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Abstract
This short review summarizes the synthesis and molecular

recognition studies of crown ether type macrocycles accom-
plished at the Institute for Organic Chemistry of Budapest Uni-
versity of Technology and Economics in the last few years. The
research work reported here belongs to the areas of proton-
ionizable crown ethers and chiral macrocycles.

Proton-ionizable crown ethers at higher pHs than their pKa

values are mostly ionized to ligand anions which increase the
cation-ligand complex stability with enhancement of selectivity
and avoid the need for a counter anion to accompany the cation
transport or solvent extraction. The latter factor is not only ad-
vantageous from energetical point of view, but is also important
when counter anions are not required to be transported.

Enantiopure chiral macrocycles have also drawn the atten-
tion of many researchers, because owing to their enantioselec-
tive complexation they are excellent candidates for effective sen-
sors and selectors of the enantiomers of biologically important
chiral compounds such as protonated primary organic amines,
amino acids and the derivatives of the latters.
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1 Introduction
Molecular recognition is a generally occurring phenomenon

in nature. Examples include the storage and retrieval of ge-
netic information by the DNA double helix, the selective bind-
ing of a subtrate by the active site of an enzyme, the antibody-
antigen interactions, selective transport of metal ions by natu-
ral ionophores through different biomembranes and incorpora-
tion of the single enantiomeric forms of amino acids and sug-
ars in metabolic pathways. The latter two examples refer to
enantiomeric recognition. Enantiomeric recognition, as a spe-
cial case of molecular recognition involves the discrimination
between enantiomers of the guest by a chiral host. It was be-
lieved a few decades ago that molecular recognition was the re-
sult of unique properties of complex biomolecules. However,
recent successes in imitating such phenomena using relatively
simple synthetic compounds have demonstrated that biological
behaviour can be engineered into small molecules. Crown ether
type macrocycles for example offer unusual opportunities for
the study of molecular recognition. These kinds of studies are
not only important, because we can get deeper insight and un-
derstandig of molecular recognition in the living organisms, but
also, because as a result of these studies we can develop new
molecular sensors and selectors for practical applications.

Probably the greatest impetus was given to these studies by
Pedersen who in 1967 reported the synthesis and metal ion com-
plexation properties of a large number of polyether type macro-
cycles which he named crown ethers [1]. Within two decades the
research which started by crown ethers developed to the field of
host-guest chemistry [2] and then that of supramolecular chem-
istry [3].

The achievments reached in these fields were awarded by the
1987 Nobel prize in Chemistry to three prominent pioneer sci-
entists C. J. Pedersen [4], D. J. Cram [5] and J. M. Lehn [6].

Our research activities in these fields have been focused on the
synthesis and molecular recognition studies of proton-ionizable
crown ethers and chiral macrocycles of the same type.
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2 Proton-ionizable Crown Ethers
In order for an ionophore (an ion carrier) to perform ion trans-

port against a concentration gradient across the membrane of an
aqueous source phase/ lipophilic organic membrane/ aqueous re-
ceiving phase system, it should possess a high ion-binding abil-
ity at the source phase/membrane interface, and have a low ion-
binding ability at the membrane/ receiving phase interface. The
solution for this seemingly contradictory requirement is to build
into the ionophore a so-called switching mechanism, which can
create a strong and a weak binding state. These two states can
be easily and reversibly interchanged by external forces such
as redox [7], light [8], temperature [9] and pH [10] gradients.
Proton-ionizable crown ether type ionophores possessing a pH
switching mechanism are the subjects of intensive studies, be-
cause at higher pHs then their pKa values, they are mostly ion-
ized to ligand anions, which increase the cation-ligand complex
stability with enhancement of selectivity, and avoid the need for
a counter anion to accompany the cation transport or solvent ex-
traction [10]–[14]. The latter factor is not only advantageous
from energetical point of view, but is also important for practi-
cal applications in cation separations when counter anions such
as chloride, nitrate and sulfate are not wanted to be transported
[14].

