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Abstract

Fermentation systems are often highly nonlinear, with poorly

understood dynamic behaviour of the reactor. In this work,

mathematical modeling of the fermentation process based on

aeration rate control was performed in a semi-batch airlift loop

bioreactor. The bioconversion of glucose to gluconic acid by the

Aspergillus niger strain was considered in an oxygen consum-

ing system in the liquid phase. The proper kinetic model for the

bioconversion of glucose to gluconic acid was investigated us-

ing experimental data from a 40 dm3 reactor. Kinetic parameter

estimation was used from the literature. The model was vali-

dated by experimental data and was compared with the Monod

kinetic model. The comparison showed that the Contois kinetic

model was in a better agreement with the experimental data of

dissolved oxygen concentration (DO) than the Monod kinetic

model. An optimal substrate-to-microorganism concentration

ratio of 55 was suggested by applying the model, which led to

achieving the maximum conversion of glucose to gluconic acid.

The conventional PID controller with fixed parameters obtained

from the Ziegler-Nichols tuning method was used to control the

dissolved oxygen concentration at a constant level of 2 mg/dm3,

which was important for microorganism survival and growth.
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1 Introduction

Gluconic acid (GLA) is a mild organic acid compound with a

wide applicability, which is produced from glucose oxidation.

This compound has been used in industrial products such as

detergents, leather, photography, textiles, pharmaceuticals and

especially food. There are different methods for manufactur-

ing gluconic acid, including chemical methods, electrochemical

methods, enzyme bioreactors, as well as free or immobilised

cells of either Gluconobacter oxydans or Aspergillus niger (Rao

et al., [18]; Roehr et al., [19]; Sahasrabudhe and Sankpal,

[20]). Among these methods, producing gluconic acid with As-

pergillus niger microbe is preferable due to the easier isolation

of the product compared to other biocatalysts. Such isolation

could be carried out by flocculation with polyelectrolytes (Lee

and Long, [10]), covalent binding to a glycidyl ester copolymer

(Nelson, [15]), entrapment in gels (Garg and Sharma, [6]) and

adsorption onto supports (Heinrich and Rehm, [7]; Sakurai et

al., [21]; Fujii et al., [5]). On the other hand, producing gluconic

acid from glucose using metal catalysts, regardless of the high

conversion and selectivity, creates its own problem of catalyst

deactivation, which is caused by self-poisoning and overoxida-

tion (Nikov and Paev, [16]).

The reaction of glucose conversion to gluconic acid by As-

pergillus niger needs a high amount of dissolved oxygen either

for bioconversion of glucose into gluconic acid or mycelia respi-

ration. For this purpose, airlift loop reactors are appropriate be-

cause of a high mass transfer rate between gas and liquid phases

compared to the other types of reactors. The advantages of such

reactors to stirred tank ones are simplicity, lower energy con-

sumption, easier maintenance and lower shear stress (Braun and

Vecht, 1991 [2]) which may cause damage to microorganisms.

Airlift loop reactors were used for the first time by Lefrancois

et al. [12]. Since then, a wide range research has been con-

ducted on kinetic modeling and the microbial reaction yielding

gluconic acid. Luttman et al. [13] evaluated the reaction kinet-

ics using a model of tanks in series. Znad et al. [24] studied the

reaction kinetics in a batch reactor. Sikula et al. [22] investi-

gated glucose to gluconic acid production by utilising the tank

in series model with Monod kinetics. Lavric and Muntean [9]
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also studied GLA production using the Monod kinetic model;

they considered axial dispersion for the liquid phase.

Despite these extensive studies, the mathematical modeling

of airlift loop bioreactors with simultaneous dissolved oxygen

control has not been studied. During the fermentation process,

the amount of oxygen required by the microorganisms to be able

to oxidise the organic substance and also the required oxygen to

maintain the DO concentration above its critical value should

be supplied by the aeration system. At high cell concentrations,

the amount of consumed oxygen may exceed the rate of oxygen

transfer from the gas bubbles, which in turn may lead to deple-

tion of oxygen. Therefore, the DO concentration in the reactor

is one of the most important controllable operating parameters

during the bioconversion which affects the process efficiency

and operating costs. Since fermentation processes are usually

highly nonlinear, a deviation from the operating region close to

the designed conditions can significantly degrade the controller

performance and system instability. The key innovation of this

paper is the use of an electronic controller to keep the dissolved

oxygen concentration at an adequate value of 2 mg/dm3.

