

ωpp

+ τ, t

)
nk(τ, t) dωpp dτ

where k = 1, 2, ...,K, t > 0, the variables

ωpp := 1 − exp

[
−2hppappθpp

mpcp

]
and

ωpw := 1 − exp

−hpwapwθpw

(
mpcp + mwcw

)
mpcpmwcw


(2)

represent the realizations of the random variables Ωpp and Ωpw

which express, in principle, the efficiencies of the collision

particle-particle and particle-tube wall heat transfers [16]. Here,

agp, app and apw denote, respectively, the gas-particle, particle-

particle and particle-wall contact area, θpp and θpw denote the

corresponding contact times and Rp stands for the back-flow ra-

tio of particles. Parameter pw represents the ratio of thermal

capacities of particles and the wall, while parameters S l and Zl

were introduced for characterising the compartmental structure

of the system in a compact form where: S 1 = 0, S K = 1, Z1 =

ZK = 1, S l = 1, Zl = 2, l = 2, . . . , K − 1.

The first term on the left hand side of Eq.(1) denotes the rate

of accumulation of particles having temperature (Tp,Tp+dTp),

while the second term describes the change of the number of

particles with temperature (Tp,Tp+dT p) due to the gas-particle

heat transfer. The first three terms on the right hand side rep-

resent the input and output rates of particles from and to the
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neighbouring cells, as well as to and from the system, the next

two terms describe the variation of the population density func-

tion due to the collision particle-tube wall heat transfer, while

the last two terms describe the change of nk(Tp,t) because of the

collision heat exchange between the particles.

The heat balance equations for the temperature of fluidizing

gas in the individual cells become

dTg,1(t)

dt
=

qg,1

ε1V1

Tg,1,in(t) −
qg,1

ε1V1

Tg,1(t) +
ε2Rgq

ε1V1

Tg,2(t) (3)

−
ε1(1 + Rg)q

ε1V1

Tg,1(t)
agwhgw

cgρg

x1∫
0

(
Tg,1(t) − Tw(x, t)

)
dx

−
agphgp

cgρg

Tp max∫
Tp min

(
Tg,1(t) − Tp

)
n1(Tp, t) dTp, t > 0

dTg,k(t)

dt
=

qg,k

εkVk

Tg,k,in(t) −
qg,k

εkVk

Tg,k(t) (4)

+
εk−1(1 + Rg)q

εkVk

Tg,k−1(t)

+
εk+1Rgq

εkVk

Tg,k+1(t) −
εk(1 + 2Rg)q

εkVk

Tg,k(t)

−
agwhgw

cgρg

xk∫
xk−1

(
Tg,k(t) − Tw(x, t)

)
dx

−
agphgp

cgρg

Tp max∫
Tp min

(
Tg,k(t) − Tp

)
nk(Tp, t) dTp

k = 2, ...,K − 1, t > 0

dTg,K(t)

dt
=

qg,K

εKVK

Tg,K,in(t) −
qg,K

εKVK

Tg,K(t) (5)

+
εK−1(1 + Rg)q

εKVK

Tg,K−1(t) −
εK(1 + Rg)q

εKVK

Tg,K(t)

−
agwhgw

cgρg

xK∫
xK−1

(
Tg,K(t) − Tw(x, t)

)
dx

−
agphgp

cgρg

Tp max∫
Tp min

(
Tg,K(t) − Tp

)
nK(Tp, t) dTp, t > 0

where εk denotes the bed voidage in the kth cell, q stands for

the volumetric gas flow between the cells causing some cross-

mixing between the neighbour cells, Rg denotes the back-flow

ratio for gas, and coefficient hgw represents the gas-wall heat

transfer rate. Since the gas is assumed to be fed into the system

equally distributed along the axial coordinate x we can write

εk = constant for all k = 1, 2. . .K.

Heat in the wall of tube is transported with conduction hence

the differential equation describing the temperature of the wall

can be written in the form

∂Tw(x, t)

∂t
=

kw

ρwcw

∂2Tw(x, t)

∂x2
+

agwhgw

cwρw

(
Tg,k(t) − Tw(x, t)

)
(6)

+
awlhwl

cwρw

(
Tw(x, t) − Tl,k(t)

)
+ S pw

Tp max∫
Tp min

1∫
0

ppωpw

(
Tp − Tw(x, t)

)
nk

(
Tp, t

)
fpw(ωpw) dωpw dTp,

t > 0, x ∈ [(k − 1) ∆x, k ∆x] , k = 1, 2, ...,K,

subject to the boundary conditions

∂Tw(x, t)

∂x

∣∣∣∣∣∣
x=0

= 0 and
∂Tw(x, t)

∂x

∣∣∣∣∣∣
x=X

= 0. (7)

In Eq.(6), kw denotes the thermal conductivity of the wall and

the coefficient hwl stands for the wall-liquid heat transfer rate.

