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Abstract

Enzyme replacement therapy (ERT) is a therapeutic approach that involves the administration of specific enzymes to the patient in order 

to correct metabolic defects caused by enzyme deficiency. The formulation of ERTs involves the production, purification, and formulation 

of the enzyme into a stable and biologically active drug product, often using recombinant DNA technology. Non-systemic ERTs often 

involve the immobilization of the enzyme on a carrier, such as hydrogels, liposomes, or nanoparticles. ERT holds great promise for the 

treatment of a wide range of genetic disorders, and its success regarding lysosomal storage diseases, such as Fabry disease, Gaucher 

disease, and Pompe disease has paved the way for the development of similar therapies for other genetic disorders too.
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1 Introduction
Enzymes, the biological catalysts that drive vital bio-
chemical reactions, have long been recognized as crucial 
players in maintaining cellular homeostasis and orches-
trating the intricate processes within living organisms. 
Leveraging the remarkable specificity, efficiency, and ver-
satility of enzymes, researchers have begun exploring 
their immense potential in the field of therapeutic inter-
ventions. Enzyme-based therapies represent a rapidly 
evolving frontier in medical science, offering promising 
avenues for the development of targeted treatments with 
enhanced efficacy, reduced side effects, and improved 
patient outcomes [1, 2]. This scientific review elucidates 
the fundamental principles and emerging applications of 

enzyme-based therapies, highlighting their transformative 
impact on the landscape of modern medicine.

As the largest group of protein-based therapies, enzyme 
therapies can be used for the treatment of a vast range of 
diseases, including genetic disorders, cancer, metabolic 
diseases, and immune-mediated conditions, where their 
potential is truly remarkable [2–4]. Fig. 1 shows the real-
world relevance of protein-based therapies and the types 
of enzymes most commonly used in enzyme therapies [5].

Fig. 1 illustrates the prevalence of enzyme drugs avail-
able on the market, with albumin-containing products 
emerging as the most abundant, followed closely by the 
three primary digestive enzymes: amylase, lipase, and pro- 

(a)                                                      (b)
Fig. 1 The most common categories of protein-based therapeutics (a), and enzymes marketed under the most unique brand names in enzyme-based 

therapies (b) according to DrugBank's online database [5]
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tease. Notably, individual enzymes constitute a relatively 
minor proportion of the total. This observation suggests 
a remarkably diverse array of enzymes employed in medi-
cine, a trend that is anticipated to grow significantly in the 
forthcoming years. Enzyme-based therapies can be grouped 
not only by the type of enzyme utilized, but also by the ther-
apeutic sectors in which they are used. The most prominent 
sectors of enzyme therapies are cancer treatment, fibrinoly-
sis, topical treatments and enzyme replacement therapies [2].

Enzyme therapies play a crucial role in cancer treatment, 
particularly in targeted therapies. Proteolytic enzymes, such 
as proteases, are employed to selectively degrade proteins 
that promote tumor growth and metastasis. Improving pro-
tease enzyme targeting in cancer therapy can be achieved 
through modulating pathways, using protease-activatable 
probes, pretreatment strategies, and developing low molec-
ular weight and natural protease inhibitors, potentially lead-
ing to improved outcomes and reduced side effects com-
pared to conventional chemotherapy [6–10].

Fibrinolysis is the natural process of breaking down 
blood clots. Enzyme therapies designed for fibrinolysis 
involve the administration of clot-dissolving enzymes, 
such as metalloproteases and serine proteases. These 
enzymes help restore blood flow in conditions like acute 
ischemic stroke, deep vein thrombosis, and pulmonary 
embolism, by dissolving the obstructing blood clots and 
preventing further complications [11–13].

Enzyme-based topical treatments have gained recog-
nition in various dermatological conditions. Proteolytic 
enzymes, such as papain and bromelain, are used to facili-
tate wound healing, reduce inflammation, and remove dead 

tissue in conditions like chronic wounds, burns, and skin 
ulcers. These topical applications help promote tissue regen-
eration and accelerate the overall healing process [14, 15].