There are three general methods of controlling DO in a fer-

mentation process. One is on the basis of manipulating the ag-

itation speed to improve mass transfer. The second is based on

changing the oxygen partial pressure in the inlet gas and the

third way is adjusting the air flowrate. In this study, the ma-

nipulation of air flowrate was selected as the method of con-

trolling dissolved oxygen concentration due to the fact that it

is simpler to be applied in industrial processes, less expensive

and has higher effects on oxygen transfer rate compared to the

other methods. In the present work, we applied a mathemati-

cal model for producing gluconic acid by Aspergillus niger in a

semi-batch airlift loop reactor by considering an axial dispersion

for liquid phase. Moreover, the Contois kinetic model was used

for the determination of reaction parameters used in the model.

Since precise evaluation of ALR reactors behaviour is difficult,

and the experimental investigation on these kinds of reactors are

expensive and time consuming (Onken and Weiland, [17]; Mer-

chuk and Scuger, [14]), there is a need to perform a mathemati-

cal model which enables us to evaluate the effects of circulation

rate, downcomer to riser diameter ratio, operational pressure and

the height to reactor diameter ratio on GLA production. Also,

the optimal concentration of the substrate to the concentration

of microorganisms that leads to maximum conversion can be es-

timated mathematically.

2 Modeling mathematics

An overall schematic of the model is represented in Fig. 1.

ALR reactors can be considered as consecutive small stirred

tanks in series to calculate the mass transfer coefficient (Chisti,

[3]). However, subsequent studies have not been conducted to

confirm the reliability of such a simple assumption for industrial

large scale reactors [1].The top of the riser can be considered as

part of the riser extension (Dhaouadi et al., [4]). The mass bal-
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Fig. 1. Schematic diagram of the Axial Dispersion model for an Airlift loop

bioreactor

ance in the liquid phase is then as follows:

∂Cliq,i

∂t
= Dax

∂2Cliq,i

∂x2
−

Uliq

1 − ε

∂Cliq,i

∂x
+ ri i = M, P, S (1)

where M, P and S represent microorganism, product, substrate

concentrations, respectively. Since the oxygen exists in both liq-

uid and gas phases, the mass balance equation for this compo-

nent differs from the other three components and is written as:

∂Cliq,O2

∂t
= Dax

∂2Cliq,O2

∂x2
−

Uliq

1 − ε

∂Cliq,O2

∂x
+

+
1

1 − ε
kla(Cliq,O2

−Cliq,O2
) + ri

(2)

The energy balance was not considered in the mathematical

modeling since the fermentation process occurs so slowly that

the bioreactor’s temperature remains almost constant.

To avoid complicated coupled differential equations, it is rea-

sonable to assume that the gas velocity decreases proportion-

ally to the reaction conversion while rising through the reactor.

Therefore, it can be obtained in each section of the riser section

as follows:

Ug = U0 (1 + εAxcon) (3)

where Ug (m/s) is the gas velocity in the reactor and U0(m/s) is

the inlet gas velocity. The parameter εA is the volume expansion

factor. For constant temperature and density, it can be defined

as:

εA =
Vxcon=1 − Vxcon=0

Vxcon=0

(4)
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The overall gas holdup and oxygen mass transfer coefficient was

obtained by the following equations (Jurascik et al., [8]):

ε = 0.946

(
1 +

AD

AR

)−1

U0.667
g (5)

kla = 0.428

(
1 +

AD

AR

)−1

U0.8
g (6)

For the axial dispersion coefficient of the liquid phase, Towell

and Ackermann [23] found:

Dax = 2.61D
1,5
R

U0.5
g (7)

3 Reaction model and kinetics

The overall reaction of bioconversion of glucose into gluconic

acid can be considered as follows:

C6H12O6 +
1

2
O→ C6H12O7

The rate equation for microorganism based on the Contois ki-

netic model and by assuming biomass inhibition is:

dM

dt
= µm

S

KS M + S

Cliq,O2

KOM + Cliq,O2

M (8)

while for the Monod kinetic model it can be obtained by the

following equation:

dM

dt
= µm

S

K′
S

M + S

Cliq,O2

K′
O

M + Cliq,O2

M (9)

Other components’ concentrations can then be calculated by the

following equations:

dP

dt
= α

dM

dt
+ βM (10)

dS

dt
= −γ

dM

dt
− λM (11)

dO2

dt
= −δ

dM

dt
− φM (12)

The initial concentrations of substances are:

M (x, 0) = M0 (13)

P (x, 0) = 0 (14)

S (x, 0) = S 0 (15)

Cliq (x, 0) = C∗liq (16)

The boundary values are:

atx = H →
∂Cliq,t

∂x
= 0 t = M, P, S ,O2 (17)

atx = 0→ Cdowncomer
liq,i (H, t) = Criser

liq,i t = M, P, S ,O2 (18)

The kinetic parameters and operational conditions used in math-

ematical modeling are summarised in Table 1 and Table 2, re-

spectively.