The transport of cations by proton-ionizable crown ethers in
most of the cases is pH dependent, so it can be turned on and off
by adjusting the pHs of the source and receiving phases, respec-
tively. The proton-ionizable macrocyclic ionophores should be
lipophilic enough to stay in the organic membrane both in com-
plexed and uncomplexed forms. Without lipophilic substituents
no transport occures, because the ionophore distributes into the
aqueous phase so that it is not available as a carrier [11].

We are interested in crown ethers in which the proton-
ionizable moiety is part of the macroring [15]–[21]. In connec-
tion of our recent work the studies by Bradshaw and co-workers
in the middle of the 1980’s should be mentioned.

They prepared proton-ionizable crown ethers containing the
pyridone [22] and thiopyridone [23] subcyclic units, repectively
(Fig. 1).

It was shown that the pKa value of 1H -pyridin-4-one (1, pKa

= 11.09 [24]) and that of 1H -pyridin-4-thione (2, pKa = 8.3
[23]) corresponded well to the pKa values of the crown ethers
3 (pKa = 10.98 [22]) and 4 (pKa = 8.65 [23]), respectively.
The lipophilic analogues of the latters i.e. 5 and 6 transported
potassium ions selectively by adjusting the pHs of the aqueous
source phases 13 and 11, respectively and applying acidic re-
ceiving phases in an aqueous source phase/CH2Cl2 bulk mem-
brane/aqueous receiving phase system. Efficient and selective
transport of potassium ions could only take place when an ap-
preciable amount of the crown ether in question was ionized at
the source phase/organic phase interface [11].

In 2001 we prepared more acidic pyridono-crown ethers 7-10
by introducing electron withdrawing substituents into the pyri-

Fig. 1. Schematics of pyridono- and thiopyridono-crown ethers studied by
Bradshaw and co-workers and also their parent heterocyclic subunits

done ring (Fig. 2) [15]. The pKa values of the parent subcyclic
units 3,5-dibromo-1H -pyridin-4-one (11) and 3,5-dinitro-1H -
pyridin-4-one (12) (see Fig. 2) are 7.73 [25] and 4.56 [26], re-
spectively.

7 :X = Br, R = H

8 :X = NO2, R = H

9 :X = Br, R = hexyl

10:X = NO2, R = hexyl

11:X = Br

12:X = NO2

Fig. 2. Formulas of acidic pyridono-crown ethers and their parent hetero-
cyclic subunits

It is known that natural ionophores such as valinomycin, mo-
nensin, lasalocid, monactin, dinactin and many others are opti-
cally active compounds and their chirality plays a very impor-
tant role in the selective transport of metal ions across biomem-
branes. As we proved by X-ray crystal analysis that proto-
nated primary amines such as benzylammonium perchlorate
(BAHClO4) and (R) − α-phenylethylammonium perchlorate
((R)-PEAHClO4) can also form stable complexes with the achi-
ral pyridono-crown ether 3 (Fig. 3) [16], we decided to prepare
enantiopure lipophilic pyridono- and bis-pyridono-crown ethers
(R, R, R, R)-13-(S, S, S, S)-16 (see Fig. 4) [16, 18].

We extended our studies on proton-ionizable crown ethers to
acridono-, thioacridono-, and substituted acridono-macrocycles
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Fig. 3. X-ray structures of 3-BAHClO4 and 3-(R)-PEAHClO4

(R, R, R, R)-13: R = butyl (Bu)

(R, R, R, R)-15: R = Bu

(S, S, S, S)-14: R = CH2OBu

(S, S, S, S)-16: R = CH2OBu

Fig. 4. Structures of enantiopure lipophilic pyridono- and bis-pyridono-
crown ethers

17: X = O, Y = Z = H

18: X = S, Y = Z = H

19: X = O, Y = H, Z = NO2

20: X = O, Y = NO2,Z = Br

21: X = O, Y = NO2,Z = Cl

Fig. 5. Schematics of acridono-, thioacridono-, and substituted acridono-
macrocycles

(Fig. 5) [17, 27]. It was shown by spectrophotometric mea-
surements that introduction of electron withdrawing substituents
into the aromatic rings of acridono-crown ethers decreased the
pKa values of the ligands to a great extent [20].