The most colorful and interesting sector of therapeu-
tic enzyme use is enzyme replacement therapy (ERT), 
which has revolutionized the treatment of a wide range of 
hereditary disorders, most notably those related with lyso-
somal storage diseases and metabolic deficiencies [16, 17]. 
ERT involves the administration of specific enzymes, 
which are either deficient or absent in the patient's body, 
to correct existing defects or to prevent the development 
of complications. Christian de Duve and Roscoe Brady 
came up with the concept of ERT in 1964 after which 
Mark J. Poznansky and Damyanti Bhardwaj led pioneer-
ing research on this topic at the University of Alberta's 
Department of Physiology, where they established a rat 
model for enzyme therapy [18]. ERT was not utilized in 
clinical practice until 1991, when the FDA (U.S. Food and 
Drug Administration) orphan drug status to Alglucerase 
for the treatment of Gaucher disease [19].

Today, ERT has become an essential tool in contem-
porary medicine, offering hope to patients suffering from 
a range of genetic disorders (see Table 1). Lysosomal 
storage diseases, such as Fabry disease, Gaucher disease, 
and Pompe disease, are among the most common targets of 
ERT [20–22]. These diseases are caused by the deficiency 
of specific enzymes that are involved in the degradation of 
cellular waste material [23]. As a result, the waste accumu-
lates in the lysosomes of affected cells, leading to a vari-
ety of clinical manifestations, such as hepatosplenomegaly, 
skeletal abnormalities, and neurological deficits [24–26]. 

Table 1 Examples taken from DrugBank [5] and European Medicines Agency (EMA) [44] databases of diseases that can be treated using enzyme 
therapies with a brand names of medicine suitable for the treatment

Disorder Cause/Pathology

Hemophilia (Coagulation 
factor deficiency) Deficiency in one of the blood clotting factors, which can lead to excessive bleeding

Cystic fibrosis Affects the lungs, pancreas, and other organs, leading to mucus buildup and inflammation

Fabry disease Deficiency in the enzyme α-Galactosidase A, which can lead the build up of sphingolipids in blood vessels and 
tissues, causes hearth, kidney or brain problems

Phenylketonuria (PKU) Affects the metabolism of the amino acid phenylalanine, which can lead to phenylalanin accumulation, 
causes intellectual disability and seizures

Gaucher disease Deficiency of the enzyme glucocerebrosidase, which can lead the build up of lipidsin spleen and liver, 
causes enlarged spleen, livet etc.

Pompe disease Deficiency of the enzyme acid α-Glucosidase, which leads to the build up of complex sugars, causes the break 
down of muscles

Mucopolysaccharidosis (MPS) Deficiencies in enzymes responsible for breaking down complex sugars called glycosaminoglycans, 
causes permanent progressive cellular damage

Hypophosphatasia (HPP) Deficiency of the enzyme alkaline phosphatase, causes bone and teeth mineralisation problems

Acute lymphoblastic leukemia Cancer of the blood cells
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ERT has been shown to improve the symptoms of these dis-
eases, slow down their progression, and even prolong the 
lifespan of affected individuals. As a therapeutic approach 
ERT is a valuable tool in the treatment of various meta-
bolic diseases. In these conditions, the body lacks spe-
cific enzymes necessary for normal metabolic processes. 
In this case ERT involves the administration of synthetic 
or recombinant forms of these enzymes to supplement the 
deficient enzyme levels. By providing the missing enzyme, 
ERT aims to restore the metabolic pathway, alleviate symp-
toms, and prevent complications associated with metabolic 
diseases. Examples of metabolic disorders treated with 
ERT include homocystinuria, phenylketonuria and chronic 
pancreatitis [27–29]. ERT has shown promising results in 
improving patients' quality of life and reducing the progres-
sion of metabolic disorders when initiated early and com-
bined with appropriate supportive care.

