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Abstract

On-line analyzers are widely used in chemical and oil-

industry to estimate product properties and monitor production

process. Partial Least Squares regression (PLS) is known as bi-

linear factor model as it projects input (X) and output (Y) data

into low dimensional spaces. We present how this projection can

be utilised in process monitoring and validation of on-line anal-

ysers. We apply the proposed methodology in a diesel fuel mixer

where main product properties are estimated from near infrared

spectra. Results show that the developed 2 Dimensional Par-

tial Least Squares (2DPLS) model not only gives better property

estimation performance than the currently applied Topological

Near Infrared modelling tool (TOPNIR), but it is also able to

provide informative map of operating regimes of the process.
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1 Introduction

Control of measured process values (e.g. temperature, pres-

sure, flow rate) does not always ensure that product properties

(e.g. density, cloud point, flash point) will be in desired ranges.

Some of these properties in chemical and oil-industry are not

measured online (e.g. cetane index, aromatic field, sulfur con-

tent) or not at the frequency necessary for real time control (e.g.

flash point, density, cold filter plugging point). The objective of

the development of software sensors and online analysers is to

support the control of product properties which cannot be mea-

sured online or offline measurements would be expensive.

Interaction of signals like temperatures, pressures, flow rates

or absorption intensities can be used for calculating unmeasured

product properties (flash point, density etc.). Soft sensors are es-

pecially useful in data fusion, where measurements of different

characteristics and dynamics are combined.

Near infrared spectroscopy is a widely used on-line mea-

surement technique. There are several multivariate models and

methods to support the prediction of product properties based on

Near-Infrared (NIR) spectra. These methods can be separated

into parametric models (e.g. linear regression, multi-linear re-

gression, Partial Least Squares regression (PLS) ) and nonpara-

metric methods (e.g. k-NN[1], False Nearest Neighbors (FNN),

Neural Networks, Topological Near-Infrared Modeling [2, 3] -

TOPNIR). The main difference between these two classes is that

the nonparametric techniques cannot extrapolate.

The key idea of the paper is the utilisation of the multivariate

signal of NIR analysers not only for building models to estimate

product quality but also to use it in process monitoring and val-

idation of models used in on-line analysers.

A PLS based prediction model has been developed to support

both prediction and visalisation (monitoring)[4]. Datasets taken

from the Dune Refinery of MOL Ltd were analysed. The PLS

model is applied to estimate cold filter plugging point, density

and one property of distillation. For monitoring the latent space

of the PLS model is used. A special orthogonalisation algorithm

was applied. The presented mapping is able to visualise the data

and give information about the distribution of operating regimes

and the quality of the model.
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2 Spectroscopic Modeling

The main task of the spectroscopic modeling is to find re-

lation between recorded spectra and relevant material proper-

ties, yk = f (xk), where k represents the index of the sam-

ples [5, 6]. Data driven identification of models require spec-

tral databases. The first part of the database contains the

recorded and preprocessed spectra, X =
[
xT

1
. . . , xT

N

]
, where

N represents the number of samples available for model build-

ing. In our case the on-line ABB spectrometer records spec-

tra in range 4000 - 4800cm−1. The recorded spectra contains

195 equally distributed absorbance values in the recorded range,

xk = [xk,1, . . . , xx,n], where n = 195.

The second part of the training set represents property values

(yk =
[
yk,1, yk,2, . . . , yk,m

]
) as output variables of the prediction

model. For model identification the set of N samples of these

properties are also arranged in a matrix form, Y =
[
yT

1
. . . , yT

N

]
.

Figure 1 shows a spectral database which contains 651 sam-

ples.§
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Fig. 1. DS 1 spectral database containing 651 spectra used for property esti-

mation in a diesel fuel mixing process.

Since prediction model should provide good performance in

the whole range of the operational regime of the process the de-

velopment of an appropriate model requires properly distributed

training set. Unfortunately Figure 1 does not give any useful in-

formation about the distribution of the data. To get more insight

into the structure of the high dimensional spectral database vi-

sualisation techniques should be applied that are able to map the

original n = 195 dimensional space into an easily visualisable

two-dimensional map. In the following section such PLS based

method will be presented.

2.1 PLS Concept

Partial least squares (PLS) is a perfect method for construct-

ing predictive models from large number and correlated input

variables [7].

PLS was developed in the 1960s by Herman Wold as an

econometric technique, but soon it become widely applied tool

of in chemical engineering [8]. In addition to spectrometric cal-

ibration, PLS is often applied to monitoring and controlling in-

dustrial processes; since compley process can easily have hun-

dreds of process variables[4].

PLS tries to find the multidimensional direction in the X space

the input variables that explains the maximum multidimensional

variance direction in the Y space of the output variables. PLS

regression is particularly suited when the matrix of predictors

has more variables than observations, and when there is multi-

collinearity among X values. By contrast, standard regression

fails in these cases.

