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Abstract

This study aimed to modify montmorillonite (MMT) with titanium dioxide ( TiO2 ) by wet stirring method combined with ultrasonic to 

form MMT/TiO2 nanocomposite and used as a photocatalyst in the removal of organic dye rhodamine B (RhB). The characteristics of 

the synthesized samples were analyzed by methods such as energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope 

(SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis diffuse 

reflectance spectra (UV-Vis DRS). The degradation of RhB was carried out for 210 min under UVC irradiation, and the decolorization 

efficiency of RhB was evaluated by UV-vis spectroscopy. The results show that the TiO2 anatase nanoparticles are randomly distributed 

on the surface or the space between the MMT sheets to form a house-of-card structure. After 210 min of exposure under a UVC light 

source, the decolorization efficiency reached 91.5% for the solution with pH = 6.8, photocatalyst content 0.1 g/L, initial concentration 

RhB 10 mg/L, and UVC power 15 W. Liquid chromatography–mass spectrometry (LCMS) identified the degradation intermediates 

that MMT/TiO2 successfully cleaved the chromophore structure and formed more minor broken-ring by-products. The influence of 

operating parameters on RhB removal efficiency, including solution pH, photocatalyst content, initial dye concentration, inorganic, and 

organic scavengers, was studied. In addition, the kinetic modeling study shows that the RhB photodegradation reaction is consistent 

with the Langmuir-Hinshelwood first-order kinetic model.
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1 Introduction
Titanium dioxide ( TiO2 ) is a potential metal oxide in pho-
tocatalysis. TiO2 is a semiconductor of type BIVAVI and can 
generate reactive radicals such as hydroxyl radicals •OH, 
superoxide anions O2

•−, and H2O2 . In addition, TiO2 exhib-
its many advantages over other photocatalysts due to its 
low cost, high photocatalytic efficiency, ease of prepara-
tion, and environmental friendliness. Therefore, TiO2 is 
widely studied in environmental cleaning, and organic 
compounds' mineralization [1, 2]. The energy band charac-
teristics of TiO2 are wide bandgap energy (3.2 eV for ana-
tase) and high-speed photogenerated electron-hole (e−-h+) 

recombination time [3, 4]. Therefore, to enhance the pho-
tocatalytic performance of TiO2 , many publications have 
demonstrated the effectiveness of modifying TiO2 with 
different materials by different synthesis methods  [5]. 
By supercritical antisolvent micronizing β-cyclodex-
trin (β-CD) and TiO2 (PC500), Stefania Mottola et al. [6] 
create hybrid photocatalysts for UV light-driven deg-
radation of azo dyes. The mineralization efficiency is 
96% under UV irradiation  [6]. Sridevi  et  al.  [7] synthe-
sised TiO2 / BiOCl and TiO2 / BiOCl / La2O3 heterostruc-
ture photocatalyst by solid-state powder grind approach 
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for enhanced charge separation efficiency with improved 
UV-light catalytic activity towards rhodamine B (RhB) 
and Reactive Yellow 86 (RY). Degradation percentage 
was achieved between 95% and 92% for RhB and RY 
86 dyes [7]. Zhengdong Zhang et al. [8] used a straightfor-
ward impregnation technique to create a novel Z-scheme 
TiO2 / g-C3N4 heterostructure photocatalyst to activate per-
oxymonosulfate (PMS) for the photocatalytic degradation 
of rhodamine B (RhB). Within 120 minutes of simulated 
sunlight exposure, the degradation rate of RhB (20 mg/L, 
50  mL) was 82.79%  [8]. Lan Zhang  et  al.  [9] fabricated 
WO3 / TiO2 membranes by reactive magnetron sputtering 
for rhodamine  B dye degradation. The degradation per-
centage was 96.49% in 2 h under a 300 W mercury lamp 
irradiation [9]. However, along with the complex material 
synthesis process, the parameters affecting the photocata-
lytic efficiency and the by-products after photodegradation 
have not been investigated. Compared to previous studies, 
montmorillonit (MMT) was directly modified with ana-
tase-phase TiO2 powder, not from precursors of Ti such 
as tetraethyl orthotintanate (TEOT), titanium (IV) butox-
ide, etc. The method in this study allows the nanocompos-
ite not to undergo thermal annealing and reduces chemical 
intermediates in the preparation process.