ERT can be classified into two broad categories: sys-
temic and non-systemic. Systemic ERT involves the admin- 
istration of the enzyme mostly through various injections, 
which allows the enzyme to reach all the affected organs 
and tissues [30]. Non-systemic ERT, on the other hand, 
involves the direct delivery of the enzyme into a specific 
organ or tissue, such as the joints in the case of ERT for 
arthritis [31], or oral formulations in case of metabolic 
dysfunctions [32, 33].

The formulation of ERTs is a complex process that 
involves the production, purification, and formulation of 
the enzyme into a stable and biologically active drug pro- 

duct [34, 35]. The manufacture of ERTs often involves the 
use of recombinant DNA technology [36–38], which allows 
for the production of large quantities of the enzyme in a rel-
atively short time and opens up the possibility of using 
enzymes that would be challenging to extract naturally. 
The enzyme is then purified to remove impurities and formu-
lated into a drug product that can be administered to patients. 
ERTs are available in various drug forms, including liquid 
formulations, lyophilized powders, and solid oral formula-
tions. For non-systemic ERTs, the enzyme is often immo-
bilized on a carrier to enhance its stability and facilitate its 
delivery to the target tissue. Various types of carriers, such 
as hydrogels [39], liposomes [40], and nanoparticles (NPs) 
[41–43], have been used for this purpose. Different inorganic 
NPs (such as, silica, iron and titan-oxide NPs), and organic 
NPs (for example natural and unnatural polymer NPs such 
as polyvinyl alcohol (PVA), polylactic acid (PLA), chitosan, 
polyaspatamodes) single enzyme NPs, and carbon-based 
NPs (such as graphene and carbon nanotubes) can all be uti-
lized in enzyme therapy formulation [44–48].

To summarize, ERT is a fast-emerging branch of medi-
cine that has tremendous potential for treating a wide spec-
trum of genetic disorders. The introduction of ERTs was 
a significant step forward in the treatment of lysosomal stor-
age diseases, and its success paved the way for the devel-
opment of similar medicines for other hereditary disorders. 
Thanks to modern recombinant DNA technology and nano-
technology, the development and uptake of ERT is expected 
to increase further in the future, as illustrated by Fig. 2.

Fig. 2 The number of publications on enzyme-based drug development and the number of newly approved enzymes as active pharmaceutical 
ingredients by year from 1950 to 2023. In order to filter the results, publication searches were carried out by entering the subject "enzyme therapy, 

drug and treatment" in the PubMed database and selecting the "Title/Abstract" field [2]. To determine the number of approved enzymes, the approval 
dates of the drugs containing the enzymes first in time in the DrugBank Online [5] database were collected
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2 Formulation of enzymes
2.1 Classic formulation of enzymes
2.1.1 Systemic enzyme replacement therapy
Systemic enzyme replacement therapy is a therapeutic 
approach that involves the administration of enzymes 
through intravenous (IV) infusion that circulate through-
out the body. Systemic ERT has been licensed for clinical 
use in several lysosomal storage disease (LSDs), including 
Krabbe, Gaucher, Pompe, and Fabry diseases, as well as 
several mucopolysaccharidoses (MPSs) [49].

