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Abstract
Addressing the recommendations of the 12 basic lows of green

chemistry, the microwave technique was utilized in phospha-
Mannich, Diels-Alder and inverse Wittig type reactions, more-
over under solventless conditions. In the phase transfer catal-
ysed alkylation of CH-acidic compounds, the quaternary onium
salts could be substituted by MW irradiation. The effect of chiral
phase transfer catalysts was compared on suitable, potentially
enantioselective model reactions. Mono- and bidental P-ligands
were developed to make available novel platinum complexes
that can be useful as catalysts. Finally, esterifications includ-
ing diesterifications were studied by in situ Fourier Transform
IR spectroscopy.
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1 Introduction
These days it is a serious challenge for organic chemists

to provide chemical industry including, among others, phar-
maceutical industry with environmentally safe synthetic proce-
dures and technologies applying suitable starting materials and
atomic-efficient reactions. In the context of the 12 basic lows of
green chemistry [1], we aimed at the following points:

• elimination of the use of harmful organic solvents;

• shortening the reaction times by the application of suitable
heat transfer;

• development of phase transfer catalytic techniques and appli-
cation in selective syntheses;

• development of catalysts to promote catalytic transforma-
tions;

• monitoring the reactions to find the optimum set of parame-
ters.

In accord with the above purposes, our results are discussed in
four subchapters.

2 Results and Discussion
2.1 Microwave-Promoted Solvent-Free Reactions
In the last decade, microwave-assisted accomplishment of or-

ganic chemical reactions has become quite widespread. The
MW technique is especially preferred to traditional heating
when a long period of heating is necessary at a higher temper-
ature. The reaction components may be irradiated in solvents
with suitable dielectric constant or without any solvent.

First we studied the phospha-Mannich condensation of
secondary amines including N-heterocycles, paraformalde-
hyde and >P(O)H species, such as diethyl phosphite
and diphenylphosphine oxide to afford aminomethylene-
phosphonates or aminomethylene-phosphine oxides 1. The
three component mixtures could be best reacted under solvent-
less conditions by irradiation at 80 ˚C for 30 min (Fig. 1) [2].

Phospha-Michael reactions were also investigated. It was
found that simple additions, such as the reaction of dialkyl phos-
phites with methylvinylketone can be preformed easily under
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Fig. 1.

traditional conditions, like in the presence of sodium ethylate
in ethanol or using diazabicycloundecene (DBU) in chloroform
[3]. The application of the MW technique was an attractive alter-
native in the Michael reaction of diphenylphosphine oxide with
1,2-dihydrophosphinine oxides. The addition of Ph2P(O)H on
the α,β-double-bond of 2 at 135 ˚C giving the desired product
(3) was, however, accompanied by the inevitable formation of
the dimer of the starting material (Fig. 2).
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reactions deriving mainly from the polymerization of the starting materials were suppressed. 

Hence, the yields were excellent [4]. 
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Diels-Alder reactions form a well-studied group of MW-
assisted reactions. The cycloaddition of 1,2-dihydrophosphinine
oxides (4) and dimethyl acetylenedicarboxylate (DMAD) or
N-phenylmaleimide (NPMI) results in the formation of 2-
phosphabicyclo[2.2.2]octadiene (5) and bicyclooctene (6), re-
spectively (Fig. 3). Under traditional heating in boiling toluene,
the reaction was rather slow. On MW irradiation at 110 ˚C in
the absence of any solvent, the cycloaddition became 30-times
faster and the side-reactions deriving mainly from the polymer-
ization of the starting materials were suppressed. Hence, the
yields were excellent [4].
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Fig. 3.

Interestingly, the above reaction of the 1-(2,4,6-
triisopropylphenyl) starting material (4, Y = 2,4,6-trii PrPh)
took another route at 150 ˚C and furnished the corresponding
β-oxophosphorane. Moreover, this type of inverse Wittig reac-
tion was general and proceeded also with other 1-trialkylphenyl
P-heterocycles (7). The reactions were, however, rather sluggish
under traditional heating, since completion at 150 ˚C required
ca 10 days. Application of the MW brought a real breakthrough
resulting in a complete conversion already after a 3 h irradiation

at 150 ˚C. In the lack of polymerization, the purification was
simpler and the yields of the β-oxophosphoranes (8) were much
better (Fig. 4) [5].
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Scheme 4. 