At each time step, the error can be calculated by the difference

between the set point and the measured value.

e(t) = set point −measured value (19)

The controller output is calculated by summing up the three-

term control: the proportional, integral and derivative values,

denoted in Eq. (20) by the subscripts P, I, and D:

u(t) = KPe(t) +
1

τI

∫ t

0

e(τ) dτ + τD

de(t)

dt
(20)

In order to obtain the controller output, u(t), the integral and

differential terms should be solved numerically in each time

step. In this work, the former was obtained from trapezoidal

rule, while finite difference formula was used to calculate the

latter.

4 Results and discussion

By simultaneously solving mass conservation equations for

all components and applying the initial and boundary condi-

tions, the microorganism, glucose, oxygen and gluconic acid

concentrations were obtained during the reaction time. Fig. 2

illustrates a comparison between the axial dispersion-Contois

model, the tank in series-Monod model and the experimental

data from Sikula et al. [22]. The dissolved oxygen concentration

can be measured with an optical DO sensor, which is situated at

the bottom of the reactor. The oxygen concentration decreased

over time because it was consumed for the conversion of glucose

and was required by microbes as well for growth and survival.

The experimental and also simulated results showed that the

microorganism concentration starts from 0.146 g/dm3, and then

increased gradually as they consumed substrate and oxygen dur-

ing the fermentation, and finally, reached to the asymptotic value

of 6 g/dm3.

As is apparent from Fig. 2, the Contois kinetic model with

considering the axial dispersion for the liquid phase has a better

coherence with the experimental data compared to the Monod

kinetic model with considering the reactor as N-tanks in series.

For the case of oxygen (Fig. 2d), the difference between these

two models is more significant, which means that the Monod

model fails to predict the dissolved oxygen concentration in fer-

mentation of glucose to gluconic acid.

Also, the results showed that the DO concentration in the re-

actor dropped to lower than 2 mg/dm3 in the absence of the con-

troller, which reflects the need for a controller to maintain the

oxygen concentration on the desired value. The concentrations

of dissolved oxygen along the reactor (Riser and Downcomer)

for three typical times of operation are shown in Fig. 3. As

it is obvious from the Figure, the concentrations do not change

significantly with axial direction. This is mainly due to the cir-

culation of the liquid products with a velocity of about 1 m/s

in the reactor. Therefore, the reactor operates more similar to

a well-mixed reactor rather than a plug flow one. However, the

mathematical modeling has to be performed such general that

can cover a wide variety of operation conditions. As an exam-

ple, let’s consider a case in which it is required to lower the liq-

uid circulation velocity to reduce the power consumption. Here,

the reactor may not operate in the “well-Mixed” region anymore
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Tab. 1. Estimated kinetic parameters by Sikula et

al. [22]

µm(h−1) KO KS α β(h−1) γ λ(h−1) δ φ(h−1)

0.316 0.001061 21.447 2.58 0.1704 2.1768 0.2937 0.2724 0.0425

Tab. 2. Geometric details and operational condi-

tions

Ug(m/s) Uliq(m/s) DR(m) H(m) Pressure(bar) T (˚C) M0(g/dm3) S 0(g/dm3)

0.11 1.0 0.106 1.93 1 30 0.146 150
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Fig. 2. Model vs. experimental data measured in the 40 dm3 ALR (Sikula et al., [22])

and may show a behavior between completely mixed and plug

reactor. Thus, choosing the axial dispersion model which is flex-

ible to the change in the flow regime would be a good choice.
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Fig. 3. Variation of Dissolved Oxygen Concentration along the reactor (the

distance from 0 to1.93 m is considered as the riser section and 1.93 m to 3.86 m

is supposed to be the downcomer section)

4.1 Effect of air flowrate on gluconic acid production

The concentration of gluconic acid at different gas velocities

is shown for 24 hours of fermentation in Fig. 4.

As the figure indicates, by increasing the gas velocity up to

0.1 m/s, GLA production increased considerably, but with gas

velocities higher than 0.25 m/s, the gas flowrate had insignifi-

cant effects on GLA production. This could be due to the fact

that at high gas flowrates, the mass transfer resistance is reduced

and the kinetic resistance may determine the amount of GLA

production.