Systemic ERT is a well-established method for treat-
ing a variety of diseases. It offers efficient and widespread 
delivery of therapeutic enzymes directly into the blood-
stream, allowing distribution to different organs and tis-
sues throughout the body. This method also enables con-
sistent and controlled dosing, ensuring predictable enzyme 
delivery. However, there are some drawbacks to consider. 
Systemic ERT often requires frequent administration, 
which can be time-consuming for patients and caregivers. 
Infusions for Fabry and Gaucher diseases must be admin-
istered every two weeks, with each infusion lasting two 
hours [50, 51]. Additionally, infusion-related reactions, 
ranging from mild to severe, may occur, and patients must 
depend on healthcare facilities for intravenous adminis-
tration [52]. Also delivery or targeting of the therapeutic 
enzymes in treating certain organs such as bone, cartilage, 
heart valves, and brain poses serious challenges. This 
suggests the need for alternative, non-systemic delivery 

approaches [53]. Despite the limitations listed above, the 
vast majority of the most commonly used ERT medicines 
are currently systemic formulations [2], and they will cer-
tainly remain valuable treatment options for many dis-
eases with established safety and efficacy profiles. Table 2 
presents prominent examples of currently applied sys-
temic ERT formulations.

2.1.2 Non-systemic enzyme replacement therapy
Non-systemic enzyme replacement therapy has emerged 
as a promising treatment modality for various diseases, 
offering targeted delivery to specific organs or tissues 
affected by the disorder. Various formulations, including 
oral pills, tablets and capsules (see Table 3), have been 
developed to achieve this goal. By focusing on the affected 
areas, non-systemic ERT minimizes the need for wide-
spread distribution, optimizing therapeutic efficacy [54].

Another notable advantage of non-systemic ERT is that 
the patient is able to administer the therapeutic enzyme 
on their own, without the need for professional hospital 
staff. Treatment frequency is also reduced compared to 
intravenous ERT [52]. This reduced frequency and ease of 
administration may enhance convenience for patients and 
improve overall treatment compliance.

However, this approach also does not come without its 
limitations. One major limitation of non-systemic ERT is the 
limited availability of treatment options for diseases. Some 
disorders lack well-developed non-systemic formulations, 

Table 2 Examples taken from DrugBank [5] and European Medicines Agency (EMA) [44] databases of systemic enzyme therapies and target diseases

Name of ERT drug Formulated enzyme Pharmaceutical form Target disease

Cerezyme Imiglucerase Lyophilized powder for reconstitution and intravenous infusion Gaucher disease

Krystexxa Pegloticase Sterile liquid for intravenous infusion Chronic gout

Lumizyme Alglucosidase alfa Lyophilized powder for reconstitution and intravenous infusion Pompe disease

Myozyme Alglucosidase alfa Lyophilized powder for reconstitution and intravenous infusion Pompe disease

Strensiq Asfotase alfa Sterile liquid for subcutaneous injection Hypophosphatasia

VPRIV Velaglucerase alfa Lyophilized powder for reconstitution and intravenous infusion Gaucher disease

Pulmozyme Dornase alfa Sterile liquid for inhalation Lung cystic fibrosis

Table 3 Examples taken from DrugBank [5] and European Medicines Agency (EMA) [44] databases of non-systemic enzyme therapies 
and target diseases

Name of ERT drug Formulated enzyme Pharmaceutical form Target disease

Cerdelga Eliglustat

Oral capsule

Gaucher disease

DAOfood Plus Diamine oxidase Histamine intolerance

Creon

Pancreatic lipase, protease and amylase Exocrine pancreatic insufficiency (EPI)
Pertzye

Ultresa

Viokace Oral tablet

Lactaid Fast Act Lactase Oral chewing tablet Lactose intolerance
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restricting the treatment choices for patients with these spe-
cific conditions. Additionally, some of the main challenges 
encountered in the development of non-systemic ERTs is the 
short in vivo half-life of the therapeutic enzyme, along with 
the difficulties in achieving targeted action and addressing 
potential immune system reactions against the enzyme in 
patients [2]. These factors can severely impact the overall 
effectiveness of non-systemic ERT.

Despite these challenges, the discovery and use of tar-
geted non-systemic ERTs is becoming increasingly wide-
spread. Furthermore, modern nanoformulation approaches 
have the potential to significantly improve the develop-
ment and effectiveness of ERTs. These methods allow for 
precise control of enzyme properties, targeted delivery, 
improved stability, extended-release time, and the poten-
tial to overcome challenges such as short in vivo half-life 
and immune system reactions, revolutionizing ERTs and 
opening new avenues for effective and targeted treatments. 