Circular dicroism (CD) spectroscopic measurements indi-
cated that the fairly acidic proton-ionizable acridono-crown
ether 21 forms a complex with α-(1-naphthyl)ethylamine (1-
NEA) [19].

We also proved by X-ray crystallography that acridono-crown
ethers 17, 19, 20 and 21 form very stable complexes with a
molecule of water. The water molecule is fixed by strong tripo-

(R, R)-22: R = Me

(R, R, R, R)-23: R = iBu

Fig. 6. Structures of enantiopure acridono-crown ethers

dal hydrogen bonds involving the N-H proton of the heterocyclic
subunit and two alternate oxygen atoms of the macroring [17].

Enantiopure dimethyl- and diisobutyl-substituted acridono-
18-crown-6 ethers (R, R)-22 and (R, R)-23 (see Fig. 6) were
also prepared. The latter compounds bind selectively lead (II)
cations as demonstrated by CD measurements [19].

24: n = 1, R1 = R2= R3= H

rac-25: n = 1, R1 = octyl, R2= R3= H

26: n = 2, R1 = R2= R3= H

rac-27: n = 2, R1 = octyl, R2= R3= H

rac-28: n = 2, R1 = decyl, R2= R3= H

rac-29: n = 2, R1 = hexadecyl, R2= R3= H

(S, S)-30: n = 1, R1 = R2= H, R3
= iBu

(S, S)-31: n = 2, R1 = R2= H, R3= Me

(S, S)-32: n = 2, R1 = R2= H, R3= Me

(S, S)-33: n = 2, R1 = R3= H, R2
= iBu

(S, S)-34: n = 2, R1 = R2= H, R3
= iBu

(S, S)-35: n = 2, R1 = R3= H, R2= octyl

(S, S)-36: n = 2, R1 = R2= H, R3= octyl

Fig. 7. Structures of crown ethers containing a dialkylhydrogenphosphate
moiety

The acridono-18-crown-6 ethers seem to have several advan-
tageous features compared to their pyridono analogues. The
acridone tricyclic unit makes the 18-crown-6 ether framework
more rigid conferring higher selectivity in the molecular recog-
nition process. Acridone derivatives have crystallinity, attrac-
tive coloration and strong fluorescence [7]. The latter two fac-
tors have immense importance in their applications as optical
sensors, because the complexation can be studied by the very
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sensitive, simple and reliable photophysical methods.
There is always a great desire to prepare proton-ionizable

macrocycles with pKa values that would allow the transport of
cations at relatively low source phase pH values. These more
acidic pH-switched ligands could also be used to transport some
of the heavy metal cations, ammonium ions and protonated or-
ganic primary amines.

Two decades ago Bradshaw and co-workers synthetized
crown ethers containing a dialkylhydrogenphosphate moiety 24-
rac-29 (see Fig. 7) [28] which have pKa values about 4 deter-
mined in a 70% dioxane – 30% water mixture [29]. The latter
ligands were either achiral: 24 and 26 or racemic: rac-25, rac-
27, rac-28, rac-29 [28].

The lipophilic macrocycles rac-25, rac-27, rac-28, rac-
29 showed an appreciable transport of alkali, alkaline-earth
and several transition metal cations in an aqueous source
phase/CH2Cl2 bulk membrane/aqueous receiving phase system
[29]. Very recently we prepared several enantiopure proton-
ionizable macrocycles containing the dialkylhydrogenphosphate
moiety ((S, S)-30-(S, S)-36) (see Fig. 7) [21].

The complexation and transport studies of these fairly acidic
new proton-ionizable enantiopure macrocycles with metal
cations and also with the enantiomers of chiral organic amines
are in progress.