Fig. 5 shows the GLA concentration with reaction time for

different gas velocities. Although an increase in gas velocity

had minor effects on the final production value, it had a consid-

erable effect on the reaction termination time. It must be noted

that an excessive increase in the gas flowrate led to greater shear

stress which can cause cell damage and a reduction in GLA pro-

duction.
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Fig. 4. Effect of gas velocity on GLA concentration after 1 day of fermenta-

tion.
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Fig. 5. Effect of gas velocity on GLA production rate for a 40 dm3 ALR.

4.2 Effect of pressure on GLA formation

Some researchers have evaluated the positive effect of an ele-

vation in operational pressure on the efficiency of glucose to glu-

conic acid bioconversion (Sakurai et al., [21], Lee et al., [10]).

Fig. 6 shows the effects of operational pressure on GLA concen-

tration with time. According to the figure, by increasing pres-

sure, more oxygen can dissolve in the liquid phase, leading to

increased GLA production and, subsequently, a shorter reaction

termination time.
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Fig. 6. Effect of operating pressure on GLA production rate for a 40 dm3

ALR.

In general, the solubility of oxygen depends on its partial

pressure and the water temperature. The amount of dissolved

oxygen concentration (ppm) in water at different pressures and

temperatures is shown in Table 3.

Tab. 3. Oxygen solubility in water at different pressures and temperatures

(ppm)

Temperature (˚C) 1 bar 2 bar 4 bar

10 11.3 22.6 45.1

20 9.1 18.2 36.4

30 7.6 15.2 30.3

4.3 Effect of reactor geometry and circulation rate on GLA

production

The effect of downcomer to riser diameter on the production

rate is shown in Fig. 7. As is clear, by increasing the downcomer

to riser area ratio, reaction termination time was reduced. How-

ever, this did not have a considerable effect. Based on these re-

sults, the higher the DR/DD, the higher the mass transfer occurs

between the gas and liquid phases according to Eq. (6 which in

turn leads to having more dissolved oxygen and increased GLA

production rate.
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Fig. 7. Effect of downcomer to riser area ratio on GLA production rate.

Moreover, the computer simulation shows that changing the

ratio of the reactor length to the reactor diameter and also the

liquid circulation rate had no significant effect on the final re-

action period and production efficiency. These results indicate

that the airlift loop tank may behave almost as a perfectly mixed

reactor. To show the validity of this statement, the concentra-

tion of the dissolved oxygen along the riser and downcomer is

depicted in Fig. 8. As is seen from the Figure, the concentra-

tion of dissolved oxygen increases in the riser until it reaches to

a maximum point. Then the oxygen concentration starts to de-

crease as the liquid moves down through the downcomer. This

is due to the fact that the reaction is still taking place and con-

suming oxygen in the downcomer, while there is no aeration in

this section. Nevertheless, this variation in dissolved oxygen

concentration is significant enough to assume the reactor almost

acts as a perfectly mixed one. Another point which is important

to note from the Fig. 8 is that the lowest oxygen concentration is

found at the bottom, which suggests that the optical DO sensor

should be installed at this point to show the minimum value of

dissolved oxygen during the fermentation.
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4.4 Application of the model for optimisation

Although the glucose to gluconic acid reaction is relatively

a high conversion reaction, however, for establishing a higher

conversion rate of glucose at a specific temperature, pressure

and gas velocity, an optimal ratio of the substrate to the ini-

tial microorganism concentration was obtained by mathematical

modeling.

As Fig. 8 shows, starting the reaction with a ratio of

S 0/M0 = 55 leads to the highest conversion of the substrate

equal to 94.8% and consequently the maximum GLA produc-

tion.
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Fig. 8. Effect of initial substrate to microorganism concentration on the con-

version of the reaction. The reactor volume is 40 dm3.

4.5 Controlling dissolved oxygen concentration

A schematic representation of the DO control system is shown

in Fig. 9. The oxygen concentration was measured by a DO

sensor which was situated near the bottom of the reactor since

the minimum amount of oxygen presents at the bottom. To

provide aeration, an air compressor can be used which is con-

nected to an electric control valve. In practical applications, the

dissolved oxygen concentration in the reactor should be main-

tained in the range of 1.5-4 mg/dm3. A value of 2 mg/dm3 is

commonly used, as values above 4 mg/dm3do not have a signif-

icant effect on operation and can increase aeration costs. The

aim of this work was to maintain the oxygen concentration at

2 mg/dm3. The air flowrate was examined as the manipulated

variable because of simpler operation and lower operating costs.