3 Methods and carriers for enzyme nanoformulation
In order to achieve enhanced performance, stability, and con-
venient handling for the desired applications, it is essential 
to utilize an appropriate supporting system. For this pur-
pose, nanomaterials, including nanoparticles, nanofibers, 
and nanotubes, have garnered significant attention due to 
their finely tunable physical-chemical properties, large spe-
cific surface area, and biocompatibility [55]. The method-
ologies for immobilization can be broadly classified based 
on enzyme-carrier interactions, primarily involving phys-
ical adsorption, entrapment, and chemical attachments 
through covalent bonds, ionic or coordinative interactions. 
Each of these approaches offers distinct advantages, allow-
ing researchers and practitioners to tailor the immobilization 
process to suit specific enzyme applications [56].

3.1 Nanoparticles (for enzyme attaching, capsules etc.)
Over the years, significant advancements in nanotechnol-
ogy have facilitated the application of a diverse range of 
NPs for immobilizing numerous enzymes. In the exist-
ing body of literature, numerous articles have delved into 
the topic of enzyme immobilization using various types 
of NPs. These include metal nanoparticles like gold (Au) 
and silver (Ag), metal oxide nanoparticles such as zinc 
oxide (ZnO) and titanium dioxide (TiO2), as well as mag-
netic nanoparticles (MNPs), which are a subset of metal 
oxide NPs. Additionally, researchers have explored the 
use of spherical or porous silica nanoparticles (SNPs) and 
polymeric nanoparticles (PNPs), which consist of organic 
macromolecules like chitosan, poly(lactic-co-glycolic acid) 

(PLGA), and polyethylene glycol (PEG)-based nanoparti-
cles [57–60]. Due to their exceptional properties, such as 
finely tunable surfaces, high chemical and mechanical resis-
tance, and suspension stability within the appropriate size 
range, NPs serve as highly efficient solid support materi-
als [61, 62]. Furthermore, immobilizing enzymes using NPs 
not only stabilizes them but also reduces protein unfolding, 
ultimately enhancing their performance. However, despite 
these advantages, the use of NPs does come with some 
drawbacks, including the costs associated with synthesis 
and surface functionalization processes, challenges related 
to large-scale applications, and difficulties in isolating NPs 
from the reaction media (except for MNPs) [63]. When 
considering some of the most commonly observed ERT-
related enzymes, the immobilization process often involves 
functionalized SNPs, coated MNPs, or mesoporous resins. 
These methods have been extensively described in the case 
of α-Amylases and lipases from different strains [64, 65].

3.2 Nanotubes
Enzyme immobilization can utilize various types of nano- 
tubes as inorganic supports [57]. Carbon nanotubes (CNTs) 
are carbon allotropes with a nanostructure that are made 
up of graphite sheets coiled up into a tubular form with 
lengths in the micrometer range and diameters of up to 
100 nm. There are two forms of CNTs: single-walled 
carbon nanotubes (SWNTs) with a core tubule and mul-
tiwalled carbon nanotubes (MWNTs) with many layers 
of graphite around the central tubule [66]. Both ones are 
considered to be attractive supports for enzyme immobi-
lization because of their high specific surface area and in 
case of MWNTs the really good dispersibility too [67]. 
Halloysite is another widely used material consisting of 
a natural kaolinite mineral. Its aluminosilicate layers form 
a particularly hollow tubular structure, as a result halloysite 
nanotubes (HNTs) with diameters of 50–70 nm could be 
prepared and can be used for the adsorption of proteins. 
Furthermore, the density of siloxane (Si-O-Si) groups on 
both the outer and inner surfaces of HNTs is rather high, 
allowing for further surface functionalization [68]. Up to 
now the application of surface functionalized HNTs have 
been described in case of lipase, laccase, and horseradish 
peroxidase enzymes [69]. By combining NPs and CNTs, 
composite supports with improved mechanical character-
istics and handling may be created [70].