The general underlying model of multivariate PLS is

X = TPT + E (1)

Y = UQT + F (2)

where X is an n×m matrix of predictors, Y is an n× p matrix

of responses; T and U are n × l matrices that are, respectively,

projections of X (the X score, component or factor matrix) and

projections of Y (the Y scores); P and Q are, respectively, m × l

and p× l orthogonal loading matrices; and matrices E and F are

the error terms, assumed to be i.i.d. normal. The decompositions

of X and Y are made so as to maximize the covariance of T and

U.

2.2 2DPLS based Visualization

For the two-dimensional visualization of the PLS model the

algorithm developed in [4] was applied. In this subsection the

most important details of this technique are summarized based

on [4].

Two components that are informative for visualization may

be obtained in several ways. One example is principal compo-

nents of predictions (PCP), where in the scalar response case

ŷ = Xb̂ normalization is used as one component, while residu-

als of X not contributing to y are suggested for use as the second

component.

Fig. 2. 2D PLS mapping

The basic idea behind the applied mapping is illustrated in

Figure 2. The estimator b̂ is found in the space spanned by

loading weight vectors in Ŵ = [ŵ1, ŵ2, . . . , ŵA] i.e. it is a linear

combination of these vectors. It is, however, also found in the

plane defined by ŵ1 and a vector w̃2 orthogonal to ŵ1, which is

a linear combination of the vectors ŵ2, ŵ3, . . . , ŵA.
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The matrix W̃ = [ŵ1, w̃2] is thus the loading weight matrix in

a two-component PLS solution (2PLS) giving exactly the same

estimator b̂ as the original solution using any number of com-

ponents. What matters in the original PLS model is not the ma-

trix Ŵ as such, but the space spanned by ŵ1, ŵ2, . . . , ŵA. In

the 2PLS model this represents the plane spanned by ŵ1 and

w̃2 that is essential. Note that all samples in X (row vectors) in

the original PLS model are projected onto the space spanned by

ŵ1, ŵ2, . . . , ŵA.

Samples may thus be further projected onto the plane spanned

by ŵ1 and w̃1, and form a single score plot containing all y-

relevant information. When for some reason e.g. ŵ2 is more

informative than ŵ1, a plane through ŵ2 and b̂ may be a better

alternative. It will in any case result in a 2PLS model that gives

the estimator b̂, as will in fact all planes through b̂ that are at the

same time subspaces of the column space of Ŵ.

3 Application example

Presented research focuses to two tasks. The first task is the

development of a prediction model that can estimate product

properties based on spectra taken by online NIR analysers. The

second task is the development a monitoring tool based on the

visualisation of the same spectra [9].

Datasets collected at the Dune Refinery of MOL Ltd (Hun-

gary) are analyzed. The first dataset ( “DS ′′
1

) contains 651 sam-

ples collected from a diesel fuel mixing process. Approximately

twenty material properties are estimated. The second data set (

“DS ′′
2

) consists of 67 samples collected from a different process.

3.1 Prediction of product properties

The prediction performance of the models is measured by the

correlation coefficient defined as:

R(i, j) =
C(i, j)√

C(i, i)C( j, j)
(3)

where C is the covariance matrix and it’s calculated as C =

cov(y, ŷ).

All the presented algorithms including the k-nn algorithm that

TOPNIR utilises have been implemented in MATLAB. Simi-

larly to the global statistics feature of TOPNIR we calculated

the basic measures of for the k = 3 case. As it can be seen re-

sults are a bit better than the global statistics of TOPNIR. Exact

numerical reproduction of results was not possible since the doc-

umentation of software and related patent do not contain every

details and tricks related to the calculation of distances. Table 1

shows that the N number of the available samples differs for

each properties. Among the 651 spectra only 560 were differ-

ent and in most of cases only a fragment of the properties were

measured.

Firstly the effect of dimensionality of latent space of the PLS

model has been analysed (from 2 to 48 dimensions). To per-

form an adequate comparison leave-one-out and 10-fold cross

validation technique was applied. On Figure 3 the performances

(correlation coefficients)[10] of the PLS models are shown.

Tab. 1. Global statistics of data used for estimation

Property k-NN N TOPNIR

Density 0.983 441 0.971

CI 0.698 384 0.411

CFPP0 0.972 229 0.964

CFPP 0.859 380 0.810

CloudPt 0.967 378 0.941

FlashPt 0.885 379 0.832

T10 0.978 383 0.966

T50 0.952 328 0.916

T90 0.896 383 0.814

E250◦ 0.928 365 0.995

E350◦ 0.651 361 0.459

E360◦ 0.741 342 0.588

PolyCycl 0.741 331 0.559

TotAro 0.952 327 0.910

VISC 0.988 67 0.951

As it is shown in this figure, the accuracy of the model in-

creases rapidly by increasing the dimensionality of the latent

space from 2 to 6 dimensions, however, it reaches a maximum

since when the complexity of the model is higher than the com-

plexity of the modelled system.

Tab. 2. Effect of the number of latent variables to the performance of the

model (correlation between the estimated and measured variables are shown).