In the cases where the controller commands were negative, the

air valve started to be closed automatically and remained closed

until another positive signal is supplied from the controller. A

conventional PID controller with fixed parameters (Kc = 0.684,

τI = 255s, τD = 29.95s) was used to maintain the DO level at

the desired value. The PID parameters were obtained from the

Ziegler-Nichols tuning method.

As the reaction proceeded, the dissolved oxygen decreased

until it reached the set point value. To test the PID controller

performance, three different set points with negative and posi-

tive step changes were applied (Fig. 10). As can be seen from

the figure, the PID controller succeeded in maintaining the dis-

solved oxygen at the desired value and showed good dynamic
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Fig. 9. Schematic view of the dissolved oxygen control process.

performance in terms of DO concentration control about the set

point.

When the DO level dropped below 2 mg/dm3, the gas flowrate

started to increase and the on-line PID controller system kept

the dissolved oxygen concentration at the set point (Fig. 11a).

Although the oxygen concentration approached a certain value,

however, the gas flowrate did not reach the steady state condi-

tion (Fig. 11b). This can be attributed to the need of growing

microorganisms for oxygen as long as adequate substrate exists

in the reactor.
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Fig. 10. The dissolved oxygen concentration for positive and negative step

changes in set point.

Conclusion

Gluconic acid production using immobilised A. niger in a re-

circulation bioreactor was investigated using unsteady state con-

ditions for the consumption of dissolved oxygen by microbes

and the reaction. The dynamic behaviour of the bioreactor was

studied by mathematical modeling of the reactor. The results

of the numerical simulation had a good consistency with exper-

imental data from the literature. As the mathematical model

showed, the Contois model with axial dispersion provided a bet-

ter estimation of the experimental dissolved oxygen concentra-

tion compared to the Monod kinetic model. Also, it was ob-

served that the rate of GLA production strongly depended on

the gas flowrate and operational pressure. However, the liquid

circulation rate and the riser to downcomer diameter ratio did

not have a significant effect on reaction efficiency. Moreover, it
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Fig. 11. PID control of the bioreactor. (a) Changes in dissolved oxygen con-

centration with time. (b) Changes in the manipulated variable (air flowrate) with

time. (c) Changes in dissolved oxygen concentration with variation of the ma-

nipulated variable.

can be concluded that starting the reaction with a substrate-to-

microorganism concentration ratio of 55 maximized the conver-

sion of glucose to gluconic acid.

DO concentration control is a difficult task in batch fermen-

tation due to the varying reaction conditions over time and with

instrument time delays. However, controlling the DO concen-

tration in the bioconversion of glucose to gluconic acid with a

PID controller was implemented and satisfactory results were

obtained for the DO level in the growth medium.

Notations

A cross section area, m2

ALR airlift loop reactor

C concentration, g/dm3

D diameter, m

Dax axial dispersion coefficient, m2/s

DO Dissolved Oxygen

e(t) error, g/dm3

H height, m

kla volumetric mass transfer coefficient, h−1

KO Contois oxygen limitation constant for the microorgan-

ism, dimensionless

K′
O

Monod oxygen limitation constant for the microorgan-

ism, dimensionless

Kp proportional gain, dimensionless

KS Contois saturation constant for the microorganism, di-

mensionless

K′
S

Monod saturation constant for the microorganism, di-

mensionless

Q gas flowrate (dm3/s)

Q0 inlet gas flowrate (dm3/s)

ri rate of reaction for component i, g/dm3h

t time, h

u controller output

Ug gas velocity, m/s

UL liquid circulation rate, m/s

x axial coordinate, m

S Substrate concentration, g/dm3

S 0 Initial substrate concentration, g/dm3

xcon the conversion of the reaction

M Microorganism concentration, g/dm3

M0 Initial microorganism concentration, g/dm3

P Product concentration, g/dm3

Greek letters

α growth associated glucose consumption coefficient, di-

mensionless

β non-growth associated glucose consumption coefficient,

dimensionless

γ growth associated oxygen consumption coefficient, di-

mensionless

λ substrate mass consumed per microorganism mass

grown per hour, h−1

δ non-growth associated oxygen consumption coefficient,

dimensionless

φ oxygen mass consumed per microorganism mass grown

per hour, h−1

ε hold-up, dimensionless

τD derivative time, s

τI integral time, s

εA volume expansion factor, dimensionless

µm maximum specific growth rate, h−1

Subscripts

D downcomer

g gas

i compound i (substrate, product, microorganism, oxy-

gen), dimensionless

liq liquid

O2 oxygen

R riser

* equilibrium

0 initial
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