Application of the MW technique made possible the reaction of trimethylphenyl derivatives, 

otherwise unable to enter into interaction with DMAD. On the other hand, there was no 

double-bond rearrangement under MW irradiation. The organophosphorus compounds 

prepared are potentially of biological activity. 
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Application of the MW technique made possible the reaction
of trimethylphenyl derivatives, otherwise unable to enter into in-
teraction with DMAD. On the other hand, there was no double-
bond rearrangement under MW irradiation. The organophos-
phorus compounds prepared are potentially of biological activ-
ity.

2.2 Phase Transfer Catalytic Reactions
Alkylation of CH-acidic substrates, that is a basic reaction in

pharmaceutical industry, received much attention. An elegant
way of accomplishment involves the application of phase trans-
fer catalytic technique. We wished to explore if the reaction
under discussion could be realized under solvent-free conditions
and if MW irradiation had a beneficial effect on the course of the
reaction. The solid-liquid phase alkylation of diethyl malonate
(9, Y = CO2Et) with ethyl iodide in the presence of potassium
carbonate and an onium salt was chosen as the model reaction. It
was found that the heterogeneous reaction took place smoothly
in the absence of any solvent and the MW irradiation was stim-
ulating. It was a surprising experience that not only the reaction
time could be shortened under MW, but the phase transfer cat-
alyst could also be omitted from the reaction mixture. Hence,
MW irradiation may substitute onium salts. Moreover, this kind
of novel monoalkylation could be extended to other model com-
pounds and alkyl halides. A few examples are shown in Fig. 5
[6].
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The above method for selective monoalkylation is a real
breakthrough from the point of view of green chemistry, as the
phase transfer catalyst, that generally is not recovered in the in-
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loids (11/12) and glucose-based lariat ethers (13/14) with a P-
functionalized side chain was compared as phase transfer cat-
alysts in typical prochiral reaction models. Two representative
examples are discussed.

In the first example that is a Darzens condensation moder-
ate enantioselectivities were attained using cinkonin alkaloids
11 and 12, while a poor ee value was detected when lariat ether
13 was the catalyst (Fig. 6/1). In the other reaction model that
is Michael addition, a record ee value was, however, detected
in the presence of a lariat ether with a one carbon atom longer
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2.3. Mono- and Bidentate P-Ligands and their Platinum Complexes 
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2.3 Mono- and Bidentate P-Ligands and their Platinum
Complexes
The use of transition metal complexes including P-ligands in

a variety of heterogeneous and homogeneous catalytic systems
became a common approach. We aimed at the development of
special P-ligands. In one part of our project, achiral and chi-
ral dibenzo[c.e][1,2]oxaphosphorins with different P-functions
(16) were synthesized that were converted to the corresponding
platinum (II) complexes (17) (Fig. 7) [8, 9].
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Ring opening of a dibenzooxaphosphorin (18) afforded 1-

hydroxy-1’-diphenylphosphino-biphenyl (19) that was used im-
mediately, or in the phosphorylated form (20) in complexation
with (PhCN)2PtCl2 to furnish complexes 21 and 22, respec-
tively. The latter one (22) was derived from bidental P-ligand
20 (Fig. 8) [10].
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In another line of this research, 1,2,3,6-tetrahydrophopshinine
oxides with an exocyclic P-function in position 3 (24)
were prepared by the trimethylaluminum-mediated addition
of >P(O)H species on the electronpoor double-bond of 1,2-
dihydrophosphinine oxides 23. (See also Fig. 2) The Michael
addition took place in a diastereoselective manner [11]. The
3-P-tetrahydrophosphinine oxides (24) were then subjected to
catalytic hydrogenation to give the corresponding 1,2,3,4,5,6-
hexahydrophosphinine oxides (25) again diastereoselectively
[12] (Fig. 9).
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The stereostructure and conformation of P-heterocycles 24
and 25 was evaluated on the basis of theoretical calculations
and stereospecific NMR couplings. Double deoxygenation of
3-diphenylphosphinoxido-1-phenyl derivatives 24 and 25 (Y =
Z = Ph) resulted in diphosphines (26 and 27, respectively) that
were suitable bidental P-ligands to form chelate complexes 28
and 29, respectively, in reaction with (PhCN)2PtCl2 (Fig. 10)
[13, 14].

Platinum complexes 21, 22, 28 and 29 are to be tested in cat-
alytic hydrogenations and hydroformylations.

2.4 Monitoring Organic Reactions by in situ Fourier trans-
form Infra Red Spectroscopy
It is also a green chemical requirement to run a reaction at the

optimum conditions for the necessary time. An up to date tool
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