Latent dimensions

Property 2 6 12 18 24 48

Density 0.776 0.988 0.993 0.993 0.993 0.989

CI 0.130 0.204 0.190 0.420 0.344 0.272

CFPP0 0.657 0.942 0.947 0.953 0.921 0.888

CFPP 0.516 0.755 0.769 0.728 0.703 0.610

CloudPt 0.668 0.924 0.950 0.958 0.955 0.943

FlashPt 0.408 0.596 0.878 0.901 0.895 0.854

T10 0.428 0.732 0.908 0.946 0.941 0.938

T50 0.694 0.922 0.970 0.971 0.957 0.910

T90 0.432 0.654 0.849 0.895 0.868 0.796

E250◦ 0.660 0.879 0.955 0.954 0.927 0.904

E350◦ 0.044 0.077 0.308 0.259 0.174 0.006

E360◦ 0.115 0.374 0.431 0.397 0.341 0.190

PolyCycl 0.169 0.377 0.429 0.441 0.434 0.381

TotAro 0.765 0.885 0.905 0.880 0.862 0.771

VISC 0.898 0.991 0.999 0.999 0.999 0.999

3.2 Visualization of operating regimes

In section 2.2 a special method was presented that can map the

PLS latent space into two dimensional space by orthogonal sig-

nal correction. This method has been compared with Principal

Component Analysis [11] (PCA) and Topological Near-Infrared

Modeling [2, 3] (TOPNIR) developed specifically to visualize

NIR spectra and building topological prediction models with the

help of resulted maps [12, 13].

TOPNIR uses nonlinear equation pairs (referred as aggre-

gates) based on a small set of absorption values. Usually 4-6

characteristic wavelengths are selected to formalise a given ag-

gregate that somehow reflects material property. To maximise
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Fig. 3. Effect of PLS latent field’s dimensionality
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Fig. 4. Visualization of DS 1 using aggregates

the information content of the mapping among 14 predefined

aggregates the less correllated pairs were selected (Figure 4 ).

Figure 5 shows the mapping of PCA with the first two prin-

cipal component [11]. This map is more informative. As it can

be seen, the database contains samples from two different oper-

ating modes (summer and winter diesel) and some this mapping

is able to separate these operating regimes.

Results of 2D PLS can be seen on Figure 6 and 7. The PLS

model is more informative since it also utilizes output variables

for the mapping. Figure 6 shows the mapping using the Density

as output property. Comparing this mapping with the mapping

of obtained using CFPP (see Figure 7) one can easily see that

operating regimes have much more impact to the CFPP than

density.
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Fig. 5. Visualization of DS 1 using PCA

As it can be seen PLS correctly reflects the operating regions

and much more able to detect outliers than aggregate based map-

pings.

In the second part of the case study we demonstrate how out-

lier samples can be identified in the mapped space. As it can be

seen on the Figure 9 the DS 2 contains two samples which are

really far from the normal operational range (top right corner).

The aggregate based mapping can not identify these samples ex-

actly, it finds only one outlier of two.

As it can be seen on Figures 10 and 11 the 2D PLS gives de-

tailed information for outlier detection. Comparing these plots,

TOPNIR based mapping ( Figure 8 ) and PCA ( Figure 9 ) it

can be concluded that the 2PLS technique is the most efficient

to detect outliers in the spectral or in the property space.
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Fig. 6. Visualization of DS 1 using PLS (Density)
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Fig. 7. Visualization of DS 1 using PLS (CFPP0)
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Fig. 8. Visualization of DS 2 using aggregates

Such analysis gives the user information not only about oper-

ating regimes but also about quality of the models, so the pre-

sented mapping is able to give hints the modeller how to enhance

model performance by the proper selection of the training data.
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Fig. 9. Visualization of DS 2 using PCA
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Fig. 10. Visualization of DS 2 using PLS (Density)
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Fig. 11. Visualization of DS 2 using PLS (D5◦C)

4 Conclusion

On-line analysers use indirect measurement combined with

prediction model to support process control and monitoring.

Near infrared spectroscopy is a widely used on-line measure-

ment technique. There are several multivariate models and
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methods to support the prediction of product properties based on

NIR spectra. Model development cannot be a fully automatised

process, human supervision and intervention is always needed.

To support model development it is very informative to visu-

alise the hidden structure of complex spectral database in a low-

dimensional space. Industrial applications require easily im-

plementable, interpretable and accurate projection. TOPNIR

utilises heuristic nonlinear functions (aggregates) for the map-

ping of spectra as high dimensional object. We proposed a much

more sophisticated approach that can be used simultaneous pre-

diction and visualisation. We adapted a technique that allows the

application of PLS also for visualisation of spectral database.

Datasets taken from the Dune Refinery of MOL Ltd were

analysed. The PLS model is applied to estimate cold filter plug-

ging point, density and one property of distillation. The main

benefit of this technique is that it allows the extention of the

operating region of the model by extrapolation. The proposed

PLS based model is able to simultaneously predict unmeasured

material properties and monitor the state of the process. Pro-

cess monitoring is realized in orthogonal two dimensional plots.

These plots can also be used for the effective identification of

outliers.
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