Parameters agw and awl denote the surface area of gas-wall and

wall-liquid heat transfers in a unit length of tube.

Finally, the set of differential equations for the temperature of

liquid phase compartments is written as

dTl,k(t)

dt
=

S k−1Rlql

Vl,k
Tl,k−1(t) (8)

+
(1 + S k+1Rl) ql

Vl,k
Tl,k+1(t) −

(1 + ZkRl)ql

Vl,k
Tl,k(t)

+
awlhwl

clρl

xk∫
xk−1

(
Tw(x, t) − Tl,k(t)

)
dx, k = 1, 2, ...,K, t > 0

where the values of the S and Z parameters, characterising the

structure of the system are: S 0 = 0, S K = 0, S K+1 = 0, S l = 1,

Z1 = ZK = 1, Zl = 2, l = 1, ..., K − 1. The additional boundary

conditions to Eqs (1)-(8) can be written as

n0(Tp, t) = nin(Tp, t) and Tl,K+1 = Tl,in (9)

which, naturally, should be completed with the appropriate ini-

tial conditions.

Solution of the model equations

The mixed set of differential equations (1)–(9) was solved by

reducing the population balance equation (1) and the heat con-

duction equation (6) into two sets of ordinary differential equa-

tions applying, respectively, a moment equation reduction and

a finite difference discretization, obtaining in this way together

with the gas phase equations (3)–(5) and liquid phase equation

(8) a closed set of ordinary differential equations.

The moments and normalized moments of the temperature of

particle population are defined as

MI;k(t) =

Tp max∫
Tp min

T I
pnk(Tp, t)dTp,

mI;k(t) =
MI;k(t)

M0;k(t)
, I = 0, 1, 2, . . ., k = 1, . . . ,K (10)
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which are useful for the basic characterisation of the temperature

distribution of particles. The zero order moments M0;k provide

the total numbers of particles in a unit volume of cells by means

of which the solids concentrations can also be computed, while

the mean temperature of particles in the kth cell is expressed by

m1;k(t). Completing the zero and first order moments M0;k and

M1;k with the second order one M2;k, the variance of tempera-

ture, defined as

σ2
k =

M2;k

M0;k

−

(
M1;k

M0;k

)2

(11)

can also be computed.

The infinite hierarchy of the moment equations generated by

the population balance equation (1) has the form

dMI;k(t)

dt
= IKgp

[
MI−1;k(t)T f ;k(t) − MI;k(t)

]
+ S pp

 1

M0;k(t)

I∑
i=0

Mi;k(t)MI−i;k(t)b
(pp)

i,I − MI;k(t)


+ S pw p1

[
−MI;k(t) +

I∑
i=0

(
I

i

)
b

(pw)

i

i∑
j=0

(
i

j

)
(−1)i− jT

j

w;k
MI− j;k(t)

]
+

(1 + S kRp)qp

V
MI;k−1(t)

+
Rpqp

V
MI;k+1(t) −

(1 + ZkRp)qp

V
MI;k,

k = 1, 2, ...,K, I = 0, 1, ..., t > 0 (12)

where

b
(pp)

i,I =

1∫
0

(
I

i

) (ωpp

2

)i (
1 −

ωpp

2

)I−i

fpp(ωpp) dωpp and

b
(pw)

i
=

1∫
0

ωi
pw fpw(ωpw) dωpw. (13)

Since the infinite set of moment equations can be closed at any

order, the second order moment equation reduction can be com-

puted exactly by solving the equations for the first three lead-

ing moments. This reduction is obtained by using the following

equations. The total number of particles in the kth cell:

dM0;k(t)

dt
=

(1 + S kRp)qp

V
M0;in(t)

+
Rpqp

V
M0;k+1(t) −

(1 + ZkRp)qp

V
M0;k(t),

k = 1, 2, ...,K (14)

The first order moment of the particulate phase in the kth cell:

dM1;k(t)

dt
=

agphgp

cgρg

(
M0;k(t)Tg;k(t) − M1;k(t)

)
+ S pw pwb

(pw)

1

(
M0;k(t)Tw;k(t) − M1;k(t)

)
+

(1 + S kRp)qp

V
M1;in(t)

+
Rpqp

V
M1;k+1(t) −

(1 + ZkRp)qp

V
M1;k(t),

k = 1, 2, ...,K (15)

The variance of temperature of the particulate phase in the kth

cell:

dσ2
k
(t)

dt
= −

[
2

agphgp

cgρg

+ S ppb
(pp)

1,2 + S pw pw

(
2b

(pw)

1
− pwb

(pw)

2

)
+

qp

V M0;k(t)

(
RpM0;k+1(t)

)]
· σ2

k(t)