Based on our previous studies [10], MMT exhibits good 
swelling capacity, high ion exchange, and easy denatur-
ation. MMT will exchange cations in the interlayer space 
of clay layers with inorganic polycations when combined 
with metal oxides. These polycations will be inserted into 
the interlayer space of clay. They convert to metal oxides 
when dried or heated by dehydrating and dehydroxyl-
ation. These metal oxides cluster together between clay 
layers and form a house-of-card structure. This structure 
is not only heat resistant but also maintains the distance 
between the clay layers and prevents the collapse of these 
layers. Due to the existence of empty areas between the 
layers, the clay becomes more porous. Thus, the emer-
gence of a new porous structure and the enhancement of 
some active sites make this material more widely used in 
catalytic and adsorption activities. Our other recent study 

showed that 0D TiO2 (nanoparticles) and 1D TiO2 (nano-
tubes) affected the RhB removal efficiency, namely, the 
efficiency of rhodamine  B degradation under UVC light 
of MMT/TiO2 is higher than that of MMT/TiO2 nanotubes, 
and the adsorption process plays a vital role in the pho-
todegradation process [11]. Accordingly, when MMT acts 
as the main phase in nanocomposites, the empty d orbit-
als of metal elements in the MMT trap the photogenerated 
electrons and prevent the recombination of the photogene-
rated electron-hole pairs (e−-h+). This is considered a sig-
nificant positive effect of MMT in the photocatalysis pro-
cess. Besides, due to its excellent water swelling ability, 
MMT adsorbs organic dye molecules and forms active 
sites very well. Therefore, photo-oxidation and photo-re-
duction processes at valence and conduction bands of 
reactive radicals such as •OH, O2

•−, and H2O will occur 
quickly [11–13]. In this paper, a comprehensive study on 
the operational parameters affecting the photocatalytic 
efficiency of MMT/TiO2 nanocomposites was carried out, 
such as the pH value of dye solution, initial concentration 
dyes, photocatalyst content, inorganic and organic scaven-
gers. Besides, the kinetic study and analysis of interme-
diate products after photocatalytic degradation time are 
clarified in this study.

2 Materials and methods
2.1 Chemicals
All chemicals purchased from Merck Co., Germany, were 
of analytical grade and did not require further purifica-
tion upon use, including anatase titanium dioxide (anatase 
TiO2 ), ethanol, NaCl, KCl, KOH, HCl, NaH2PO4 , NaHCO3 , 
Na2SO4 , butanol, ethylenediaminetetraacetic acid (EDTA), 
and chloroform. Bentonite was purchased from Lam Dong, 
Vietnam. Rhodamine B was purchased from Sigma-Aldrich 
and had the characteristics described in Table 1.

2.2 Purification of montmorillonite from bentonite
The method of purifying MMT from bentonite is similar to 
our previous publications [10, 11] and is described accord-
ing to Fig. 1. 200 g of bentonite is dispersed 24 h in 5 L 

Table 1 Characteristics of Rhodamine B (RhB)

Index name, CAS number Molecular formula Chemical structure λmax (nm) Class M (g/mol)

C. I. Basic Violet 10, 81-88-9 C28H31ClN2O3 556 Azo 479.02
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of deionized (DI) water and settled for 5 h. Add NaCl to 
the suspension mixture and stir for 3 h. Allow the mixture 
to settle for 24 h and centrifuge for 30 min. The obtained 
solid was washed several times with DI water, and ethanol. 
Finally, the suspension was centrifuged and dried at 60 °C 
for 72 h to obtain purified MMT.

2.3 Preparation of MMT/TiO2 nanocomposite
Modifying MMT with TiO2 to form MMT/TiO2 nano-
composites is done similarly to our previously published 
method [11] and is described in Fig. 2. 2 g MMT was added 
to DI water and stirred for 24  h. Anatase nanoparticles 
were then added at a ratio of mMMT:mTiO2 = 10:1. The mix-
ture was stirred with a magnetic stirrer for 4 h, followed 
by ultrasonication for 1 h. Finally, the mixture was cen-
trifuged and dried at 80 °C for 24 h to obtain MMT/TiO2 
nanocomposite.

2.4 Characterization
Energy dispersive X-ray spectroscopy (HORIBA H-7593 
EDX, Horiba, England) was carried out to determine 
the elemental composition of MMT and MMT/TiO2 . 
Scanning electron microscopy (Hitachi S4800, Japan), 
and transmission electron microscopy (JEOL JEM-1400, 

USA) were used to observe the surface morphology and 
particle size of MMT and MMT/TiO2 . X-ray diffrac-
tion (D2 PHASER XRD, Bruker, Germany) was used 
to determine the crystal characteristics of TiO2 , MMT, 
and MMT/TiO2 . The radiation source was Ni-filtered 
CuK with λ = 0.15406 nm. The applied current and volt-
age were 40 mA and 40 kV with a scan rate of 0.030°/s 
2θ = 5–80°. The average crystal size in this study was cal-
culated according to the Scherrer formula Eq. (1): 

D k
B

�
�
�cos

	 (1)

where D: the average size of the particle (nm); θ: the 
Bragg angle (°); B: full width at half maximum (FWHM) 
of the diffraction peak (rad); λ: the X-ray wavelength 
(λ = 1.5406 Å); k: the shape factor (k = 0.9).