3 Chiral Crown Ethers
Since the pioneering work of Cram and co-workers who pre-

pared the first optically active crown ethers containing the bi-
naphthyl moiety as the chiral unit in the early 1970’s [30], a large
number of different types of chiral macrocyclic host molecules
have been synthetized and studied for enantiomeric recognition
of chiral guests. Most of these works have been reviewed [31]–
[33].

In the last few years our research in this area has been fo-
cused on the synthesis of enantiopure crown ethers contain-
ing heterocyclic (pyridine [16, 18], [34]–[40], acridine [41]–
[43] and phenazine [39, 41], [44]–[48]) subunits and their enan-
tiomeric recognition with chiral protonated primary aralkyl
amines, amino acids and their derivatives.

From the point of view of our recent studies, the earlier
research on chiral pyridino-18-crown-6 ether type macrocy-
cles carried out in Bradshaw’s laboratory should be mentioned
[49]. Bradshaw and co-workers showed that the main factors
governing enantiomeric recognition of chiral protonated pri-
mary aralkyl amines by chiral pyridino-18-crown-6 ethers are
as follows: a.) The pyridino-hosts and the protonated amine
guests should form stable complexes. The two intermolecu-
lar non-covalent attractive forces which hold together the het-
erochiral [(R, R)-host/(S)-guest or (S, S)-host/(R)-guest] and
homochiral [(R, R)-host/(R)-guest or (S, S)-host/(S)-guest] di-
astereomeric complexes are from one hand the tripod-like hy-
drogen bond involving the pyridine nitrogen and two alternate
macroring oxygens of the host and the three ammonium protons

of the guest, repectively, and from the other hand the π − π

stacking between the two aromatic moieties of the host and
guest, repectively. b.) The degree of enantiomeric recognition
(enantioselectivity) depends mainly on the difference in steric
repulsions of the two diastereomeric complexes caused by the
bulky substituents at the chiral centers of the host and certain
hydrogen atoms of the guests, repectively. The larger the sub-
stituents at the chiral centers the higher the enantioselectivity.
c.) The conformation of the host should be rigid. The rigid
host which is preorganized to accommodate one enantiomer of
the guest can only adjust its conformation to fit the other enan-
tiomer by using up a lot of energy which decreases the stability
of the other diastereomeric complex. d.) Solvents and mixtures
of solvents can also effect enantioselectivity [49].

We have prepared several enantiopure pyridino-crown ethers
containing suitable side chains (see Fig. 8) which made possible
to attach them to solid supports such as silica gel [34,35,37,40]
and polymer resin [36].

(S, S)-37: R= Me (S, S)-40: R=Me, Y=OCH2CONHCH2CH=CH2

(S, S)-38: R=iBu (S, S)-41: R=Me, Y=OCH2COOH

(R, R)-38: R=tBu (S, S)-42: R=iBu, Y=OCH2COOH

(R, R)-43: R=tBu, Y=OCH2COOH

(S, S)-44: R= Me, Y=O(CH2)3OH

(R, R)-45: R=tBu, Y=OCH2CH=CH2

Fig. 8. Enantiopure pyridino-crown ethers containing side chains

+
(R, R)-CSP-46 : R = tBu, Z = O(CH2)3Si

(R, R)-CSP-47 : R = tBu, Z = OCH2CONH(CH2)3Si

(S, S)-CSP-48 : R= Me, Z = OCH2CONH(CH2)3Si

Fig. 9. Chiral stationary phases (CSPs) used for enantioseparation by col-
umn chromatography

Our effort in this respect were aimed at obtaining chiral sta-
tionary phases (CSPs) which by enantioselective complexation
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Fig. 10. Preparation of Merrifield resin-bound chiral crown ether

could separate protonated primary aralkyl amines, amino acids
and their derivates using column chromathography.

The enantiomeric discrimination of the parent chiral crown
ethers shown in Fig. 8 toward protonated aralkyl amines and
amino acid derivatives containing aromatic moieties had been
studied by 1H NMR [35] and CD [39] spectroscopies before
their attachment to solid supports.