3.3 Nanofibers
Among all the nanomaterials used for enzyme immobili-
zation, nanofibers are perhaps one of the most extensively 
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employed. The advent of electrospinning technology has 
simplified and accelerated the fabrication of nanofibers, 
resulting in uniform nanostructured supports with a sig-
nificant specific surface area, high porosity, and excellent 
interconnectivity [71]. The entrapment of enzymes within 
nanofibrous matrices involves a straightforward process 
wherein a well-mixed, homogeneous precursor mixture 
containing both the enzyme and the corresponding polymer 
is used. During the immobilization process, the enzymes 
are rapidly embedded in situ inside the polymer nanofibers 
through secondary forces, all under mild conditions [72]. 
For this purpose, natural (chitin, chitosan, gelatine and 
cellulose etc.) and several synthetic (PVA, polyvinylpyr-
rolidone (PVP), polycaprolactone (PCL), PLA etc.) linear 
polymers are used [73, 74]. Among them the water-soluble 
synthetic polymers are commonly preferred thanks to the 
compatibility between the enzyme containing buffer solu-
tion and the water-based polymer sol. Moreover, the poly-
mer chains themselves can have a stabilizing effect on the 
enzymes in the precursor mixture, as well [33]. PLA  is a bio-
logically inert, water insoluble polymer, which has proven 
to be a  romising material for enzyme carrier systems over 
the years [75]. In case of the entrapment of lipases from dif-
ferent strains and a phenylalanine ammonia lyase enzymes 
in PLA nanofibrous matrices was described, which resulted 
water insoluble, stable biocatalysts [76, 77].

4 Future perspectives
The development and production of biological medical 
products, or biologics, is becoming increasingly import-
ant in the pharmaceutical industry. In 2020, for example, 
five of the top ten highest-earning drugs were biologics; 
the biggest earner's brand name is Humira, which con-
tains Adalimumab as the active pharmaceutical ingre-
dient, a monoclonal antibody [78]. The biologics can be 
divided into 3 main categories, monoclonal antibodies, 
receptor modifiers and enzymes. The research into the 

3 main categories is progressing at the same rate [79]. 
Most of the attention is in the research of new enzymes, 
but the development of new drug delivery systems is also 
important, more specifically the development of non-inva-
sive delivery systems [80]. Enzyme therapies hold great 
promise as treatments for various medical conditions, 
but they encounter several challenges [2]. The primary dif-
ficulties include the delivery of enzymes to specific target 
sites in the body, the stability of these fragile molecules 
during storage and administration, their potential to trigger 
immune responses, their short half-life requiring frequent 
dosing, and the high production costs limiting accessi-
bility for patients. To address these challenges, research-
ers are exploring various potential solutions (see Fig. 3). 
These include using nanoparticle-based drug delivery 
systems to protect enzymes and enhance targeted deliv-
ery, employing encapsulation and stabilization techniques 
to extend enzyme lifespan, and utilizing PEGylation [81] 
to reduce immunogenicity and increase circulation time. 
Gene therapy [82] is being investigated as a means to intro-
duce genetic instructions for producing required enzymes 
within the patient's body, while protein engineering aims 
to improve enzyme stability and specificity. Advances in 
bioreactor technology [83] could lead to more cost-effec-
tive large-scale enzyme production. Additionally, combin-
ing enzyme therapies with other treatment modalities and 
implementing continuous monitoring for personalized dos-
ing adjustments offer promising ways to optimize thera-
peutic outcomes. Through ongoing research and innova-
tion, these potential solutions may pave the way for more 
effective and accessible enzyme therapies in the future.