The bonding vibrations of TiO2 , MMT, and MMT/
TiO2 in the range from 4000 to 400 cm−1 were analyzed 
by Nicolet iS 50 FTIR (Thermo, USA). The bandgap 
energies Eg of TiO2 , MMT, and MMT/TiO2 were mea-
sured by absorption spectroscopy UV-Vis DRS (V-770 
UV-VIS-NIR Spectrophotometer JASCO Inc., Japan) and 
calculated from the Tauc plot by plotting the correlation 
between the photo-light power and (αhv)1/2. The interme-
diate products of RhB degradation were analyzed with 
LC-MS (m/z  =  30–600) in positive ion mode and a gas 
flow rate 800 L/h.

The pH value at which the surface charge equals zero 
under certain temperature, pressure, and aqueous solution 
component conditions is referred to the point of zero charge 
pHpzc . If pH < pHpzc , the surface is positively charged and 
negatively charged otherwise. The pHpzc of MMT/TiO2 was 
determined as follows: 10 mg of MMT/TiO2 was added to 
the 0.1 M KCl solution, and the pH of KCl solution was 
adjusted from 2 to 12 ( pHi ) with 0.1 M KOH or 0.1 M HCl. 
After the solution reached equilibrium, the pH of the solu-
tion was re-determined and called pHf . From there, deter-
mine the value ∆pH = pHf − pHi . Plot ∆pH against pHi ; 
the value at which the line intersects the Ox axis is called 
the pHpzc of the material [14–17]. The Ox axis is horizon-
tal, perpendicular, and passes through the origin O (0; 0).

2.5 Decolorization setup
The photocatalytic degradation process of rhodamine  B 
was carried according to Fig. 3  [11]. Photocatalytic tests 
were performed in a closed chamber with a 15  W UVC 
lamp positioned 10 cm above the solution surface. 10 mg 
of the photocatalyst was added to 100 mL of RhB solution Fig. 2 Steps to synthesize MMT/TiO2 nanocomposite

Fig. 1 Steps to synthesize montmorillonite (MMT) from bentonite
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and stirred with a magnetic stirrer for 60  min to reach 
adsorption-desorption equilibrium. Then, the UVC lamp 
was turned on for 210  min to initiate the photocataly-
sis. During this time, every 30 minutes, 5 mL of solution 
was extracted and centrifuged for UV-Vis spectroscopy 
to assess the change in concentration over time. The effi-
ciency of the decolorization process is determined by the 
formula Eq. (2):

Decolorization efficiency %� � �
��

�
�

�

�
��

C C
C
0

0

100 	 (2)

where C0 : the concentration of the RhB initially (mg/L). 
C: the concentration of the RhB at time t (mg/L).

3 Results and discussion
3.1 Characterization of the synthesized MMT/TiO2 
nanocomposite
The surface morphology and particle size were observed 
by TEM and SEM images as shown in Figs.  4 and  5. 
MMT sheets with flake shapes have diameters from 480 
to 1000 nm respectively (Fig. 4 (a) and Fig. 4 (b)). These 
sheets are distributed according to the layered structure 
observed on the MMT surface (Fig.  5  (a)). The anatase 
nanoparticles (Merck) have a spherical shape and average 
size of 70–150 nm (Fig. 4 (c) and Fig. 4 (d)). TiO2 nanopar-
ticles are not distributed discretely but in clusters. When 
TiO2 was dispersed into the MMT by ultrasound, the 
TiO2 nanoparticles in the nanocomposite were smaller in 
size than that of the raw TiO2 (Fig. 4  (e) and Fig. 4  (f)). 
SEM images (Fig. 5 (b)) and TEM images (Fig. 4 (e) and 
Fig.  4  (f)) show that TiO2 nanoparticles are randomly 
and heterogeneously distributed on the surface or in the 
space between the MMT sheets [11, 18, 19]. Fig. 6 is the 
EDX spectrum of MMT and MMT/TiO2 . The  composi-
tion of MMT includes K, Na, Al, Ca, O, Si, Fe, and Mg. 
The elemental composition of the nanocomposite MMT/
TiO2 includes elements similar to that of MMT and Ti 

with a minimum of 1.91  wt%. This indicates the pres-
ence of Ti and the elements of MMT in the MMT/TiO2 
nanocomposite [11, 20–22].

X-ray diffraction patterns of TiO2 , MMT, and MMT/TiO2 
are shown in Fig.  7. TiO2 nanoparticles have diffraction 
characteristics of the anatase phase (JCPDS No. 21-1272), 
including reflection planes: (101), (103), (004), (112), (200), 
(105), (211), (204), (116), (220), and (215). The  average 
crystal size of TiO2 calculated from the Scherrer formula 
(Eq.  (1)) is about 0.3 nm. This result is similar to that of 
Gao K. Zhang et al. [23]. MMT, after being purified from 
bentonite, has a (001) reflection plane at 2θ = 25.2°, and 
the basal spacing of (001) calculated based on the FMHW 
value from Origin software is about 14.5  Å, equivalent 
to many previous publications  [24,  25]. It is noteworthy 
that the (001) pak of MMT has shifted slightly toward the 
higher 2θ angle, and the basal spacing of (001) is reduced 
to 14.0 Å when the MMT is modified with TiO2 nanoparti-
cles. This showed that TiO2 nanoparticles were intercalated 
in the clay sheets and reduced the distance between the clay 
layers, forming a house-of-card structure  [26]. The inten-
sity of the reflection plane at 2θ = 25.2° is enhanced com-
pared with that of the raw MMT, indicating a contribution 
from the reflection plane (101) anatase to the structure of 
the nanocomposite. Because the content of TiO2 is slow, the 
diffraction pattern of MMT/TiO2 almost only contains the 
diffraction peaks of MMT.