+
qp

V

(1 + S kRp)M0,in(t)

M0;k(t)

(
σ2

in(t) − σ2
k(t)

)
(16)

+ S pwb
(pw)

2
p2

w

(
M1;k(t)

M0;k(t)
− Tw;k(t)

)2

+
qp(1 + S kRp)M0;in(t)

V M0;k(t)

(
M1;in(t)

M0;in(t)
−

M1;k(t)

M0;k(t)

)2

+
RpqpM0;k+1(t)

V M0;k(t)
σ2

k+1(t)

+
RpqpM0;k+1(t)

V M0;k(t)

(
M1;k+1(t)

M0;k+1(t)
−

M1;k(t)

M0;k(t)

)2

, k = 1, 2, ...,K

The set of equations provided with finite difference discretiza-

tion of the heat conduction equation (6) for the wall has the

form:

dTw,1(t)

dt
=

DT

∆x2

(
Tw,2(t) − Tw,1(t)

)
(17)

+
agwhgw

cwρw

(
Tg,1(t) − Tw,1(t)

)
−

awlhwl

cwρw

(
Tw,1(t) − Tl,1(t)

)
− S pw

Tp max∫
Tp min

1∫
0

pp

(
Tw,1(t) − Tp

)
n1

(
Tp, t

)
ωpw fpw(ωpw)dωpwdTp,

t > 0

dTw,k(t)

dt
=

DT

∆x2

(
Tw,k+1(t) − 2Tw,k(t) + Tw,k−1(t)

)
(18)

+
agwhgw

cwρw

(
Tg,k(t) − Tw,k(t)

)
−

awlhwl

cwρw

(
Tw,k(t) − Tl,k(t)

)
− S pw

Tp max∫
Tp min

1∫
0

pp

(
Tw,k(t) − Tp

)
nk

(
Tp, t

)
ωpw fpw(ωpw)dωpwdTp

k = 2, 3, ...,K − 1, t > 0

dTw,K(t)

dt
=

DT

∆x2

(
Tw,K(t) − Tw,K−1(t)

)
(19)

+
agwhgw

cwρw

(
Tg,K(t) − Tw,K(t)

)
−

awlhwl

cwρw

(
Tw,K(t) − Tl,K(t)

)
− S pw

Tp max∫
Tp min

1∫
0

pp

(
Tw,K(t) − Tp

)
nK

(
Tp, t

)
ωpw fpw(ωpw)dωpwdTp,

t > 0

so that the integrals of variable x in Eqs (3)-(5) for the fluidiz-

ing gas and Eqs (8) for the liquid flowing in the tube are also

rewritten for the discrete values Tw,k(t), k = 1, 2, . . .,K.
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Figure 3: Transients of the mean temperature of particles and the temperature  
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Figure 4: Transients of the temperature of water flowing in the tube  
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of air in the cells

Simulation results and discussion of the models

A computer program was developed in MATLAB environ-

ment for solving the set of ordinary differential equations (3)–

(5), (8) and (14)-(19) taking into account all modifications of

the integral terms. The program can generate and handle a com-

partment/moment equations model consisted of cells of arbitrary

number, and the resulted set of ordinary differential equations is

solved by means of an ode-solver of MATLAB. The transient

and steady state simulation results presented here were obtained

for 9 cells using the basic constitutive expressions presented in

detail in [16].

 Figure 5 shows the variation of the variance of temperature of particle population as a 
function of time. The temperature of particles at the input was homogeneous but it became 
strongly distributed during the transient process showing rather large variances. The 
simulation results have shown that the gas-particle and particle-wall heat transfers induce 
inhomogeneities of the temperature of particles but the particle-particle collision heat 
transfer shows a strong indirect effect.  
 
Conclusions 
 
 The compartment/population balance model, developed for describing heat transfer 
processes in gas-solid fluidized bed heat exchangers, and modelling the particle-particle 
and particle-surface heat transfer processes by collisions can be used efficiently for 
analysing the fluidized bed heat exchangers recovering heat from hot particles and heating 
some liquid flowing in a tube immersed in the bed. The model describes the temperature 
distribution of the particle population, and allows separating the effects of the fluidizing  
gas-immersed surface and particle-immersed surface heat transfers. The second order 
moment equation reduction, generated from the population balance equation has proved to 
be an efficient tool for studying the behaviour of heat exchangers. 
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The predictions of the second order moment equation reduc-

tion model were validated using the experimental data measured

in a laboratory shallow fluidized bed heat exchanger published

by Pécora and Parise [6]. Figure 3 presents the bed tempera-

ture profiles for 9 cells comparing the model data with the mea-

sured ones [6] when the input temperatures of particles were

708 °C, respectively. The parameters were fitted to the mea-

sured values using a least squares method. The results in both
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cases show rather good correspondence but it has to be taken

only as preliminary ones since the heat transfer coefficients have

been compared yet. Figure 2 presents the transients of the mean

temperature of particles and the temperature of the fluidizing air

in the cells along the heat exchanger. It is seen that in steady

state these temperatures become almost equal and the heat of

hot particles becomes transferred to the cold water. Under such

conditions, the temperature of gas passes a maximum in each

cell but delayed to each other in time. Similar maxima can be

observed also in the transient processes of the wall, and in the

temperature of liquid, as it is presented in Figure 4, heated by

the hot particles through the tube wall.