In the last few years we prepared three CSP-s at the Institute
for Organic Chemistry, Budapest University of Technology and
Economics (BUTE) (see Fig. 9). In 1999 we attached allyloxy-
substituted pyridino-crown (R, R)-45 by starting with a highly
regioselective hydrosilylation with triethoxysilane in the pres-
ence of a Pt-catalyst followed by heating the triethoxysilyl-
propyloxy derivative with ordinary silica gel in toluene to obtain
(R, R)-CSP-46 [34].

Chiral stationary phase (R, R)-CSP-46 resolved racemic α-
(1-naphthyl)ethylamine hydrogenperchlorate (1-NEAHClO4),
α-phenylethylamine hydrogenperchlorate (PEAHClO4), methyl
phenylalaninate hydrogenperchlorate (MPHEHClO4) and
methyl phenylglicinate hydrogenperchlorate (MPGLYHClO4)

by chromatography with great efficiency [34, 38].
In 2000 we prepared (R, R)-CSP-47 starting from (R, R)-43.

The latter acid was treated with
(3-aminopropyl)trimethoxysilane in the presence of N , N ’-
dicyclohexylcarbodiimide, then the amide derivative of the
pyridino-crown ether containing the trimethoxysilyl end group
was heated the HPLC quality silica gel in toluene to give (R, R)-
CSP-47 [37]. The latter CSP gave base-line enantiomeric sepa-
ration for racemic 1-NEAHClO4 and PEAHClO4 [37].

Very recently we prepared (S, S)-CSP-48 starting from
(S, S)-40. The latter dimethyl-substituted pyridino-crown ether
containing a side chain with terminal double bound was reacted
first with triethoxysilane in the presence of a Pt-catalyst then
the triethoxysilyl derivative so obtained was heated with spher-
ical HPLC quality silica gel to get (S, S)-CSP-48 [40]. Chi-
ral stationary phase (S, S)-CSP-48 gave base-line enantiosep-
aration for racemic 1-NEAHClO4, α-(2-naphthyl)ethylamine
hydrogenperchlorate, tryptophan, phenylalanine, tyrosine, S-

benzyl-homocysteine, ε − N -benzyloxycarbonyl-lysine and O-
benzyl-serine [40]. The dimethyl-substituted pyridino-crown
ether derivative (S, S)-44 containing a side chain with termi-
nal hydroxyl group was attached to Merrifield polymer resin
(MPR). Hydroxy derivative (S, S)-44 was heated with MPR in
the presence of a strong base NaH in THF to obtain polymer-
bound chiral crown (S, S)-49 (see Fig. 10) [36].

The Merrifield resin-bound chiral crown ether (S, S)-49 sep-
arated the enantiomers of racemic 1-NEAHClO4 with less effi-
ciency than its silica gel based analogue (S, S)-CSP-48 [36,40].

We also prepared enantiopure crown ethers containing acri-
dine [41] and phenazine [41, 45] subcyclic units (see Fig. 11).
These ligands had been expected to show high enantiomeric
recognition toward protonated aralkyl amines and amino acid
derivatives, because of their extended π systems and high con-
formational rigidity [41].

(R, R)-50: X= CH (S, S)-52

(R, R)-51: X= N

Fig. 11. Schematics of dimethyl-substituted acridino-, phenazino- and
pyridino-18-crown-6 ethers

Luminescence spectroscopic studies showed that acridino-
crown ether (R, R)-50 had higher enantioselectivity toward both
1-NEAHClO4 and PEAHClO4 than that of the pyridino ana-
logue (S, S)-52 [42, 49].

Luminescence spectroscopic studies also confirmed that
phenazino-crown ether (R, R)-51 had lower enantioselectivity
toward both 1-NEAHClO4 and PEAHClO4 than that of the
pyridino analogue (S, S)-52 [46, 49].

The above results encouraged us to prepare an enantiop-
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ure dimethyl-substituted acridino-18-crown-6 ether with suit-
able side chain which made possible to attach it to spherical
HPLC silica gel to get a new CSP [50].
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