Fig. 8 shows the FTIR spectra of TiO2 , MMT, and MMT/
TiO2 . TiO2 has only one absorption region at 430  cm−1, 
which is attributed to Ti–O stretching vibration  [16]. 
The  FTIR spectra of the MMT show many absorption 
bands. The  absorption bands at 3620 and 3420  cm−1 are 
attributed to the –OH asymmetric stretching and symmet-
rical stretching vibrations of the H2O molecules interwoven 
into the MMT structure. Meanwhile, the absorption band at 
1640 cm−1 is attributed to the interlayer H–O–H stretching 
vibration. The absorption bands at 1050 and 784 cm−1 are 
attributed to the Si–O asymmetric stretching vibration and 
the Al–O stretching vibration, respectively. The stretching 
Al–O–Si and strain Si–O–Si vibrations represent the wave-
numbers at 530 and 462 cm−1 [27, 28]. The amount of TiO2 
is too small to make a difference in the absorption bands 
of the MMT/TiO2 compared to that of the MMT due to the 
overlap between the vibration bands. Ti–OH and Ti–O–Ti 
stretching vibration will appear at the absorption band 1638 
and 1571 cm−1, respectively; Ti··O–Si stretching vibration 
will appear at the absorption band 915 cm−1 [28–30].

Fig. 3 Procedure for decolorization of RhB solution
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 TEM images of MMT at various magnifications: (a) 500 nm, (b) 1 μm; TEM images of TiO2 at various magnifications: (c) 500 nm, (d) 1 μm; 
and TEM images of MMT/TiO2 at various magnifications: (e) 500 nm, (f) 1 μm
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Fig. 6 EDX spectra of (a) MMT and (b) MMT/TiO2

(b)(a)

Fig. 7 XRD patterns of TiO2 , MMT and MMT/TiO2 Fig. 8 FTIR spectra of TiO2 , MMT, and MMT/TiO2

Fig. 5 SEM images of (a) MMT powder, and (b) MMT/TiO2 nanocomposite

(a) (b)
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Fig.  9  (a) depicts the UV-Vis DRS spectra of MMT, 
TiO2 , and MMT/TiO2 . The absorption edges of MMT, 
TiO2 , and MMT/TiO2 appeared at 310  nm, 365  nm, and 
320 nm, respectively. It was found that the absorption edge 
of MMT/TiO2 has a slight shift to the visible region due 
to the influence of a small amount of TiO2 immobilized 
in the nanocomposite. The band gap energies of MMT, 
TiO2 , and MMT/TiO2 were determined by the Tauc for-
mula Eq. (3) [31, 32]: 

�hv C hv Eg
m� �� � ,	 (3)

where h: the Planck constant; v: the photon frequency; 
Eg : the band gap energy (eV); α: the adsorption coefficient; 
C is a constant; m: factor depends on the nature of the elec-
tron transition and is equal to 1/2 or 2 for the direct and 
indirect transition band gaps, respectively.

TiO2 is an indirect band gap semiconductor, so the band 
gap energies were evaluated according to the plot of (αhν)2 
versus photon energy (eV) (Fig. 9 (b)). The estimated band 
gap energy values for the MMT, TiO2 , and MMT/TiO2 were 
2.75, 3.12, and 3.04 eV, respectively. Compared with TiO2 
(Eg = 3.12 eV), the band gap energy of MMT/TiO2 has been 
narrowed to 3.04 eV. This result is consistent with the results 
reported in the literature  [33–35]. Previous studies deter-
mined that the absorption edge shifts to a shorter wavelength 
when the TiO2 content in the composites is low and the grain 
size of TiO2 is as small as nm. Accordingly, the quantum 
size effect is responsible for the blue shift of the band edge, 
namely that the TiO2 nanoparticles intercalated on MMT 
were small enough to show the quantum size effect [34, 35].