4.1 Development of novel nanomaterials
As mentioned earlier, in ERT, enzymes are often adminis-
tered via IV or subcutaneous injection. While these delivery 
methods are effective, they are often painful and in the case 
of IV their administration requires medical personnel [80]. 

Fig. 3 The main challenges of modern enzyme therapies and possible solutions for overcoming them
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To avoid these problems new non-invasive delivery meth-
ods are researched for use in the enzyme replacement ther-
apies. The issues of the non-invasive treatments emerge 
from the different barriers to the circulatory system, or in 
the case of the oral route, the digestive system, which can 
inactivate the proteins. To achieve a functioning, non-inva-
sive biologic, new developments of carrier systems, must be 
achieved. As a carrier system, many different nanomaterials, 
for example nanoparticles, liposomes and virosomes can be 
used. A list of older and novel nanomaterials with the bound 
enzymes can be found in the Table 4 [84–97].

4.2 New enzymes
Many different enzymes are currently employed for replace-
ment therapy, but research for new and unique biologics 
is always progressing. There are several FDA-approved 
and used enzymes, such as α-glucosidase, which is used 
to treat Pompe's disease, a glycogen storage type 2 dis-
ease [98], or β-galactosidase, which is used to treat Fabry's 
disease, a neurological disorder [20]. Non-human enzymes 
can also be employed in enzyme therapy. For example, the 
plant-based enzyme phenylalanin ammonia lyase (PAL) 
can be used to treat phenylketonuria, which is caused by 
an inadequate supply of the phenylalanine hydroxylase 
enzyme (PAH). Normally, the PAH enzyme converts 
L-phenylalanine to L-tyrosine, but in phenylketonuria, this 
conversion is hindered, and L-phenylalanine accumulates. 

L-phenylalanine is converted by the PAL enzyme into 
trans-cinnamic acid and ammonia. In comparison to PAH, 
PAL enzyme treatment has some advantages. PAL does not 
require cofactors, and the trans-cinnamic acid produced 
has low toxicity. The PAL enzyme is also relatively stable 
throughout a wide temperature range [99, 100]. Recently 
high amount of research is being done on human tyro-
sine hydroxylase enzyme (hTH). Its function is to convert 
L-tyrosine to L-dihidroxiphenylalanine (L-DOPA), which 
is the common precursor of adrenaline, noradrenaline, and 
dopamine in the human body and the limiting step in their 
formation. A defect in the hTH enzyme can cause a variety 
of central nervous system diseases, such as Parkinson's dis-
ease in cases of underactivity [101].
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Table 4 Nanomaterials used for enzyme-based therapies

Enzyme Used nanomaterial, method Method of binding Reference

α-glucosidase Magnetic nanospheres Covalent bond with glutaraldehyde [84]

α-glucosidase Polymethyl methacrylate/chitosan nanoparticles Covalent bond with glutaraldehyde [85]

α-amylase Silica nanoparticles Adsorption [86]

α-amylase Amino functionalized silica nanoparticles Covalent bond with glutaraldehyde [87]

L-asparaginase Polyelectrolyte microcapsules Encapsulation [88]

L-asparaginase PEGylated nanoliposomes Encapsulation [89]

L-asparaginase Gold nanoparticles Adsorption [90]

β-galactosidase Protein nanoparticles Covalent bond with glutaraldehyde between the 
enzyme and other protein [91]

β-galactosidase Tannic acid stabilized silver nanoparticles Covalent bond with cyanogen bromide (CNBr) [92]

Catalase Nanocapsules Encapsulation [93]

Superoxide dimutase Halloysite nanotubes Adsorption [94]

Human tyrosine hydroxylase Maltodextrin nanoparticles Encapsulation [95]

Phenylalanin ammonia lyase PEG copolymer micelles Encapsulation [96]

Phenylalanin ammonia lyase Magnetic nanospheres Adsorption, then covalent crosslinking with 
glutaraldehyde [97]
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