Figure 5 shows the variation of the variance of temperature

of particle population as a function of time. The tempera-

ture of particles at the input was homogeneous but it became

strongly distributed during the transient process showing rather

large variances. The simulation results have shown that the gas-

particle and particle-wall heat transfers induce inhomogeneities

of the temperature of particles but the particle-particle collision

heat transfer shows a strong indirect effect.

 

Figure 5: Transients of the variance of temperature of particle population  
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Fig. 5. Transients of the variance of temperature of particle population
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Tab. 1. The basic constitutive and process param-

eters used in simulation Parameter Basic value

Solid particles: sand Diameter, dp 2.54×10−4 m

Density, ρp 2650 kg m−3

Specific heat, cp 835 J kg−1 K−1

Thermal conductivity, kp 0.35 W m−1 K−1

Volumetric flow rate, qp 1.5×10−5 m3 s−1

Mean inlet temperature, m 460°C

Gas: air Density, ρg 0.946 kg m−3

Specific heat, cg 1010 J kg−1 K−1

Viscosity, µg 2.17×10−5 Pa s

Thermal conductivity, kg 2.39×10−2 W m−1 K−1

Volumetric flow rate, qg 1.4×10−2 m3 s−1

Inlet temperature 25°C

Tube wall: stainless steel Diameter, Dl 0.0065 m

Mass, mw 1.2 kg

Specific heat, cw 465 J kg−1 K−1

Thermal conductivity, kw 44 W m−1 K−1

Heated medium: water Density, ρl 998 kg m−3

Specific heat, cl 4182 J kg−1 K−1

Thermal conductivity, kl 0.606 W m−1 K−1

Viscosity, µl 10−3 Pa s

Volumetric flow rate, ql 1.5×10−5 m3 s−1

Inlet temperature 25°C

Fluidized bed Width, W 0.15 m

Length, L 0.9 m

Collision frequencies, S pp, S pw 103 s−1, 10 s−1

Heat transfer efficiencies µpp, µpw 0.5, 0.8

Back flow ratio Rp, Rg, Rl 1, 0.1, 0.01

Heat transfer coefficients hpg 1.46 × 102

hwp 5.58 × 102

hwl 4.35 × 109

hgw 6.06 × 10−2

Conclusions

The compartment/population balance model, developed for

describing heat transfer processes in gas-solid fluidized bed heat

exchangers, and modelling the particle-particle and particle-

surface heat transfer processes by collisions can be used effi-

ciently for analysing the fluidized bed heat exchangers recov-

ering heat from hot particles and heating some liquid flowing

in a tube immersed in the bed. The model describes the tem-

perature distribution of the particle population, and allows sep-

arating the effects of the fluidizing gas-immersed surface and

particle-immersed surface heat transfers. The second order mo-

ment equation reduction, generated from the population balance

equation has proved to be an efficient tool for studying the be-

haviour of heat exchangers.
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Subscripts and superscripts

g gas

in input

l liquid

max maximal value

min minimal value

p particle

gp gas-particle

pp particle-particle

pw particle-wall

w wall

gw gas-wall

wl wall-liquid

Symbols

a surface area, m2

c specific heat, J kg−1 K−1

d diameter (m)

W width of the bed, m

D diameter of the tube, m

DT thermal diffusivity, DT = kw/ρwcw, m2 s−1

f probability density function

h heat transfer coefficient, W m−2 K−1

k thermal conductivity, W m−1 K−1

K number of cells

L length of fluidized bed (m) m – mass, kg

Mk kth order moment of particle temperature

mk normalised kth order moment of particle temperature

n population density function, no m−3 K−1

pp parameter in Eq.(1), pp =
mwcw

mpcp + mwcw

pw parameter in Eq.(1), pw =
mpcp

mpcp + mwcw

q volumetric flow rate, m3 s−1

R back-flow ratio

S collision frequencie, s−1

T temperature, K

t time, s

V volume, m3

x axial variable, m

X length of the fluidized bed, m

θ contact time, s

ω random variable of collision heat transfer

µ viscosity, Pa s

ε void fraction of the bed

σ2 variance of the temperature of particle population

ρ density, kg m−3

τ integral variable, K
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