3.2 Effect of operational parameters on the 
decolorization performance of Rhodamine B
3.2.1 Effect of pH values
The value of pHpzc may vary depending on the method 
of preparation or the ratio of components in the compos-
ite. Indeed, previous publications showed that with the 
same hydrothermal method, Alireza Khataee  et  al.  [36] 
revealed the pHpzc of MMT/TiO2 to be 6.8, while Aydin 
Hassani  et  al.  [14] revealed the pHpzc of MMT/TiO to 
be 8.4. Fig. 10 shows the point of zero charge of the MMT/
TiO2 nanocomposite in this study. The results show that 
MMT/TiO2 has a pHpzc = 6.5. Therefore, when MMT/TiO2 
is investigated in an environment with pH > 6.5, the mate-
rial will be negatively charged and generate electrostatic 
attraction with positively charged RhB molecules. At that 
time, RhB molecules are readily adsorbed on the MMT/
TiO2 surface and vice versa in environmental conditions (a)

(b)

Fig. 9 (a) UV-Vis DRS spectra of MMT, TiO2 , and MMT/TiO2 ; 
(b) Kubelka-Munk function versus the photon energy. Fig. 10 Point of zero charge ( pHpzc ) of MMT/TiO2
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with pH  <  6.5  [15,  16]. The surface ionization state of 
TiO2 is affected by the pH in the medium according to the 
Eq. (4) and Eq. (5): 

TiOH H TiOH pH� � �� �� �
2

6 5. 	 (4)

TiOH OH TiO H O pH� � � �� �� �
2

6 5. .	 (5)

The pH of the solution is one of the critical factors 
affecting the decomposition efficiency of many organic 
substances in the photocatalysis process. Based on the 
point of zero charge of MMT/TiO2 , the photodegradation 
efficiency of RhB was experimented with at different pH 
values from 5 to 10 and presented in Fig. 11. Without any 
adjustments, the dye solution had a pH of 6.8. The decol-
orization efficiency H% at the various pH values decreases 
in order: H%pH6.8 > H%pH8 > H%pH5 > H%pH10 . The effect 
of pH on photocatalytic degradation depends on factors 
such as electrostatic interactions between the photocat-
alyst surface, solvent molecules, colored molecules, and 
charged radicals formed during the photocatalysis reac-
tion process. RhB is an azo-colored organic dye (−N = N) 
that exists as a cation in an aqueous medium with an acid 
dissociation constant pKa = 3.7. That is, when pH > 3.7, 
the surface of the RhB molecule is positively charged [37]. 
When pKa < pH = 5 < pHpzc , the MMT/TiO2 surface has 
a positive charge due to protonation, while the RhB mole-
cule also has a positive charge, so the interaction between 
the photocatalyst surface and RhB is mainly the electro-
static repulsion of positive charges, leading to reduced 
RhB adsorption on the catalyst surface and low decolor-
ization efficiency (H%pH5 = 72.8%). Moreover, the positive 

charge on the surface of MMT/TiO2 limits the hydroxyl 
ions required for forming free radicals, which plays an 
essential role in the degradation of color compounds. In 
contrast, when pKa < pHpzc < pH = 6.8, the photochemical 
degradation efficiency increased sharply due to the elec-
trostatic interaction between the RhB cation and the nega-
tively charged MMT/TiO2 surface from proton separation, 
which increased the adsorption capacity and helped the 
photocatalytic reaction more efficiently (H%pH6.8 = 91.5%). 
The reason for the increase in decolorization efficiency 
when increasing the pH value is also due to the rise in the 
number of hydroxyl ions at the surface of the photocata-
lyst, leading to the formation of many hydroxyl radicals 
according to Eq. (6) [38]:

h OH OH
� � �� � .	 (6)

However, the decolorization efficiency decreased gradu-
ally in an alkaline medium (H%pH8 = 83.7%) and fell sharply 
when the pH of the solution was 10 (H%pH10  =  56.2%). 
The higher the pH of the solution, the more negatively 
charged the MMT/TiO2 surface. A large number of pos-
itively charged RhB molecules will be adsorbed on the 
MMT/TiO2 surface, leading to the RhB molecules becom-
ing agents to prevent UVC from reaching the TiO2 energy 
region. This reduces the photocatalytic efficiency  [38]. 
Opposite, more decrease in the pH of the solution led to 
an increase in coulombic repulsion between the positively 
charged MMT/TiO2 surface and RhB molecules, leading 
decrease in the decolorization efficiency [14, 16]. It is con-
firmed that adsorption is essential in the photocatalysis 
of MMT/TiO2 nanocomposites  [16,  39]. Therefore, other 
experiments in this study were performed with pH 6.8.

3.2.2 Effect of photocatalyst dosages
MMT/TiO2 with different concentrations: 0.05; 0.1; 0.15; 
0.2, and 0.3 g/L were added to 100 mL of 10 mg/L RhB 
solution and pH  =  6.8, respectively. The mixture was 
adsorbed for 60 minutes, and UVC irradiated for 210 min-
utes afterward. The results illustrated in Fig. 12 show that 
the RhB removal efficiency increased from 81.8 to 96.2%, 
corresponding to an increase in the amount of MMT/TiO2 
catalyst from 0.05 to 0.2  g/L. Indeed, when the amount 
of photocatalyst is low, the total surface area exposed to 
RhB is less, leading to a decrease in the active degrada-
tion sites and a decrease in the decolorization efficiency. 
On the contrary, the reaction sites will increase with the 
increase of photocatalyst, resulting in more hydroxyl rad-
icals being generated and increasing the photocatalytic 

Fig. 11 Effect of initial pH on the photocatalytic of RhB under 
UVC 15 W (mMMT/TiO2 = 0.1 g/L and C0 = 10 mg/L)
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activity. However, when the amount of photocatalyst 
in  the solution increases too much, the disorder in the 
solution also increases. This will limit the path of light 
and reduce irradiation. As a result, although the amount of 
catalyst increased significantly, the RhB degradation effi-
ciency decreased, which is in good agreement with other 
studies [40, 41].

3.2.3 Effect of initial Rhodamine B concentration
The influence of the initial dye concentration is an essential 
parameter of most photochemical degradation processes. 
Experiments were performed by gradually increasing 
the initial concentration of RhB from 3 mg/L to 20 mg/L 
while keeping the amount of photocatalyst at 0.1 g/L and 
the pH of the solution fixed at 6.8. The results illustrated 
in Fig. 13 show that the RhB removal efficiency decreased 
from 99.9% to 52.5%, corresponding to an increase in the 
initial RhB concentration from 3 to 20  mg/L. The pho-
todegradation rate is related to the formation of the •OH 
radical on the photocatalyst surface and the possible reac-
tivity between the •OH radical and the colored molecules. 
When the initial RhB concentration increased, many 
RhB molecules were adsorbed at the surfactant sites of 
the MMT/TiO2 photocatalyst, leading to a decrease in the 
adsorption of hydroxyl ions (OH−) at these sites  [14–16]. 
That is, the rate of formation of hydroxyl radicals – the pri-
mary oxidizing agent necessary for increasing photodeg-
radation efficiency – decreases accordingly. On the other 
hand, according to the Beer-Lambert law, as the concen-
tration of the colored substance increases, the distance of 
photons entering the solution decreases. Therefore, the 

photons can be intercepted before reaching the photocat-
alyst surface and reduce the photon absorption, leading to 
a decrease in photodegradation [42–44].

3.2.4 Effect of inorganic and organic scavengers
The dye removal efficiency is affected by a large amount 
of inorganic and organic ions usually present in the waste-
water. This paper added 0.05  g/L of NaCl, NaH2PO4 , 
NaHCO3 , and Na2SO4 to 100  mL of a solution contain-
ing RhB 10  mg/L and 0.1  g/L MMT/TiO2 , respectively, 
to investigate the influence of inorganic salt ions on the 
decomposition of RhB. As observed from Fig. 14, the RhB 
decolorization efficiency of MMT/TiO2 in the presence 
of inorganic ions, including chloride (Cl−), dihydrogen 

Fig. 12 Effect of the MMT/TiO2 dosages on the photocatalytic of RhB 
under UVC 15 W (C0 = 10 mg/L and pH = 6.8)

Fig. 13 Effect of initial RhB concentration on the photocatalytic of RhB 
under UVC 15 W (mMMT/TiO2 = 0.1 g/L and pH = 6.8)

Fig. 14 Effect of inorganic scavengers on the photocatalytic of RhB 
under UVC 15 W (mMMT/TiO2 = 0.1 g/L, C0 = 10 mg/L and pH = 6.8)
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phosphate (H2PO4

−), bicarbonate (HCO
3

−), and sulfate (SO
4

2−)  
anions all reduced the efficiency from 91.5% to 68.0%. 
The decrease in RhB removal efficiency was explained by 
the fact that these inorganic ions trap the photogenic holes 
(h+) and free radicals OH•. Since then, the photocatalytic 
efficiency of RhB has been reduced. In addition, inorganic 
anions can be adsorbed on the surface of the photocatalyst 
instead of the pollutant molecule, causing a decrease in the 
active sites of the photocatalyst and a decrease in the decol-
orization efficiency. Possible reactions in the presence of 
inorganic anions are illustrated by Eqs. (7)–(12) [15, 39].

Cl h Cl
� � �� � 	 (7)

Cl Cl Cl
� � ��� �

2
	 (8)

Cl OH Cl OH
� � � �� � � 	 (9)

H PO OH HPO H O
2 4 4 2

� � ��� � � 	 (10)

HCO OH CO H O
3 3 2

� � ��� � � 	 (11)

SO OH SO OH
4

2

4

� � �� �� � � 	 (12)

Butanol, Ethylene Diamine Tetra Acetic (EDTA), and 
Chloroform are organic substances used to investigate the 
effect of organic scavengers on RhB removal efficiency, and 
the results are shown in Fig. 15. Unlike inorganic anions, 
organic ions do not seem to interfere with the adsorption 
of RhB on the photocatalyst surface, so the decoloriza-
tion efficiency decreased insignificantly from 91.5% to 
80.2%. The chloroform molecules may have attacked the 
hydroxyl radicals, resulting in a reduced ability to gen-
erate hydroxyl radicals and subsequently decreased deg-
radation efficiency. Meanwhile, butanol and EDTA in the 

solution inhibited RhB degradation by scavenging photo-
genic holes (h+), as illustrated in Eq.  (13). Based on the 
above results, the RhB decolorization efficiency can be 
inhibited by the attack on free radicals by both organic 
and inorganic ion scavengers. Besides, the adsorption pro-
cess also plays an important role in enhancing the photo-
catalytic degradation of RhB [45–47].

C H OH h C H O H
4 9 4 8

2� � �� � 	 (13)

3.2.5 Rhodamine B photodegradation intermediates
The intermediate products after the photodegradation were 
identified by LC-MS analysis and presented in  Fig.  16 
with fifteen by-products corresponding to different m/z 
and denoted by (I) to (XV), where (I) is RhB (m/z = 443). 
Many publications have confirmed that during irradiation by 
a UVC source, the photoreaction occurs simultaneously and 
competitively between the N-demethylation and dye chro-
mophore structure cleavage process. Next is the stage of 
the ring-opening process and mineralization [48–50]. Most 
N-demethylation process usually takes place by the forma-
tion of nitrogen-centered reactive radicals, one (or several) 
ethyl groups that cleave the xanthene ring in the RhB molec-
ular structure, and by-products include N, N, N−diethyl−N'−
ethyl rhodamine ((II), m/z = 415); N, N−diethyl−rhodamine 
((III), m/z  =  388); N−ethyl−ethyl rhodamine ((IV), 
m/z = 388) [51]; N, N'−monomethyl−ethyl rhodamine ((V), 
m/z = 360) [52]; N, N'−ethyl rhodamine ((VI), m/z = 332) and 
N'−ethyl rhodamine ((VII), m/z = 317) [53]. Meanwhile, the 
dye chromophore structure cleavage process usually occurs 
by forming carbon-centered active radicals. Active species 
such as h+, •OH, and � �

O
2
 attack the carbon-centered in the 

RhB molecules and oxidize them to subsequent low-weight 

Fig. 15 Effect of organic scavengers on the photocatalysis of RhB under 
UVC 15 W (mMMT/TiO2 = 0.1 g/L, C0 = 10 mg/L and pH = 6.8) Fig. 16 The LC−MS spectrum of degradation products
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by-products, including 2−(3H−xanthen−9−yl) benzoic 
acid ((VIII), m/z  =  302); 9−phenyl−3H−xanthene ((IX), 
m/z = 257) and benzoic acid ((X), m/z = 123) [50, 52, 54]. 
The ring-opening process then occurs and forms small and 
broken-ring compounds, including malonic acid ((XI), 
m/z = 115); propane−1,2,3−triol ((XII), m/z = 75); oxalic acid 
((XIII), m/z = 45); succinic acid ((XIV), m/z = 39) and eth-
ane−1,2−diol ((XV), m/z  =  31). Finally, these broken-ring 
compounds are completely mineralized to CO2 and H2O [55].

3.2.6 Kinetics model
0.1 g/L MMT, TiO2 and MMT/TiO2 were added to 100 mL 
of RhB 10 mg/L and pH = 6.8, respectively. Before irra-
diation for 210 min, the samples were stirred in the dark 
for 60 min to reach equilibration. The RhB removal effi-
ciency of these samples over time is shown in Fig.  17 
and summarized in Table 2. The results show that MMT 
has the highest adsorption efficiency (50.4%), while TiO2 
shows almost no adsorption properties (6.5%). MMT/TiO2 
has an adsorption efficiency of 46.3%, lower than that of 
MMT. This may be due to the TiO2 particles intercalat-
ing between the clay layers and reducing the basal spacing 
of the MMT, leading to a decrease in the adsorption effi-
ciency. When the RhB solution was exposed for 210 min 

under UVC radiation (without the addition of a photocata-
lyst), the RhB removal efficiency was only less than 10%. 
This suggests that if only irradiation of a 15 W UVC lamp 
is present, there is not enough decomposition of the RhB 
solution. Notably, the photocatalytic activity under UVC 
irradiation of MMT and TiO2 increased slightly (8.3% and 
13.4%, respectively), while that of MMT/TiO2 was the 
highest (45.2%). Therefore, the total RhB removal effi-
ciency of MMT/TiO2 was highest (91.5%), indicating that 
the heterostructure based on MMT and TiO2 enhanced 
the photocatalytic activity of TiO2 based on the previous 
adsorption of MMT [34, 56]. RhB removal efficiency based 
on the photocatalysis of any photocatalyst can be affected 
by factors such as irradiation source, pH value, catalyst 
content, initial concentration of RhB, exposure time, etc. 
Table 3  [57–60] summarizes the comparison of the RhB 
photocatalytic efficiency of MMT/TiO2 in this study with 
those of the literature. The results showed that MMT/TiO2 
had superior RhB removal efficiency, demonstrating that 
the combination of MMT and TiO2 significantly enhanced 
the RhB removal efficiency based on photocatalysis.

Many previous studies have confirmed that the photocat-
alytic degradation of organic compounds can be analyzed 
according to the Langmuir-Hinshelwood apparent first- 
order kinetic equation (Eq. (14)) [61, 62]. This is a kinetic 
model of the photocatalyst reaction considering the adsorp-
tion of colored organic compounds onto the surface of the 
photocatalyst. The kinetic parameters of RhB degradation 
over time of MMT, TiO2 , and MMT/TiO2 are summarized 
in  Table  2. The linear correlation between ln(C0 / C) and 
time t with high regression coefficients R2 (0.966 − 0.986), 
as shown in Fig. 18, suggests that the RhB photodegrada-
tion reaction is suitable for the Langmuir-Hinshelwood 
first-order kinetic model. The reaction rate constants ( kapp ) 
are 0.0079, 0.0070, and 0.0824, respectively, for MMT, 
TiO2 , and MMT/TiO2 . The kapp value of MMT/TiO2 is the 
highest compared to that of MMT or TiO2 , which con-
firms the enhancement of RhB photocatalyst efficiency 
by immobilizing TiO2 nanoparticles to the surface or space 
between MMT clay layers, leading to MMT/TiO2 having 
the highest photodegradation efficiency.

Fig. 17 The photocatalytic performance of MMT, TiO2 , and MMT/TiO2 
for RhB degradation under UVC 15 W and pH = 6.8

Table 2 Adsorption efficiency, photocatalytic activity, total efficiency, kinetic equations, reaction rate constants (k), and regression coefficients (R2) 
of photocatalytic degradation of RhB for MMT, TiO2 , and MMT/TiO2

Samples Adsorption efficiency (%) Photocatalytic activity (%) Total efficiency (%) Kinetic equations kapp (min−1) R2

MMT 50.4 8.3 58.7 y = 0.0079x + 0.76534 0.0079 0.966

TiO2 6.5 13.4 19.9 y = 0.0070x + 0.03881 0.0070 0.979

MMT/TiO2 46.3 45.2 91.5 y = 0.0824x + 0.67043 0.0824 0.986
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ln
C
C

k tapp
0 = 	 (14)

Equation (14) shows C0 : the concentration of the RhB 
initially (mg/L); C: the concentration of the RhB dyes 
at time t (mg/L); kapp : the apparent first order rate constant 
(min−1); t: decomposition time (min).

4 Conclusion
The MMT/TiO2 nanocomposite was synthesized as a het-
erogeneous photocatalyst using a simple wet stirring 

method with ultrasonication. Based on the structural char-
acterization results, TiO2 anatase nanoparticles have been 
successfully intercalated in MMT to form a nanocompos-
ite with a house-of-card structure. As the matrix phase in 
composites, MMT offers positive advantages when both 
prevent the recombination of photogenerated electron-hole 
pairs and adsorbs organic dye molecules into active sites. 
Based on the photocatalytic test results, at pH 6.8 and after 
210 min of exposure under a 15 W UVC source, 0.1 g/L 
MMT/TiO2 removed 91.5% RhB 10 mg/L. Although RhB 
has not been fully mineralized, the final intermediate 
product, ethane−1,2−diol, showed the ability to cleave the 
chromophore structure and form small and broken-ring 
compounds by MMT/TiO2 . Based on the present results 
of this study, MMT/TiO2 as a porous heterostructure is 
an effective photocatalyst for the removal of RhB or other 
similar dyes that are difficult to biodegrade in the textile 
wastewater industry.
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Fig. 18 Fitting curves of the kinetic model for MMT, TiO2 , and MMT/TiO2

Table 3 The photocatalytic performance of MMT/TiO2 to rhodamine B degradation compared to previous studies

Catalyst Irradiation power Initial concentration of 
rhodamine B (mg/L)

Catalyst amount  
(mg/L)

Degradation  
(%)

Exposed time  
(min) Ref.

MMT/TiO2 UV-C lamp (15 W) 10 10 91.5 210 this study

TiO2 / MMT Xe lamp (500 W) 10 150 90 120 [54]

SnO2 / MMT Ultrasonic probe 
(68 W) 20 500 95 120 [57]

ZnO/MMT UV-C lamp (10 W) 10 10 60 300 [26]

Au/TiO2 Xe lamp (300 W) 10−5 mol/L 50 mg/50 mL 95 150 [58]

Pt/TiO2
UV light and sunlight 

irradiation 3.10−5 mol/L 0.1 g/100 mL 92 120 [59]

AgO2 / TiO2 nanotubes Xe lamp (300 W) 10 20 mg/100 mL 94.7 80 [60]
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